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DISSIPATION AND ASYMPTOTIC BEHAVIOR 

OP SOME REACTION - DIFFUSION SYSTEMS 

Konrad GrBger 
3erlin, GVR 

1. Introduction 

We shall deal with the behavior for large times of solutions 

u = ( u l t u 2 , u . - . ) to initial-boundary value problems of the form 

ult -DAu . . • kUg-k'^u- = - -»yu2t = u,t on [0,+oo[ XG, 

( 1 ) du 

We assume that G C R i s a bounded domain with a smooth boundary 

oXJ and that D>0, k>0, k1 >0. The problem (1) is a model of cer

tain polycondensation processes (cf. Pell-Davis [12]). We shall 

obtain information about the asymptotic behavior of such processes 

making use of their dissipation rate. Por results on the asympto

tic behavior of solutions to problems similar to (1) see Gajewski-

Zacharias [6] and Gajewski-GSrtner [5]. 

We consider (1) as a special case of more general reaction-

diffusion systems. Let n denote the total number of species invol

ved and let r be the number of those species for which we have to 

take into account diffusion. We set 

Lp:*Lp(G;Rn), 1 < p £ Oo , C:=C(E;Rn), C+:« { v € c | v ^ o } , 

V:- {v»(v1,...,vn)€L
2| v i€H

1(G), i»1,...,r}. 

We define a linear operator A from V to its dual space V* by 

Vv,Vh€V: <Av,h> :-» V £ Djgradv± gradh± dx, 
n f1 

positive numbers .If oc • (a.̂ ,... ,a ) 

we set va»v!64,...#v*11. The reaction-

where D.j,... ,D are given 

is a multi-index and v£V w c DC» » --,<- ... » 

diffusion problems we are interested in are of the form 

•^(t) + Au(t) = P(u(t)) for a.e. teS, u(0) » a, 

u€L2
oc(S;V)^C(S;C), g €lf0C<S|V*)t 

where S « [0,T], T < oo, or S = [0,+oo[ and P(v):«Hk0(aV
0t(p-a) 

( k « . . £ > 0 ; k** > 0 only for a finite number of multi-indices). Por 
a detailed interpretation of the function P (which represents a 

"mass action kinetics") see Horn-Jackson [8] or Peinberg [4]. 
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The problem obtained from (2) setting S » [0,+ oo[, n » 3, 
fk if oc* (0,2,0), p-0,0,1), 

r - 1, D- - D and k a* -- < k' if a * (1,0,1), 6=(0,2,0), 
1 r I 0 otherwise r 

will be regarded as the precise formulation of problem (1). 

2. Existence, uniqueness, regularity 
The following theorem on existence and uniqueness local in time 

can be proved by standard arguments (cf. e.g. Martin [10], Ch. 8). 
Theorem 1. For every a£C there exists T > 0 such that the pro

blem (2) with S « [o,T] has a unique solution. 
Remark 1. Let u be the solution to (2). If a£C, then u(t)£C 

T + 

for every t € S. To prove this one can use the lattice structure of 
the space V (cf. Necas [11], Ch. 7, §2). 

Remark 2. Well known results on evolution equations (see e.g. 
Barbu [l], Tanabe [13]) along with the special form of F allow to 
prove that for the solution u to (2) (with S=-[0,T],T < oo ) we have 

Vt6]0,T[ : u€C1([t,T];C), Au€ C([t,T];C). 

Further regularity results can be proved if the assumptions on the 
initial value a are strengthened. 

Remark 3. It is easy to see that for a solution u to the special 
problem (1) we have 0 & u2(t) + 2u-(t) » a2 + 2a-. Using these 
relations one can prove 

Theorem 2. For every a € C + (n*3) there exists a unique solution 
to problem (1) (note that for (1) we have S • [0,+ oo[)„ 

Remark 4. Let u be the solution to (1) corresponding to an ini
tial value a such that ag(x) > d > 0. It is easy to check that 
for every t > 0 

wpt*) £ i+£kV± • ^ S ui(t»3C) > °» *&£ u-Jt-x) > 0. 
X€G X€G -> 

3. Dissipation and asymptotic behavior 
In this section we assume that we are given e € C such that 

Vcx,{$: k^pe* » k^e*, 
(3) 

Ae » 0, min .* (x) > 0, i=-1,...,n. 
x€ÏÏ Ł 

These relations mean that e is a (nontrivial) equilibrium state 
for the pure diffusion process and for all pairs of reactions 
0t3--±P simultaneously. Obviously, (3) can be satisfied for the 
special problem (1). By means of e we define a function 
H : C +—*[0, + oo[ as follows: 
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H(v):-$£ (J^JiJejdx, where (q):= j * 
q(ln q - 1) +1 for q > 0, 

G * ii for q = 0. 

Using (3) we can prove 
Theorem 3. Let a € C + and let u denote the corresponding solution 

to problem (2). Then H(u(t)) < H(u(s)) if t -> a and s,t€ S. More
over, if min u.,(tfx) > 0f i»1f...fnf then 

xeTJ 
A r * du. u. (t) C(JL Igrad u. (t)|2 

&H(u(t)) - Jg^Ct) in - } — *c - - S{gDl (}) 
G G 
+ 9 H < W*<t> - w A t ) ) in **^t

 t ) dx . 
* u,p F P kp«up(t) J 

Remark 5« In the case of pure reaction systems a Liapunov func
tion similar to H has been used by Horn-Jackson [8]. Note that for 

mass action systems yU. :=ln--i is the (suitably scaled) chemical 

potential of the species with the concentration ui and that 

• \ X! "ji^*) yUi(t)dx is the dissipation rate of the process under 

consideration (see De Groot [2]). Condition (3) guarantees that the 
dissipation rate is nonnegative, 1. e. that the model is in accor
dance with the Second Law of Thermodynamics (cf. the discussion of 
this point by Horn-Jackson [8]; see also Horn [7] and Feinberg [3]), 

fiemark 6. Let LJJ :«{v€L | H(lv|)< 0 0 } . L^ can be considered 
as an Orlicz space (see Kufner-John-FuSik [9]). Theorem 3 shows 
that each trajectory of (2) originating at a point a € C + is bounded 
in the space LJJ. 

The proof of the following theorem on the asymptotic behavior of 
the solution to the special problem (1) uses essentially the re
sults of Theorem 3* 

Theorem 4. Let a € C + (n»3) be chosen such that a2(x) £ d > 0. 
Then there exists a unique e such that 

2 
«€C + f grad e1 • 0f ke2 • k'e-jê -, e2 + 2e^ = a2+2a~, 
f C 
^(2e1 + e2)dx • j(2a .j + a2)dx. 
G G 

If u is the solution to (1) then 
(5) u(t) —*e in L^ as t—*<*>. 

The result of this theorem can be Improved if G c R 1 . First one 
can show that in the statement (5) the space Lg may be replaced by 
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the space C. Using this fact and a linearization of the problem in 

a neighbourhood of the point e one can prove 

Theorem 5. Let G C R and let u and e be the solutions to (1) 

and to (4), respectively (we assume the initial value to be chosen 

as in Theorem 4). Then 

||u(t) - e|lc £ const exp(-jft), t £ 0, 

if f > 0 is sufficiently small. 
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