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ALGORITHM FOR CONSTRUCTION OF EXPLICIT n-ORDER RUNGE-KUTTA FORMULAS 

FOR THE SYSTEMS OF DIFFERENTIAL EQUATIONS OF THE 1ST ORDER 

Anton Huta 

Bratislava, Czechoslovakia 

The purpose of this lecture is to show the transformations of the 

nonlinear condition equations and also to introduce some relations 

occurring between the parameters of the RK methods of numerical solu

tions of the systems o± differential equations of the 1st order. The 

reason of the transformations and the above mentioned relations is 

the effort to transfer the system of nonlinear condition equations 

into some linear systems. 

In the abstract of this lecture were indicated some fundamental con

cepts, which will be useful in further considerations. 

First of all let us introduce them in a little more extended form: 

Problem: It is given a system of differential equations 

(1) y* » £(x, y) with initial value conditions y(x ) - y . 

The well-known solution has the form 

s-1 
k - EZ PA k* where 

i-0 1 x 

(2) kQ - h f(x0, y Q), 

k 
i 

± - h f(xQ + ajh, yQ * C bi} k ^ ) for i - 1,2,...,s-1, 

here all letters are vectors with the exception of x, which is a 

scalar. The expressions are the so called s-stages RK formulas. The 

exact increment K of the unknown functions y(x) is given by the ex

pression 
00 1 

(3) K - y(xQ + h) - y(xQ) - C ^ f (1~1) (xQ, y j 

and this relation one can write as follows: 

2 3 
(4) K - hf • | r Df + JY (D2f + f-jDf) + 

' O' 

* fr (D f̂ «• f ^ f «• f.pf •.ЗDfDf1) «• 

«• тjт[D4f «• f-jD f̂ «• £*Ъl£ «• f*Df «• ^D f̂Df̂  • бDfD2^ 

• 7f1D£1Df • 3£2(D£)2] • . . . 
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where 

(5) D'f • £ (J) .,„,£,.-*. »*f, • C Cj).r.JVJ.*
J 

at the same time denotes 

3 p * qf 
r,f„ " r* «. n *nd f« " J« ' 
p q 3xp 3yq q ° q 

By comparing the coefficients arising from the execution of the ope
rations in (2) with those in (4) we get a system of condition equa
tions of an s-stage method 

s-1 
(6) [f] C P4 - 1 • 

i-0 
(7) [Dqf] £ p. aq - ̂ 4 r for q - 1, 2,...,n-1, 

(8) [ D W ^ p2 p. aj c(i, 2/q) - (q , 1)(q + r + 1) 

for q - 1,2,...,n-2; r - 0,1,...,n-3 with q+r • n-2 , 

(9) [(DfjVf^ TZ Pi a\ c2(i, 2/1) - 4 ( y
1+ 5) for r - 0,1,...,n-5, 

(10) [f2Drf] f f j Pa c ( i , 3 /o /1 , r) - -U.— for r - 1 , 2 , . . . , n - 3 . 
1 i -3 * (r+3) [3: i 

The last equation is 
s-1 (1D [f?"2Df] ІŽZ PІ C(І, n) - -4 

1
 i-n-1 *•

 n l 

where C(i, n) is the brief symbolical note of the variable of the 

highest order n-1 and 

(12) (r+m)
l m J

- TT (r+m-j); 

i-o 
at the same time there holds 

i 
(13) a* - 2_- b

i i
, 

1
 j-1 ^ 

(14) c(i, 2/m.,) - EI ^ b
i r 

(15) c(i, S/B^MJ-, r) - C a™^ c"
2
(j - 1, 2/r) b

i r 

j"3 

The number of the single differential equations 0 (n) for the RK for
mulas of the n-th order and the number of the systems of differential 

equations N(n) is contained in the following Table I. 
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Table I. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 

^(n) 1 2 4 8 16 31 59 110 201 361 639 1114 1917 

N(n) 1 2 4 8 17 37 85 200 486 1205 3047 7813 20299 

n 1 2 3 4 

(5) f Df D
2
f f^Df 

elem. dif. i ш \Ѓ) {,«-

The numbers N(n) are in reality the numbers r that occur in the 

theory of graphs during the computation of the nodes of rooted trees 

(Riordan [6J). The numbers v(n) arise by using the operators (5), the 

numbers N(n) by using the so called elementary differentials 

£»{ft> ••• defined in Butcher's article [l] from 1963. 
As one can see from Table I., the numbers N(n) increase faster than 
v(n)• The equations with the operators D contain sometimes more sums, 
so that the number of sums in all equation is N(n)• 
Butcher in his article [2] published a table containing the equiva
lency of operators D of (5) and elementary differentials. The begin 
of the mentioned table can be seen in Table II. 

Table II. 

etc. 

The system of the conditional equations (6) till (11) for RK formulas 
of the n-th order contains equations of "depths" g • 0,1,...,n-1 
where the equation of g • 0 contains only parameters p. for 
i • 0,1,...,s-1, the equations of g • 1 (the number of which is n-1) 
contain the parameters p. and a* for i • 1,2,...,s-1 etc. The equa
tions for g • k contain the derived variables till C(i, k). At the 
same time k can attain the values 1,2,...,n-1. The "height" of all 
these equations is s-1. One can transform the equations by means of 
the substitution 

(16) t(i, 1/jj/j-,, m . , / j 3 , m2, m3, m4) • 

s-1 ji U U 
- C Pr'a/^ 'C (f, 2/m.j)«c (̂ , Vm2/m3/m4)-b i+1, 

the second transformation arises by means of the substitution 

(17) t(i, 2/J.J/J2, m ^ j j , v, 1, m 2//j, 1, w) -

s-2 U U U 
- EZ ayJ-c Z ( N 2/mi)-c

 3 ( r , 3/v, 1, m2).t(i, 1/J/1, w) .fa ±+y 

For the third transformation only one special case is given: 
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(18) t(i, 3/m//1/j) - flZ A.tli, 2/1//j).b^ .+1. 
r*—i+1 A ^ 1 * 1 

By the introduction of the relations (16) into (6) till (10) we ob
tain the transformed equations 

09) E I aJ-tCi. 1/r) - (q+i)(<..>.,+2) for q - 1,2 n-2, 

r - 0,1,...,n-3; q+r - n-2, 
s-2 .. 

(20) E 2 a..t(i, 1/r/1, 1) - 4 (^ 5 ) for r - 1,2,...,n-3, 

s-2 -
(21) E Z c(i, 2/r)-t(i, 1/0) - L-— for r - 1,2,...,n-3. 

i-2 (r+3) U J 

The second transformation (18) leads to the equation 

(22) jfl aT-t(i, 2/0//0) - - L — - for r - 1,2,...,n-3 etc. 
i-1 x (r+3) L^J 

By q-fold transformation of an equation of the height v and depth g 
there arises an equation of the height v-q and of the depth g-q, so 
that the span remains unvariable. Only equations with g -» 2 are trans
formable. 
If we denote the number of the condition equations with depth g as 
*Y(i-, g) * then the number of all condition equations of the n-order RK 
method is <p(n) « Tlf(^» g) • Tne number of the equations with the 

g 
depth g by i transformations will be iKn, g+i)• The number of all 
transformation will be n-2. By k-fold transformation of an equation 
of the highest order variables C(i, k) there arises an equation with 
the variables a. and obviously with transformed variables t(i, k-1). 

Under suitable relations between the variables one can reach the statj 
that all derived variable is dependent on a*. This can be reached by 
comparing the coefficients of the equations of the system (7) and the 
coefficients of another system [e.g. (8) or (9) etc.)]. In this way we 
get e.g. the following relations: 

ak+1 

(23) c(i, 2/k) - - J ^ , 

„k+2 
(24) c(i, 3/0/1, k) -

(k*2) í21 ' 

a * Ч
+ 2 

(2S) c(i, З/j/1, k) -
 ( k И

j
( k ł j t 2 ) . 
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a k + 3 

(26) c(i, 4/0/0/1, 0, 1, 4) l-
( k + 3 ) ^ " 

Some special cases in other notation occur in an article of Hairer 

[3]. 
By comparing the coefficients of transformed equations and some li
near combinations of equations of system (7) one can obtain the de
pendence of the transformed variables on the p. and a. 
(i - 1,2,...,s-1). 
In this way there arise the following relations: 

(27) t(i, 1/k) - KTY-Pi-C1 - a k + 1 ) , 

(28) t(i, 1/k/1, 1) « 7-t(i, 1/k+2), 

(29) t ( i , 2//k) - ( ^ ( k ^ - P i - C a i * 2 " Ck+2)ai * k + 1L 

(30) t ( i , 2/k//0) - (k^1j(k.,2)'Pi'E (k + 1)a i+ 2 " (k+2)ak+1 + 1] • 
If the number of variables is greater than the number of the equations 
(and this can always be reached) then we can choose e.g. p* * 0 for 
i - 1,2,...,n-2. Under these conditions with the relations (23), (24) 
etc. each equation of the whole system of condition equations will be 
changed into the system (7) and thus it suffices (if n > 7) to choose 
the parameters a. (i - n-1,n,n+1,...,s-2,s-1). 
Considering the fact that by means of transformations the initial sy
stem is transfered into linear systems, the solution can be rational 
and with the use of rational arithmetic of the computer it can be 
programable. 
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