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THB METHOD OF DISCRETIZATIO.N Ш T.DIB 

AKB PARTIAŁ DIFFERENTIAL EQUATIOЫS 

Kar l Rektorys 

я. Prague, ÖSЗH 

One of th well-known methods of solution of parabolic probleпш is 

the Rothe m thod (or the method of lines). The interval I « [0
f
T] 

for the time-variable t is divided into p subintervals I., of the 

l ngth h • T/p
f
 aлd at each of the points of division t.. «- jh

f
 j • 

• 1
f
•••$$• th derivativ дu/дt is replac d Ъy th corresponding 

difference quotient [ z A x ) - z._
1
(x)]/h. In this way

f
 the solution 

of the given proЪlera is reduced to the solution of p elliptic proЪ-

lems for th functions Zj(x) which are approximations of the requi-

red solution u(x,t) at the points tл« (Here
f
 x is written Ъriefly 

for (x
lf
 •..,xtî) J The function z0(x) ІS given Ъy the initial function 

UQ(X) «« u(x,0)
# 

This method has been applied Ъy many authors to the solution of 

sufficiently general problems (Ladyženakaja, Iljin, etc.). A rather 

different technics in this method, con isting, in essential, in a 

new way of treating the corresponding elliptic proЪlem , was deve-

loped in my work [1]. It enables to obtain, in a relatively v ry 

eimple way, apriori estimates needed for proofs of exiвtence and 

convergence theorems and to get, at th sam time, a very good in-

sight into the structur of corresponding solutions* This "improved" 

Rothe method was call d the method of discretization in time. It 

was followed by other authors (îîečas, Kačur a.o.) and, in particu-

lar, it Ъecame a base for an extensiv study of evolution proЪlems 

in my seminar at the Technical University in Pгague. Th method 

was shown to Ъe applicable to a wide range of evolution problems 

(to parabolic proЪlemя, linear as well as nonlinear, including non-

traditional integrodifferential problems and problems with an inte-

gral condition, describing complicated process s in the theory of 

heat conduction, thento hyperbolic problems, problems in rheology, 

e t c ) . Num rical as well as theoretical aspects of this method hav 

Ъeen xamin d (convergence que tions, including those when elliptic 

problem , generated Ъy our method, are solved approximately, error 

stimateø with tests of their practical efficiency, xistence theo-

r mfl, regularity properties of the weakf or very weak solutions, 

etc.). The obtained results are summarized in my new Ъook [2]. With 

only some exceptions, all th se results are puЪlished in this book 

for the fir t tim
 #
 I would like to say a few words her about the 

whole problematics, and, consequently, about th contents of this 
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book. See also a more extensive surveyable article [3]» 
To make clear the ideas, let us begin here with a relatively simple 
parabolic problem 

(1) -2Ji + AU » f in G x If 

at 

(2) u(xfO) « 0f 

(3) B.-U - 0 on r x (0fT)f i » 1f^..f (L f 

(4) 0±n * 0 on P x (0fT)f i m 1,...,k - ^ f 
with A and f Independent of t and with homogeneous initial and 
boundary conditions. Here G is a bounded domain in £•* with a Lip-
schitz boundary P, f s -^(G), A is a linear differential operator 
of order 2k with bounded measurable coefficients, (3)f or (4) are 
boundary conditions, stable (thus containing derivatives of order0 
-5 k - 1 ) f or unstable f with respect to the operator Af respectively. 
Applying the above described method, we have to solvef successively 
for i » ^•••tPt the equations 

^i + ^zi ~ z j - 1 ^ • * ** Gf 
with boundary conditions B^z^ • 0, C^z. • 0 on P (by(3),(4))and 
with ZQ m 0 by (2)# Denote 

(5) V - {vi v 6 wi$k'(G)f Biv « 0 on T in the sense of traoe09 

In the weak formulation, we have to solve the problem of finding 
successively such functions 

(6) z i € Tf i m 1f...fp 

(with ZQ m 0) f which satisfy the integral identities 

(7) ((vfzj)) + jL(vfz., - z3-1) - (vff) V • € T. 

Here (•,•) is the scalar product in I^G) and ((•,•)) is the bili
near form corresponding to the operators A,B^f C^9 familiar from the 
theory of variational methods* Let us assume that thio form 0atio-
fies 

(8) l((vfu))l S K H V M V 
(9) ((vfv)) &oclM||. 
Then each of the problems (6), (7) 10 uniquely solvable• Thus it I0 
possible to construct the so-called Roths function u1(x,t) - or 
U|(t)f if considered as an abstract function from I into V - defi
ned in the subintervals 1*9 ) » 1,•••,?, by 

(10) u^t) - Z ^ + %i -J-H (t - tj_t># 
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Consider the division o^ of the interval I into 2n~1p subintervala* 
Similarly as before, the n-th Bothe function u^t) can be construc
ted.* In this way we get the so-called Rothe sequenoe {^(t)}* 
Thanks to the just mentioned new technics from [1] one obtains in 
a simple way the needed apriori estimates* In particular, it turns 
out that the sequence {un] is bounded in Xg(IfV) (the space of ab
stract functions from I into V9 square integrable in the Boohner 
sense) and that9 consequently, a subsequence fu_ I can be found, 
weakly convergent in that space to a function u* It is shown, with
out difficulties, that this function satisfies 

(11) u € Iigd.V) n AC(IfL2(G))f 

(12) Vl^G)) « VI.V«>. 
(13) u(0) « 0 in C(I9I^(G))f 

(14) Jj((vfu))dt + J»(Y.V>at - /J(vff)dt V v € I^(IfV)* 

Definition* Bie function u with the properties (11) - (14) is cal
led the weak solution of the problem (1) - (4)« 

Uniqueness is then easily established, as well as convergence of the 
whole sequence {un} to u weakly in It2(IfV) and strongly in 
C(IfIt2(G))# So we have 

Theorem* Let (8), (9) be satisfied* Then there exists exactly one 
weak solution of the problem (1) - (4) and 

(15) u^-** u in XgCXtT)*. V - > u in Ctt.lgCG))* 

Using then the same technics, in [2] 
(1) a relatively very sharp error estimate is derived, 

i*e* estimate of the norm flu(t) - ^ ( t ) ! at the points of division 

V 
(ii) convergence of the "Ritz-Rothe method" is proved, 

l*e* oonvergenoe in the case that elliptic problems (6), (7) are 
solved approximately by the Ritz method, or by a method with simi
lar properties; 

(ill) regularity questions are discussed, i*e* smooth
ness of the weak solution "with respect to x" (see also [4]) as well 
as "with respeot to t"# 
These results are then extended to the case of nonhomogeneous ini
tial and boundary conditions* 

In a similar way, the method of discretization in time is then ap

plied, in [2], 
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(i) to the case that A and f depend on t
9 

(11) to the case of A nonlinear, 

(iii) to lntegrodlfferential paraЪolic problems, 

(iv) to paraЪolic proЪlems with an integral condition
9 

(v) to linear hyperЪolic proЪlenш
9 

(vl) to a proЪlem ln rheology. 

Summarizing, one can concludes Th m thod of discretization in time 

ls a powerful numerical m thod
9
 applicable to th olution of a wi-

d range of evolution proЪlems, whlle convergence questions can Ъe 

answered in a relatively very simple way. It produces sufficlently 

general existence theorems
9
 even in th cas of nontraditional pro-

Ъlems. Being a very natural m thod, lt permits a new approach to 

the investigation of properties of the corr sponding solutions (a 

new way of discusslng r gularity questions, etc#). 
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