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SINGULAR LINES IN LIQUID CRYSTALS 

SOUČEK J., PRAGUE, Czechoзlovakia 

Let us consider H^2(n,S2) = {u : ft C H3 -• S2 C K3 : u € 

fr1,2(n,52),ttj5n = v?} and the energy E(u) = | / n \Du(x)\2 dx. Minimiz-

ers can be considered as stable configurations of the liquid crystal, where 

u(x) € S2 is the direction of the optical axis at x [2]. 

In [1] it is shown that the relaxed energy is not E but F(u) = E(u) + Air-

"length of a minimal connection"- see [1][2]. Alternative description was 

introduced in [3][4]. The class of Cartesian currents cart2;1 (ft, 52) is the 

set of all 3-dimensional rectifiable boundary-less currents in ft x S2 of the 

form T = [GUTJ + LT x [S2] , dT = [GJ, where uT e tf1'2 and GUT 

denotes the graph of uT. LT is related to singularities of uT by the relation 

3[GUT1 = -LT x IS2} which follows from dT = 0. The energy of T is given 

by the parametric extension of E [3] [4] 

P(T;ft) = \f \DuT(x)\2dx + 47rMn(Xr). 1 Jn 

Now we shall describe some results from [4]. 

To each u e - ^ ( f t , S2) there is a class [u] = {TG cart^^ft, S2) : uT = 

u} and F(u) = min{V(T) : T G [u]}. V(T) is the relaxed energy with respect 

to the weak convergence of currents 

V(T) = inf{liminf.E7(^):^GCM[GuJ-r}. 
k—*oo 

Using the monotonicity formula the partial regularity for minimizers of V(T) 

in cart2'1 (ft, S2) can be proved: uT is smooth outside of the closed set E C ft 

with «1+€(E) = 0, Ve > 0. 
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LT is interpreted as the line singularity of T. This is confirmed by the 

behavior of smooth approximating sequences. Denote by 

eT = \\DuT\2-nz(dx)+4ir\\LT\\ 

the "energy measure" of T. Then we have 

Theorem. Let uk £ C1(Q9S
2) be the sequence satisfying 

IGUA-IGUT} + LTx IS% E(uk) - V(T). 

Then 

\\Duk\2-H*- e(T) 

as measures in ft and for any neighborhood U o/spt JDy we have 

uk-*u inHl>2(Sl\U;S2). 

This describes the concentration of the gradient \Duk |2 at the support of LT. 

An analog property in the setting of [1] does not hold: Uk-*u in Hli2(Q,S2) 

and E(uk) -+ F(u) does not imply that \Duk\
2 -ft3 converge as measures (for 

the example see [4]). 
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