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DIRICHLET'S PROBLEM ON A SNOWFLAKE 

WALLIN H., UMEA, Sweden 

1. If ft is a domain in lRn with boundary r which is sufficiently 

smooth Dirichlet's problem in ft in variational form was solved long 

ago (see for instance [4], [6], [7]). Recently J. Marschall [5] was 

able to treat the case when ft is a Lipschitz domain. In this note 
2 we treat the case when ft is von Koch's snowflake domain in TR . 

However, our method works for more general domains in 3Rn with 

fractal boundary. We refer to [8] for this fact and for proofs and 

further details on the material in this note. The results in [8] are 

based on extension and restriction theorems in [3] and [2], 

2. Let ft be any bounded open subset in _Rn and consider the Dirich-

let problem 

(Au = -f in ft 

\u g on r, 

where f and g are given functions. In integrated form the first 

equation in (1) becomes after a partial integration 

fvu-Vvdx - Jfvdx, for v€cj(ft). 

ft ft 

Together with the boundary condition u=g on r this gives 

Dirichlet's problem in variational form. 

2 
3. Let W.,(ft) be the Sobolev space with the usual norm of functions 

in L2(ft) having first order derivatives in L2(ft), and let W2(ft) 

be the closure of Ĉ (ft) in this norm. 
2 

Now we assume that f€L (ft) and that g defined on r can be 
2 

extended to a function g_€W.Aft) in the sense that the trace (de
fined by (3) below) to Y of g„ is g. Then, in the usual way it 

2 is proved by Hilbert space methods that there exists a unique u€W..(ft) 

such that 

{ ľvu-Vvdx -= ľ fvdx, for v€W2(ß), and 

ft fì 

u-g E €W 2 (ß) . 
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We want to answer the following questions when r is a fractal. 
2 

How do we define the trace to V of functions in W.(f2) and what is 

the trace space to T of W2(&)? Does the solution u€W2(ft) of (2) 

have trace g to T and does u depend uniquely on f and g? 

4. From now on we assume that Q is von Koch's snowflake domain in 
2 

3R . This is the domain inside von Koch's curve T. To construct V 

we start from the boundary T~ of an equilateral triangle with side 

of length 1. In the first step we get r1 from Tn by dividing each 

side of T0 into three equal parts and replacing the middle part by 

the two other sides of an equilateral triangle having the middle part 

as base and the opposite corner outside T0. This gives T. which 

consists of 3*4 sides of length 3 . In the second step we construct 

Vy from T1 in an analogous way, and so on. V consists of 3-4 

sides of length 3~n and the limit of T is T which is a fractal 
n 

of Hausdorff dimension d=log4/log3 (see [1], p.118 for a picture, 

and [ 1 ] or [3] for the definition of Hausdorff measure and dimension). 
2 

5. We now define the trace to T of a function u€W.A f t ) . We say that 

u can be strictly defined at xEftuT if B(x,r) denotes the closed 

disk with center x and radius r and the limit 
( 3 ) S ( x ) ; ~ ^mm(B(xlr)Pa) Ju(y)dy 

r"*° B(xfr)pn 

exists. The trace Tr u of u to T is defined as the function 

u|T given by 

(u|D(x): -= u(x) 

at every x€T where u(x) exists. It may be proved ([81, Proposi

tion 2.3) that u|T is defined d-a.e. on T, i.e. everywhere on T 

except on a subset of d-dimensional Hausdorff measure zero. 

6. Next we define the Besov space B 2' 2(D where, for the rest of 

this note, we put 

8 =- 1-(2-d)/2, d-=log4/log3. 

We let m. denote the d-dimensional Hausdorff measure and introduce 
a 

the measure u on T by 

U(E) = m,(Enr), for all Borel sets E. 
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2 2 
A function g defined d-a.e. on T belongs to Bg' (T) if it has 

finite norm 

f 2 \\/2 
| |g;B 2 ' 2(D| | : - ||g|| + J \\ l » ( x ) " | | ^ l du(x)du(y) \ . 

15 I T ( u ) JJ x-y d+2t5 

l|x-y|<1 > 

7. The first part of the following basic theorem (see [8], Theorem 

2.3 and 3.1) gives the trace space which we asked for in Section 3. 

THEOREM 1. The trace operator Tr: u h- u|T is a bounded linear 

surjection 

Tr: W2(G) -+ B 2 ' 2 ( D 

with a bounded linear right inverse. Furthermore, the kernel of the 
• 2 

trace operator is W:*(Q). 

8. We now return to the Dirichlet problem in variational form. The 

connection in Section 3 between g_ and g is g_|r = g where g_,|T 

is the trace of g_ to T in the sense given by (3). The trace 

space td r of W2(fl) is B 2 ' 2 ( D , B=-1-( 2-d)/2, by Theorem 1 . 

° 2 
The condition u-g-EW-jW in (2) means, by the last part of 

Theorem 1, that the trace to T of u-g_ is 0 which gives 

u|r=g_|r-g, i.e. the trace to T of the solution uGW^(fl) of (2) 

is g. From Theorem 1 it also follows in a standard way that the 
2 

solution u€W.j(fi) of (2) depends uniquely on f and g. 

Summing up and using Section 3 we get the following solution of 

Dirichlet's problem in variational form. 

2 
THEOREM 2. Let fi be von Koch's snowflake domain in 3R with 

2 
boundary T with dimension d~log4/log3. Given f£L (Q) and 

g€B 2' 2(r), 6=1-(2-d)/2, the problem 

( fvu-Vvdx = [fvdx, for all vGW2(fl) 

Q ft 

u|r- g 

2 
has a unique solution uGW^fl). 

It may also be proved that the mapping {f,g} h» u is a bounded 

linear mapping from L2(ft)xBg'2(T) to W2(fi). 
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