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STABILITY OF STATIONARY SOLUTIONS 
OF PARABOLIC VARIATIONAL INEQUALITIES 

QUITTNER P., BRATISLAVA, Czechoslovakia 

The stability of solutions of parabolic variational inequalities was studied by many authors 

(see e.g. [1,4,5,6,7,15,16]). In the present paper we study the Lyapunov stability of stationary 

solutions of semilinear parabolic variational inequalities in Hilbert spaces. In comparison to 

(some of) the papers cited above our assumptions are rather special, nevertheless we are able 

to prove exponential stability of a given stationary solution and also the instability results seem 

to be new. In our abstract setting we use the existence and regularity results of Brezis [2,3]; 

similar results should be possible to obtain also under another assumptions guaranteeing the 

necessary existence and regularity properties of the solution of the parabolic inequality. 

Throughout this paper we assume that V or H is a real Hilbert space with the scalar 

product (•, •) or (•, •) and the norm || • || or | • |, respectively. We assume also that V C H, where 

the imbedding is dense and compact, and we denote by (•,•) also the duality between V and 

its dual space V1 induced by the imbedding V C H = H' C V1. Finally, let K be a closed 

convex set in V and F : V —• H a (locally) Lipschitz continuous map. We define the operator 

A : V —• V' by (Au} v) := («, v) for any u,v £V and denote by A the H-realization of A, i.e. the 

domain of A is V(A) := {u G V \Au £ H} and Au := Au for u £ V(A). Then A is a positive 

self-adjoint operator in H with a compact resolvent and the operator F := A"lF : V —• V is 

compact. By Xa we denote the domains of the fractional powers A° (particularly, Xij2 = V). 

We shall suppose that u0 € K is a stationary solution of the inequality 

at (1) 

t-(0) = u0 

( « 0 - F K ) , i i - t i 0 ) > o VveK 

The inequality (1) can be written also in the form 

u(t)£K ( ^ + > U * - F ( t i ) . v - u ) > 0 Vt/GK 

Analogously as for equations one can try to "linearize" this inequality and to study the stability 
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of the stationary solution 0 for the "linearized" inequality 

du 
u(t)£K0: ( - - + . A u - L u + F o , t / - u ) > 0 Vt/£K0 , (1)L at 

where K0 is the closure of the set \Ja>0oc(K — u0), L : V —• H is a continuous linear operator 

•uch that ||F(u) - F(u0) - L(u - u0)\\v> = o(||u - u0||) for u -> u0, F0 := ,4u0 - F(u0). This 

approach does not yield always satisfactory results , however the following Theorems 1, IB and 

2B are true. 

Theorem 1 ([12]). Let A- := inf{(-4u - Lu, u) | u G K0i \u\ = 1,(F0iu) = 0} > 0. Then u0 is 

an exponentially stable solution of (1) in V. 

If F0 = 0 and L is symmetric, then the number Ax defined in Theorem 1 is the least eigenvalue 

of the inequality 

«GKo (Au-Lu}v-u)> A(u, t / -u) Vt/€ Ko, (2) 

i.e. there exists a nontrivial solution Ui of (2). The function u(t) := e~*xiui is a solution of 

the inequality (1)^, hence Ai < 0 implies an instability result for (l)z,. However, if L is not 

symmetric then the condition Ai > 0 is, in general, not necessary for the (exponential) stability 

of u0- A possible generalization of Theorem 1 for nonsymmetric L is the following 

Theorem IB ([13]). Let B : H —• H be a strictly positive, self-adjoint, continuous linear 

operator such that B(V) C V, B2(K - u0) C K - u0, (id - B2)(d(K - u0)) C K - u0, 

(utB
2u) > a||u[|2 — C|u|2, (F0iB

2u) > c(Fotu) for some positive constants a,c, C and any 

u £ K. Then the condition Af := inf{(.4u - Lu,H2u)|u G K0,|-9u| = l ,(F0 ,u) = 0} > 0 is 

sufficient for the exponential stability of the stationary solution u0 of (1) in V. 

Similarly, the instability result [12, Theorem 2] can be generalized to the following 

Theorem 2B. Let, in addition to our general assumptions, K be a cone with its vertex at uot 

F0 = 0 , | F ( u ) - F ( u 0 ) - L ( u - u 0 ) | < C | | u - u 0 | | 2 / o r u in a neighbourhood of u0 and let B fulfill 

the assumptions of Theorem IB. Let u- € K0, \ui\ = 1, be an eigenvector of the inequality (I) 

with an eigenvalue X1 < 0 and let (Ay — LyyB
2y) > \x\By\2 for any y 6 K0' — «i. Then the 

stationary solution u0 of (1) is unstable in both of the topologies of V and H. 

The assumptions of Theorem 2B are rather restrictive, however in general one can not 

expect that the instability result for (1)L would imply an instability result for (1) (see [12, 

Example 1]). Thus we are led to the study of the nonlinear stationary inequality 

u G K { u - F ( u ) , t / - u ) > 0 Vt /€K (3) 
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which is obviously equivalent to the equation u - PKF(u) = 0, where PK is the projection in V 

onto K. We need some additional regularity hypothesis on F and K\ we suppose that there exists 

a neighbourhood U of u0 in V, a > 0 and a bounded (nonlinear) operator G :U -+ X(1+f t)/2 such 

that u + AAa(u + G(u)) eKQU implies u £ K for small A > 0 (cf. [14]) and F : U C J-> -~,K 

is Lipschitz continuous for some j3 < 1/2. By d(u0) we denote the Leray-Schauder degree 

deg(id - P/cF, 0,u). Supposing u ^ PKF(u) for any u G W \ {u0} we have 

Theorem 3 ([14]). Let d(u0) -̂  1. Then u0 is not asymptotically stable (neither in the topology 

of V nor in the topology of H). If, moreover, F has a potential, then u0 is not stable. 

The assumption d(u0) ^ 1 is, of course, not necessary for the instability of u0. However, if F 

has a potential T and the functional §(u) := | | |« | | 2 — F(u) attains its local minimum at u0 with 

respect to K, then d(u0) = 1 (if this degree exists) and u0 is an asymptotically stable solution 

of (1). The degree d(u0) was studied by the author in [8,9,10,11] and an application of Theorem 

3 is given in [14]. 

Applications of Theorems 1 and IB can be found in [12,13]; here we apply Theorem 2B to 

the system of reaction-diffusion equations 

(4) 

where ft is a smoothly bounded domain in 1\N
} d > 0 and ft : 1R2 —> fft are C1 functions such 

\§lL(mt\\ S f(l _i_L,m ~ * 2 .f M v. O T.pf „ __ (9ll , .2\ 

^-dAu^MuW) 

Џ-Au2-f2(u\u2) 
in (0,T)x ft 

дu1 _ дu2 __ 
дn " õn 

on (0, T) x дӣ 

ti1(0,.) = tiił гг2(0,) = tz2 

that §£•(«) < C(l + |ttp)f 7 < j?2^ if-V > 2. Let u0 = («J,u2) G V := WJ'2(ft) x W^2(ft) 

be a stationary, spatially homogenous solution of (4) and denote 6,, := 3J~(*-O). Assuming 

&n > 0, 621 > 0, 6n 4- 622 < 0, bub22 > bi2&2i one can easily check (cf. [6,10]) that the 

condition d > d° := maxAi>0 4~(&ii + A - 6 )» where A, is the t-th eigenvalue of - A with 

Neumann boundary conditions, is sufficient for the exponential stability of u0 and the condition 

d <d° is sufficient for the instability of u0. 

Now suppose that we have an unilateral constraint for the solution u of (4), which leads to an 

inequality on a convex cone K = (K_+u\) x (K2+«2) with its vertex at u0 and suppose K2 C K+ 

and -11 € K_, where Ar+ is the positive cone in Wlj2(ft) and 11 is the function l!'v.r) := 1. Then 

one can easily check that u_ := (-11,0) is the eigenvector of (2) with A! = -bu < 0 and that 
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the assumption (Ay - Ly} B
2y) > Ai|l.ty|2 is fulfilled for any y £ V if we choose B := ( Q J )., 

where b = —&21/&12 and I is the identity in L2(to). Hence the solution u0 of the corresponding 

inequality (1) is unstable for any d > 0. 
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