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AN ELECTROMAGNETIC FREE-BOUNDARY PROBLEM 

DESCLOUX J.,MAILLARD P., 

LAUSANNE, Switzerland 
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A section of the electromagnetic casting (EMC) device is schematically represented in Figure 1. QQ 

represents the ingot (aluminium) with a solid part and a liquid part An alternating current run along the 

inductors Qi, Qi; it induces an electromagnetic field which, in its turn, produces Laplace forces in the 

ingot; these forces compensate the action of the gravity and maintain the liquid metal in equilibrium. 1 he 

interface liquid-air is the main unknown of the problem. The ingot is supposed to be infinitely long so 

that the free boundary problem is two dimensional. 

In Figure 2, Go is a given approximation of the section of this ingot at equilibrium; dfto is smooth 

except at the two corners at the bottom. T c dfio (dotted line) is the interface and we suppose that 

0 e r. O » £to u Qi» where Q\ = Cl\ u ft?, is symmetric with respect to the X2-axis. T admits the 

paramcuization x = (xi,X2) = y (£), -L £ £ ^ L, where % is the arc length parameter. The unit exterior 

normal is denoted by n(£) = (ni(£), n2(£)). We introduce, in the neighbourhood of T, the orthogonal 

curvilinear system of coordinates (£,1)) defined by the relation x -= y (£) + T| n(£). Let W = {f e C°[-L.L] 

III f II < e) where ll-ll is the uniform norm and e > 0 is chosen small enough in accordance to the 

geometry. For f € W, let r(f) be defined by the parametrization x = y ft) + fft) Tift), -L £ £ £ L. Qo(f) 

is then defined as the domain with boundary (dQo-OuT(f) u T + u V where T± are the two 

horizontal segments described in Figure 2. Finally we set Q(f) = fto(0 u fti. 
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We rely on [1], [2], [3] for a justification of the mathematical model. Let W0(IR
2) be the 

completion of C °° (1R2) (complex functions) for the norm II v II Wi/IR2) = J lvTv l2+ J I v l 2 (see [1] 
** IR2 Qo 

for details). For f G W, we define a(f): W0(IR
 2) x W0(IR

 2) -> C, b(f): W0(IR
 2) -> £ : 

a(f)(u,v) = J Vu-Vv - 2i a2 J uv, b(f)(v) = 2i a2 J dv. (1) 
1R2 Q Qi 

Here a is a (large) real constant depending on the conductibility of the metal and on the frequency of the 

currents, i is the complex unit, v is the complex conjugate of v. d : Q\ -> IR is a real odd function with 
respect to xi, the restrictions of which on iQi and Q\ are constant; d is related to the intensity of the 

current running in the inductors. 

The proofs of the results stated in this paper can be found in [2]. 

Proposition 1 . For f G W, there exists a unique <p(f) G W0(IR
 2) such that 

a(f)(cp(f),v) = b(f)(v), V V G W0(IR
2). (2) 

cp(f) is a potential the bidimensional curl of which is the magnetic field. In the neighbourhood of T, <p(f) 

will be considered as a function of the curvilinear coordinates (£,r|). For f G W, H(f) is the function 
defined on T(f) by 

H(f)(0 = 5 On I 9(f) (WO) I 2 + Cg x2(UO). (3) 

The first term is (2) represents an approximation of the "magnetic pressure" on T(f); the second term 

gives the pressure due to the gravity; Cm and Cg are positive constants. The equilibrium is obtained when 
the total pressure H(f) is constant along r(f). Due to an industrial constraint explained in [2h this 

constant vanishes in our case. Consequently, our problem is to find f G W such that H(f) = 0. Because 

of the complexity of the geometry, it seems to us not realistic to prove a mathematical existence theorem. 

We however have the following results. 

We consider a, cp and H as function defined on W with values in the sesquilinear forms on 

(W0(1R2)2 forms, in W0(IR
2) and in C°[-L,L], respectively. Let D and d̂  denote the Frechet derivative 

with respect to f and the partial derivative with respect to r\ in the coordinate system (^,n). J(^,n) will 

denote the jacobian of the transformation ( ,̂r|) —> (xi,X2). 

Proposition 2 

a) For any bounded domain A c IR2 and any 2 < p < <*>, one has 

cp G C^W.W^IR2)) n C1 (W,W1«P(A)) n C°(W,W2'P(A)). 
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b) For h e C° [-LJ_], D<p[h] is characterized by the variational equality 

a(f) (D<p(f)[h],v) = - Da(f)[h]((p(f),v), V v e Wj,(IR 2), (4) 

L 
where Da(f)[h](u,v) = -2ia2 J J(.;,f^))h(5).u(^,f(^)).v(^f(.;)) d^. 

-L 

Proposition 3 

a) There exists 0 < \i < 1 such that H e C1^ (W,C°[-L,L]). 

b) DH(f) [h] © - Qn Re { 9(f) ($,f©)-(D(p (f) [h] (5-fft)) + d^(f) <$.«$»•--<$» } + Cgh(.;) n2(£). 

It can be shown that DH(f) can be expressed as the sum of a compact operator and a multiplication 
operator of the form r(£)h(c;), where r € C°[-L,L], A physical analysis shows that it is realistic to 
suppose that r(£) ^ 0, V ̂  e [-L,L]. Under this hypothesis DH(f) is a Fredholm operator. 

Proposition 3 suggests the use Newton's method for solving the equation H(f) = 0. Numerically, 
this implies the discretization of (2) and (4); this has been realized efficiently in [2] with boundary 

elements; 90 % of the time necessary to compute one iteration is used for determining cp in (2). 

Numerical experiments for concrete situations show a very fast convergence; three Newton iterations are 

generally sufficient 

For more details and other approaches to the EMC problem, see [2], [3]. 
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