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ORLICZ - SOBOLEV SPACES AND 

NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 

(*) Jean-Pierre Gossez 

Introduction 

These notes are concerned with the existence of solutions for 

variational boundary value problems for elliptic operators in diver

gence form: 

(1) y (-1) I a'D aA (x, u, Vu, ...., V m u ) . 

I aïá. m 

This question has been extensively studied since 1963 in the context 

of the theory of mappings of monotone type from a reflexive Banach 

space into its dual (see the works of BROWDER, LERAY-LIONS, BREZIS, 

. . . ) . The condition of reflexivity impose that the A f s , at least 

for |a| = m , have polynomial growth in u and its derivatives. 

Our purpose here is to treat cases wher*e the coefficients A do 

not necessarily have polynomial growth in u and its derivatives. To 

avoid technicalities, we will concentrate on the Dirichlet problem 

for the equation 

«> " .? afrl* 1^7 I - -
J = l J J 

where <j> : JR. -*• E. is continuous, odd, strictly increasing, with <j> (+<»)--

•• +~ . Equation (2) can be thought of as a simple nonlinear general

ization of the Laplace equation. An existence and uniqueness theorem 

will be proved for this problem. We insist that no growth assumptions 

are made on <j> , which could behave at infinity for instance as an ex

ponential, or as a logarithm (this latter case turns out to be more 

delicate ) . 

*\ 
/ A preliminary version of these notes was written while the author 

was visiting at the University of Brasilia. 
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The crucial points in the treatment of "rapidly or slowly in

creasing" A ' s are the following: (i) the Banach spaces in which the 

problems seem to be appropriately formulated - the Orlicz-Sobolev 

spaces - are generally not reflexive nor separable, (ii) the corres

ponding mappings of monotone type are not bounded nor everywhere de

fined and do not generally satisfy a global a priori bound (and con

sequently are not coercive). It is in fact a bit surprising that for 

an equation such as (2), with the Dirichlet boundary conditions, a 

bound on the right hand side f does not always imply a bound on the 

corresponding solutions u ; this phenomena occurs for instance if <j> 

behaves at infinity as a l o g a r i t h m . We will see that a more sophisti

cated kind of a priori bound holds; the notion of a locally bounded 

mapping introduced by ROCKAFELLAR [20] in monotone operator theory 

finds an application here. 

Our existence results are derived from abstract surjectivity 

theorems for mappings of monotone type which are not everywhere de

fined, unbounded, noncoercive, ... and which operate in complementary 

systems. These are quadruples of Banach spaces related to each other 

in roughly the same way as conjugate Orlicz spaces. 

There are three chapters. Chapter I lists briefly some definitions 

and well known from Orlicz spaces theory. With the possible exception 

of the section 1.2 (approximation of functions in L
M)»

 t n e material 

is classical and can be found e. g. in [.13] o r in ["-̂l • Chapter 2 is 

concerned with Orlicz-Sobolev spaces, i. e. Sobolev spaces built from 

Orlicz s p a c e s . Duality is studied in the first two sections, and sec

tion 2.3 deals with the trace of a function in W L (ft) . A general

ized Poincare's inequality is proved in section 2.4. Other results on 

Orlicz-Sobolev spaces can be found in DONALDSON-TRUDINGER [5] (imbed

ding theorems), LACROIX [l5] (trace spaces), DONALDSON [4] (inhomoge-

neous spaces), ...; see also the references in [l4]. Chapter 3 con

tains the treatment of the Dirichlet problem for equation (1). One 
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section is devoted to the study of the Nemyckii operator u(x)*-»-

J--> <|)(u(x)) because the properties of this simple nonlinear operator 

are quite revealing of the difficulties one has to deal with when 

studying (1) in full generality. Chapter 2 and 3 are based on [8j, 

[9J, [.lOJ » where other results and detailed references can be found. 

Earlier works on the subject are [3J, [7j. 

N 
For simplicity, we have always assumed the open subset ft of IR 

bounded. This assumption will generally not be repeated explicitely. 

However most of the results presented here can be suitably extended 

to the case of unbounded ft , see [l7j. 

Chapter 1. Qrlicz spaces 

1. 1 Preliminaries 

Let ft be a bounded open subset of E. , with Lebesgue measure 

dx , and let M be an N- f u n c t i o n, i. e. a real valued continuous, 

convex, even function of t € 3R with M(t) > 0 for t > 0 , M(t)/t-*-

->• 0 as t -> 0 and M(t)/t -»•+«» as t -»• +00 . The OTHOZ olass 

i2?M(ft) is defined as the set of (equivalence classes of) real-valued 

measurable functions u on ft such that / IM(u(x))dx < °° . The 

OTHOZ space LM(ft) is defined as the linear hull of e-t?M(ft) . L (ft) 

is a Banach space with respect to the LuxembuTg noTm 

I luM(M) =
 inf iX > 0; J>(u/A)dx < 1} . 

One has Lvr(ft) «- i2V.(ft) i f and only i f M s a t i s f i e s the A_ con-
M M Z 

dition, i . e . t h e r e e x i s t k and tQ such t h a t M(2t) 4 kM(t) for 

The c l o s u r e in LM(ft) of the bounded measurable f u n c t i o n s i s 

denoted by E_.(ft) . One has E^ft) C S€xAtt) \ moreover EVf(ft) - L.,(ft) 
M 1*1 M. M M 

if and only if M satisfies the A? condition. The space EM(ft) is 

separable, but LM(ft) is separable if and only if M satisfies the 

The conjugate function 
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M(t) - sup {ts - M(s); s € E} 

of an N-function M is still an N-function, and one has M = M . 

Young's inequality follows from this definition: st <± M(s) + M(t) for 

s, t € IR , and one also has a Holder's type inequality: if u € LM(ft) 

and v € L— (ft), then uv € L (ft) and 
M 

/„« v dx < 2||«||(M) l|v||(M). 

Thus /_ uvdx is a well defined continuous bilinear form on L_. x L—. 
ft M M 

The dual of Ê . can be identified by means of this form to L—; the 
M M 

norm on L— dual to || || . v on E M is called the Orlicz norm and 

denoted by || | | (- } ; it is equivalent to || | | (-}; j | | | (M")< || | | ( S )< 

__ 2 I I II C M ' , * Tne norm on L M dual to I I I IM on EM turns out to 

be || | | . v , and one has a stronger form of Holder's inequality: 

/ 0 u v dx < ||u|| ( M ) llvllj-. 

for u € L„ and v £ Lrr. Finally the space L.. is reflexive if and 

only if both M and M satisfy the A~ condition. 

To conclude this section, we remark that the four spaces 

<LM> V L5> EM > 
constitue and example of a complementary system. 

Let Y and Z be two real Banach spaces, with < » > a conti

nuous regular bilinear form on Y x Z and let Y and Z be closed 

subspaces of Y and Z respectively. Then (Y, Y ; Z, Z-) is called 

a complementary system if, by means of < , > 

* 

to Y . 

1.2. Approximation properties in L 

Approximation results for functions in E are well known. The 

following simple approximation property of functions in L M will be 

used later. We denote by u the translated function of u : u (x) = 
y .** y 

= u(x - y) and by u the regularized function: u = u * p 
e e e 

PROPOSITION. Let u 6 L (ft), with compact support in ft . Then 

u -> u for °(L
M»

 L
M )

 as |y| -* ° and u ->• u for o (L , L—) as e->0. 
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LEMMA. Suppose that v € ££p v -> v a. e. and M (v ) <_ f where 

f -*- f in L . Then v € J&, and v -> v for a(L_,, L—) . 
n M n M M 

PROOF. The fact that v e _2\, follows from 
M 

fnM(v (x) )dx < V f (x)dx < c o n s t a n t , 
' y n — ' Sz n • — 

by using Fatou's lemma. Take now w 6 5f— . We have v w -*- vw a. e. 
M n 

and 

v w < M(v ) + M(w) < f + M(w) . 
n — n — n 

By the Vitali convergence theorem, this implies that v w ->- vw in 

L (ft) . Since L— is the vector space generated by Jĵrr , we deduce 

that v ->- v for a(LM, L-) . Q. E. D. 
n M M . 

PROOF OF THE PROPOSITION. It clearly suffices to prove the pro

position for u in £?„(&) . Consider the case of u . We know that 

u ->- u in L , so that, taking a subsequence if necessary, we can 

assume u ->- u a. e. On the other hand M(u ) <_ (M(u)) by Jensen's 

inequality. But (M(u)) -> M(u) in L since u €itfM. So the lemma 

can be applied, which gives u -> u for a (L , L—) . Similar proof 

for u . Q. E. D. 
y X 

Chapter 2. Qrlicz-Sobolev spaces 

2.1 Complementary systems 

We want to describe a method by which, given an abstract comple

mentary system, one can build new ones. This will be applied in the 

next section to the case of Orlicz-Sobolev spaces. 

Let (Y, Y n; Z, Z ) be a complementary system and let E be a 

closed subspace of Y . We wish to build a new complementary system 

(E, E ; F, F ) starting with E in the upper left corner. Write 

E Q = E D Y Q, F - Z/E0 and FQ = {z + E^ € Z/E^; Z € Z Q } C F , where 

J_ denotes the orthogonal in the duality (Y, Z ) , i. e. 

E = {z € Z; <y, z> = 0 for all y € E }. 

The pairing <, > between Y and Z induces a pairing 

< , >_ _ between E and F: 
_ , r 
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<y, z + E 0> E F = <y, z>y z for y € E, z € Z, 

if and only if E C (EQ) , which, by the bipolar theorem, means that 

E Q is a(Y, Z) dense in E . The pairing between E and F ob

tained in this way is continuous, regular, and the dual of E n can 

be identified to EQ/E'0 = Z/EQ = F . 

LEMMA. Assume that EQ is a(Y, Z) dense in E. Then the neces

sary and sufficient condition for (E, En; F, F ) above to be a com

plementary system is that E be a(Y, Z ) closed in Y. 

It should be remarked that the two conditions E f\ Y_ a(Y, Z) 

dense in E and E a (Y, Zn) closed are in some sense opposed because 

a(Y, Z) is stronger than a(Y, Z ). Starting with a subspace D of 

Y n, if one wishes to obtain for E n the norm closure D of D , then 

the above lemma can be applied if and only if 

(1) 

simply take for E the common value in (1) and use the fact that in 

a Banach space the weak and the norm closure of a convex set coincide 

in order to conclude that E f. Y = D . 

PROOF OF THE LEMMA. To prove the sufficient part, we have to see 

plete. 

Consider A : E ->- F : e H- Ae where Ae is defined by 

Фн.ғ = <Є, Z> 

from E to F . If we show that A is onto, then, by the closed 

graph theorem, A will be a linear homeomorphism between E and F , 

which gives us the required identification mapping between E and 

Z
Q
/(E^ n z

Q
) M* m: z + (EQ- n z

Q
) » L(Z + E^) 

for z €. Z . It is a well defined linear continuous form on 

Z /(E H Z ) . But the dual of this space can be identified to the 

64 



Drthogonal of (El" El Z ) in Z = Y , and so, by the bipolar theorem, 

to a(Y, Z ) ci E , which, by assumption, is equal to E . Consequent

ly there exists e 6 E such that 

L(z + E^) = <e, z + (EQ- n ZQ)> = <e, z> v^ z 

To verify that Fft C F is complete, we will show that F 0 is 

isomorphic to Z /(Z H E ) . There is an obvious "inclusion": the 

mapping 

V ( z o n Eo"> * V z + (zo + Eo> * z + Eo 

is well defined linear, continuous, injective and surjective. To see 

that its inverse is continuous, it clearly suffices to show that 

Z /(Z n E ) and F have the same dual space, with equivalent norms 
* , l . * 

The mapping L 6 F . - ^ - e € E = (Z /Z H EQ) constructed above pro

vides such an identification. 

To prove the necessary part of the lemma, it suffices, by the 

Krein-Smulian theorem [6; p. 429], to prove that the limit y C Y of 

a bounded a(Y, Z ) convergent net y. € E lies in E . But the 

bounded sets in E are a(E, F_) ^relatively compact since E = F . 

Since the restriction to E of a(Y, Z ) is simply a(E, Z ) = 

= a(E, F ) the conclusion follows. Q. E. D. 

From the above proof, we will use later the fact that F is 

isomorphic to Z /(E f. Z ) . It is also worth to notice that a(E, F) 

and a(E, F ) are the topologies induced on E by a(Y, Z) and 

a(Y, Z ) respectively. 

2.2. Duality in Qrlicz-Sobolev spaces 

Orlicz-Sobolev spaces are defined by means of Orlicz spaces in 

the same way as standard Sobolev spaces are defined by means of L 

spaces: 

WmLM(ft) = {u € L M(Q); D
a
U-€ LM(fi) for lal <_ m} , 

M M. M — 
WmEM(fi) = {u 6 EM(fi); D

au e E^ft) for lal < m} . 
M n M 11 = 
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They are Banach spaces for the norm 

|n" Ҷ.kM в в-иv->ľ 
It will be convenient to identify W L with a subspace of the pro-

d u C t n|a|<» L M ( ! ! ) E H L M • 

We wish to build a complementary system involving those spaces. 

Since (nLM> n E M ' n LM» :fIEM^ i s ' i n t n e O D V - - o u s w a Y» a complementary 

system and since W L-_ is a closed subspace of IIL,., we are in the 
M M 

situation of the above lemma. To get a complementary system 

(W^.., W mE M;*, *) we must verify that W * ^ is a(nLvr, II Err) closed, 
M M M M M 

which is clear, and moreover that functions in W L can be approx

imated in the a(nL-,, IIL—) sense by functions in W E^. This is pos-
M M M 

sible under the mild assumption that Q enjoys the so-called segment 

property: there exist a locally finite open covering {0.} of 3Q 

and corresponding vectors {y.} such that for x € ft t*. 0. and 0< 

PROPOSITION. If fi has the segment property, then C (ft) is 

a(IlLM- IIL-) dense in WmL1Lf(J2) . 

M M M 

The proof follows the lines of the standard proof that C (Q) is 

dense in W (fi), see e. g. [l; p. 11-14]. This latter proof involves 

essentially three steps: first using a partition of unity associated 

with {0.}, then making translations near the boundary by means of 

the vectors y., finally regularizing. The first step carries over 

immediately to our situation, and we have see in Section 1.2 that . 

translations and regularizations behave well with respect to the 

a(L , Lrr) topology. For more details, see [8; p. 168-169]. 

We would like now to define spaces analogous to the w
0 spaces. 

Starting with £>(ft) , and closing it for the norm 1TLM topology, we 
stay inside W E.., and the resulting space is thus naturally denoted . 

M 

by WmETU(fi) . To define WmLTwr(fi) we may use either the a(nLM, IIErr) O M 0.M M M 

topology or the a(IILM, nLrr) topology. In any case we stay inside 
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W L-Aft) . It is a consequence of the following proposition that the 

two resulting spaces coincide in general. 

PROPOSITION. If ft has the segment property^ then 

(1) a(nLM, II Err) cX, &(ft) = a(HLM, IIL-) cl 2>(ft) . 

M M M M 

The space (1) is denoted WmL (ft) . 

PROOF. The inclusion 3 is obvious. So let us take 

u € a(nLM, IIE—) c&2>(ft) . Denote by K the support of u . By using 

the covering {0.} of 8ft and an associated partition of unity, we 

are reduced to considering two cases: either K C fi or K C 0. for 

some i . If K C ft , a simple regularization shows that u can be 

approximate in the a(IILM, IIL—) sense b3r functions in *D(ft) . We now 

consider the case where K C 0, . First note that the function u 

obtained by extending u by zero outside ft belongs to W LM(JR ) . 
Define u_ (x) = u(x - ty,) for 0 < t < 1 . Then u_ € W mL M0R

n) and 
t i t M 

the support of u is contained in ft by the segment property. More

over, by the results of Section 1.2, u -v u in W L (ft) for 

a(lIL--, IIL—) , so that it suffices to approximate each u„ by functions 

M M t 
in **5(ft) • But this can be done by regularization since supp u C ft . 

As remarked in section 2.1, the intersection of W_L„(ft) with 
u M 

nEM will be the norm closure of 9(ft), i. e. WmEVf(ft) . 
M U M 

The preceding proposition allows us to construct a complementary 

system (W L M, WnE ; *, *) . We are now going to describe the spaces 

one gets here on the right, i. e. with the notations of the lemma of 

Section 2.1, F and F . 

The space F is the dual of W mE M. It is the quotient of IIL-
U M M 

by { (f ) € ITL-; (f ) I WmE„} , and, looking at F as a space of dis
ci M- Ct -*- U M 

tributions, one has 

F = { g e 9f(fi); g = I (-i)lalDaga with ga e L-} , 

I oi j < m 

with the quotient norm. This space will be denoted W L—(ft) . The 
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subspace F of F i s i somorph ic , as we have seen , to the q u o t i e n t 

of JIE- by {(f ) € HE-; (f ) \_ W|JE } • Looking a t FQ as a space of 

d i s t r i b u t i o n s , one has 

FQ = {g £ .9 ' ( f t ) ; g = I ( - D i a | D a g a wi th 8 a € E - } 

l a T ~ m _ 
with the quotient norm. This space will be denoted W E— (ft) . 

REMARK. In the L variational theory of boundary value pro

blems, one starts with an arbitrary closed subspace V lying between 

W ,P(ft) and W * (ft) . Here, in our situation, we are limited to 

spaces V satisfying 

wmLM(ft) c v c: wmLM(ft) , 
V a(nLM, HE-) closed in WmLvr(ft) , 

M M M 
V r\ JIE^ a(nL_., IIL-) dense in V . 

M M M 

The last two conditions are in some sense opposed, as already remarked, 

and it should be of interest to give some interpretation of those con

ditions, probably in terms of boundary conditions. It should also be 

of interest to find classes of examples where those conditions are 

satisfied; this is so in the extreme cases V = W^L,,) Dirichlet boun-
0 M 

dary conditions) and V = W L (Neumann boundary conditions), as seen 

above; see[lo] for the treatment of the third problem. Of course when 

= L— and thus one can take for V the a (IIL..., IIE—) closure in M M M 

W L of any space containing 2)(ft) . 

2.3. Boundary values of functions in W LM(ft) 

In this section we assume that the boundary r of our open 

bounded set ft is sufficiently good so that questions in ft, near r, 

can be transformed, by using a partition of unit and local charts, 

into similar questions in R +, near IR . This will be certainly so, 

for our purpose below, if we assume r to be C . We will also limit 

ourselves here to m = 1, i. e. to the study of W L (ft) . 

Consider the "restriction to T" mapping: 

y : C°°(Q) -> C(T): u ^ u | 
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We will show that it is continuous for the following topologies on 

C°°(n) and C(r) respectively: 

( i ) I! II 
W L

M
(П) 'V f ì ) 

(2) 

(3) 

a(ÏÏL
м
, ÏÏE-) •> a(L

м
, E-) , 

м м м м 
a(HL

M
, IIL-) - a(L

M
, L-) . 

It follows from (2) and the results of the previous section that 

can be extended into a continuous mapping, denoted by y , from 

W L
M
(ft), a(lTL , IIE-) to L

M
(T), a(L

M
, E-) . Condition (3) implies 

that Y is also continuous from W L (̂ ) , a(IIL
M
, nLrr) to L (T) , 

a (L , L - ) , and condition (1) implies that is continuous from 

W
x
E

M
(fl), to E

м
(0)

3 

PROOF OF (1), (2), (3). By using a partition of unity and local 

charts, we are reduced to the following situation: u € C (Q), with 

support intersecting only the part 2 of 9Q, where Q is, say, a 

. n - 1 . 

< * i a - ľ 

u ( x ł , 0) = - [ | І L ~ ( x ł , x ) d x ' J Әx n n 
J n 

and s o , f o r v ( x ł ) € Err(E) , 
M 

(4 ) u ( x ł , 0 ) v ( x ' ) d x » 

4 
~ ( x ł , x ) v ( x ł ) d x ł d x 

If we note that v(x') € E—(2:) implies v(x', x ) € EM< (^ ) » where 

v(xf, x ) = v(x f), we immediately deduce (2) from (4). By going to 

the supremmum when v(xT) varies in a bounded set of E—(I) and 
M 
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after noting that the mapping v(xf) € E-(I) I-+ v(xf , x ) € Err(Q) is 

bounded, we derive (1) from (4). Finally, by taking v(xf) in L— (E), 

we obtain (3). Q. E. D. 

Greenfs formula holds: if u € W L (ft) and v € W L— (ft) , then 

(5) I u |-— dx + [ v ~~ dx = [ u v v. dT , 

Jft 8 xi Jft 3 xi h 

where v. denotes the i component of the exterior normal to T , 

Indeed first note that each of three terms in (5) has a meaning. 

Now (5) is true if u and v belongs to C (ft). Since C (ft) is 

o(IILvr, IIE—) dense in W L_,(ft) and since (2) holds, we derive (5) for 
JML M JM 

u € W*L. (ft) and v 6 C°° W . Since C°°(ft) is a(IIL—, IIL..) dense in 
M M J>1 

W L—(ft) and since (3) holds (with M and M interchanged) we 

derive (5) for u £ WXLM(ft) and v € WXL-(ft) . 

We will now show that, as in the usual L case, W_L.,(ft) 
O M 

( W E (ft)) can be interpreted as the space of functions in W L (ft) 

(W EM(ft)) which are zero on the boundary T . 

PROPOSITION. The kernel of the traae mapping y: W L (ft) ->• L (r) 

is W L (ft) . The kernel of the traoe mapping y: W E (ft) -> E (r) is 

KEHW • 
PROOF. Since W_E„ = W^L„ f\ W E„ , the first assertion implies 

U M U tl M 

the second. And to prove the first assertion, it suffices to show 

that ker Y C W L since the other inclusion follows from the conti

nuity properties of y . So let us take u € W L (ft) with yu = 0 . 

We will show that u defined by Q = u i n f t , u = 0 outside ft, 
Ç u in ft 

û = i 
l 0 outsi de ft 

belongs to W LM(R ) . Once this is done, the result follows by using 

standard arguments (partition of unity, translations near the bound

ary, regularization), exactly as in the proof of the second proposi

tion of section 2.2. 

It is clear that u € L M(R
n) . Write v. = -~— in ft , v. = 0 

M 1 dX. X 
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outside ft . Of course v. € LM(R ) , and we have to show that 3u/3x » 

-- v. in the distribution sense on all JR . Let <J> 6 ©(Jl ) . We have, 

using Green's formula and the fact that yu -= 0 , 

v.<J>dx = T^~ $ d x 

V n - JSi 3 X 1 

" - fn
u 1 ^ dx + | r

 u * v i d r 

f ____ л - _!_ J 

d x
 _ -

 u
 JL

 d x 

Vn * which concludes the proof. Q. E. D. 

2.4. Poincar^'s inequality 

PROPOSITION. Suppose Q bounded. Then there exists a constant 

c suoh that 

i l » l l v _ , - . « j j H - 7 ' " - „ ( - > 
/ o r a H u in W*L

M
(a) . 

We will need in the proof some properties of the functionals 

J/L(u) =- M(u(x))dx for u € LM(Q) , 

J£(v) =- I M(v(x))dx for v € L-j(ft) . 

LEMMA 1. (i) J/t is convex. a(L.,, E—) lower semicontinuous, 
M M 

|+» on L (tt); its domain is the class &u(&); similarly for Jt. 

(ii) •/& and .v̂t are conjugate one of the other in the duality 

(L , L-); Jt on L is also the conjugate of Jit restricted to E— 

and similarly> Jt on L— is the conjugate of Jt restricted to E . 

(iii) Jt is (norm) continuous on the interior of £ (Q.); similarly 

for Jt . 
PROOF. It is clear that Jt is convex, $ + °° , with domain (the 

set where it is < » ) £6..(Q) . We will show that for any v 6 L—(Q) , 
M n. 

(1) Jt (v) :> sup {/ uv dx - Jt(xx) ; u € L } , 

(2) Jt(v) 4 sup {/fi uv dx - Jt(u); u € E^} , 

which implies (i) and (ii). Let u 6 L M and v € L— . By Young's 
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inequality, M(v) > uv - M(u) pointwise, and (1) follows by integra

tion. Now take v 6 L— and write u = IJJ(V )» where T|> is the odd 

M n T n ' T 

function equal on K. to the right derivative of M and v is 

the troncated function of v (i. e. v (x) = v(x) if |v(x)| <^ n , 

v (x) = 0 if [v(x)[ > n ) . Clearly u «S L C E , and one has Young's 

equality, 
M(vn) = v n x})(vn) - M(ip(vn)) 

pointwise. By in tegra t ion we get 

M(v ) = I v .u dx - jfi(u ) 
Jfi n n n 

v .u dx - J/(*(u ) . 

Since, by the monotone convergence theorem, the left-hand side con

verges to jft(v) <^ +oo t We conclude that (2) holds. Finally, to verify 

(iii), we note that JrL (u) is <̂  1 on the closed unit ball of 

L (8) (with respect to the Luxemburg norm); this follows directly 

from the definition of J J J | /M\• But a convex functional which is 

bounded from above on an open set (of a locally convex space) is 

automatically continuous on the interior of the set of points where 

it is finite. Thus (iii) follows. Q. E. D. 

LEMMA 2. Suppose U bounded, of diameter d . Then 

(3) ( M(u(x))dx < ( M(2d -—-Odx 
Jß ~ ]tt Ә X

1 

fov all u € wí.L (ft) 

8 

0 Mv 

Poincare's inequality follows easily from (3). Indeed, if 

j |3u/3x.J J ( . remains bounded, then there exists k such that 

J>*! i !7>--> . 
and it follows from (3) that 

M/__y__) < i 

which shows that ||u| J . . remains 4 2dk . 
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PROOF OF LEMMA 2. First assume u€.30(ft) . Then 

M(u(xx, x^, ..., x^)) M ( H % ( C ' x2> •••• v « ) 

' M(d|a-(E. x 2, .... *n))d? 

by Jensen1s inequality. By integrating both sides over ft , we 

deduce 

(4) f M(u(x))dx < I M(d |^-) dx ,. 
Jft , Jft d x i 

Assume now that u € W LM(ft) with compact support C ft. Then 

u € ©(ft) and we have 

M ( u ) d x 
J o є 

(5) J M ( u j d x < J M(d j^-) dx . 

S i n c e u -> u f o r , s a y , cr(L M , E—) , lemma 1 i m p l i e s 

f M ( u ( x ) ) d x ^ l i m i n f M(u ( x ) ) dx 
J f t J ft є Jft 

For t h e r i g h t - h a n d s i d e of ( 5 ) , we have, by J e n s e n ' s i n e q u a l i t y 

(6) ( o M ( ( | ^ , e ) d x < [ n [ M ( | ^ ) ] £ dX . 

Two cases are now distinguished either — — 4. £2. or -r—^ 6 f& . In 
9x.. r M 9x1 M 

the first case, (4) obviously holds for u . In the second case, 

|M(——)j converges in the L sense to M(- ) , which allows us to 
- i)X. J £ oX-

pass to the limit in the right-hand side of (6). Consequently (4) 

holds for u . Finally if u € W L (ft) , then consider an open set 

ft containing ft , of diameter 2d , and extend u into u by put

ting (i - 0 on ft \ ft . We know that u £ W LM(ft ) , with compact 

support in ft , and so we can write 

1 "v*' u л
 - x 

ft
 J

ft 

M(2d |~~)dx , 

which reduces immediately to (3). Q. E. D. 
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Chapter 3. Strongly nonlinear elliptic problems 

3.1. Introduction 

It is our purpose now to study the following Dirichlet problem: 

find a function u(x) on fi satisfying 
N 

(!) 4 j = l 3-v,
 9 xj 

_u = 0 on r , 

where f is given. The assumptions made on <j> are the following: 

<j) : JR. -*• R is continuous, odd, strictly increasing, and <$>(+«>) = +» . 

No restriction is imposed on the nature of the growth of <J> at in

finity. 

With a function <\> as above we associate the N-function: 

M(t) = [ <|>(T)dT • 

The typical examples for <j> are the following: 

(i) <j>(t) = |t|P~ t where 1 < p < » . This is a case of polynomial 

growth, M and M satisfy the A- condition. We are in a reflexive 

situation, the classical theory of monotone operators in reflexive Ba-

nach can be applied. 

(ii) <|>(t) = sgn t.(e' ' - 1) . This is a case of rapid growth, M 

does not satisfy the A_ condition but M does. 

(iii) <|>(t) = sgn t.log(l + |t|). This is a case 3f slow growth, M 

satisfies the A„ condition but M does not. 

(iv) There are functions <j> for which neither M nor M have the 

A_ property, see [l3; p. 28]. 

3.2. Nemyckii operator 

Let us consider the Nemyckii operator: 

'D u(x) H- <j>(u(x)) . 

Our purpose in this section is to show how properties of this non

linear operator such as everywhere definess, boundedness, coercivity, 

surjectivity, are influenced by the nature of the growth of $ . We 
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will look at (1) as a mapping T from L (Q) into Lr-(Q) , with 

domain 

D(T) = {u € LM(ft); (|>(u(x)) € L-(ft) } . 

T is obviously a monotone mapping. 

LEMMA 1. (i) E M C D(T) C # M and E- C R(T) C ^ . 

(ii) T transforms a bounded set into a bounded set if and only if 

M has the A2 property. 

(iii) T is coercive (i, e. <u, Tu>/| |u| | •> +» as | |u| | -> +~ ) if 

and only if M has the A„ property. 

Of course other properties may be of interest, such as conti

nuity, or maximal monotonicity. We will discuss those two later in 

sections 3.4 and 3.5. 

PROOF OF LEMMA 1. If u € D(T), then u € L„ and d>(u) € L- , 
M M 

so that u.<}>(u) € L ; but 

ucj>(u) - M(u) + M(<J>(u)) ^ M(u) , 

which implies M(u) 6 L , i. e. u € &,. On the other hand one has 

(2) M(<j)(t)) < M(2t) for t e IR 

because, for t >_ 0 , 
/•2t j»2t 

M(2t) = (f»(T)dT > <J>(T)dT .> t(j)(t) 
J0 J t 

= M(t) + M(«j)(t)) > M(<f>(t)) • 

So if u 6 E„ , then 2u 6 E„ C &„ , and we see from (2) that <b(u)€ M M M 

€ SB— C L— . We have thus proved that E.. C D(T) c &„ . (Remark that 
M M M M 

a slight modification of the preceding argument shows that if u € 

€ int # M , i. e. if (1 + e)u ei£, for some e > 0 , then u€D(T)). 
M M 

Since T is the Nemyckii operator from Lrr into L„ associated 
M M 

with the function ip reciprocal to <j> , we immediately deduce cor

responding informations on the range of T , which completes the 

proof of part (i). 

have, for the troncated function u , |u < u , and so u varies 
n ' I n' = ' ' n 
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in a bounded set in E C D(T). Consequently <f> (u ) varies in a 

d> (u ) u dx < K . 

* n' n =-

But the left hand side is ^ j
Q
M(u )dx , so that, by Fatou's lemma, 

we get / M(u)dx < °° , i. e. u 6 & . We have thus shown that L 

is contained in i-?
M
» which implies the A property for M . Let us 

property, and let u vary in a 

i«ii ( м ) І.\ > -• - L м Ф đ x í 1 • O) 
J Q 

The number k above can always be taken > 1 . Since M(kt) <^ cM(t) 

for t >. t Q , we derive from (3) 

1 > I M(-^~)dx + I M(~)dx >. - I M(2u)dx , 
~JJ^L>t.

 k Jl2iLl < t

 k ~ C j i 2 u L > t k -="0 k ^0 k = o 

from which it follows, since ft is bounded, that / M(2u)dx remains 

bounded. Inequality (2) then implies that j Q M(<J>(u))dx remains boun

ded, i. e. <j> (u) remains bounded "in the mean" in Lrj and so remains 

Finally, since coercivity of T implies boundedness of T , 

and since T eijoys, as already remarked, properties similar to 

those of T , we see that: coercivity of T implies that M has the 

!A0 p r o p e r t y . The converse is a consequence of lemma 2 below and of 

the inequality 

uø(u)dx ^ M(u(x))dx 

Q. E. D. 

LEMMA 2. One has 

(4) yy-̂ y-] J M(u(x))dx ++<*> when | | u | | (M)-> +«> 

if and only if M satisfies the A condition. 

PROOF. Since (4) implies that the operator T above is coercive. 
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the necessary condition follows from the parts of Lemma 1 already 

proved. 

To prove the sufficient condition, let us first assume that M 

satisfies the A„ condition for all t , i. e. 

(5) M(2t) ̂  kM(t) for all t e E 

(and not only for large t ) . Defining a function f: [l,+°°[ -+[k,+°°[ 

by 

f(r) = r[(l - A)kn+1 + Akn+2] 

if r € [2n, 2n+1J and r = (1 - A)2 n + A 2 n + 2 , we obtain M(rt) 4 

4 f(r)M(t) for t € H and r = 1 , and so, by passing to the con

jugate convex functions, M(f(r)r~ t) ̂  f(r)M(t) for t £ B and 

r ̂  1 . Since f(r)r strictly increases from k to +°° as r 

goes from 1 to +<=° , its reciprocal function g(s) is well defined 

and strictly increases from 1 to +00 as s goes from k to +°° , 

and we have 

(6) M(st) > sg(s)M(t) 

for t 6 I and s > k . Now take u € Lw(fi) with ||u|I,„s > k . If 

= M (M) 
e > 0 satisfies | |u| | , s - e > k , then it follows from (6) that 

j M(u)dx > (||u||(M) - e)g(||u|| ( M ) - e ) | M(u(||u||(M) - e)"
1Mx 

> ( | I U I I ( M ) " O g ( | | u | | M - e) 

by definition of | | | | , . . Letting e -> 0 , we obtain 

M(u)dx > | | u | | ( M ) g ( | | u | | M ) , 

which proves the lemma under condition (5). 

To get rid of (5),we will use the following result about equivalent 

^-functions', two N-functions N and M are said to be equivalent if 

there exist aT, a2 > 0 and t such that 

(7) N(aat) < M(t) < N(a2t) 

for t _> t . One can prove (cf. [l3; §13]) that two Orlicz spaces 

L (J2) and L (ft) are equal, with equivalent norms, if and only if 

M and N are equivalent N-functions.Moreover given an N-function 
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M satisfying the A- condition (i. e. for t ^ some t n ) , there al-

con-

dition for all t € ZR . 

So let us start with M satisfying the A condition for 

t j-i tQ and let us consider an equivalent N-function N satisfying 

the A« condition for all t . For this N we have 

(8) -fг f N(u(x))ds 
u
l I ГM^ JQ (M)

 Jӣ 

)dx 

a S
 I l

U
l I (M) "*" °° *

 N o w > b y ( 7 )
' 

yr-fi f M(u(x))dx - -rr-Jh f ^N(a.u)c 

ll
u
l'(M) Jn li

u
ll(M) J|u(x)|>t*

 l 

=
 T~! n N(a.u)dx - -pi—r-i . N(a,u)dx-*+« 

N
a
l

u
il(M) Jfl

 l
 H

U
H ( M ) J |u(x)|>t*

 l 

as | |u| | (}/[s + +<» , because of (8). Q. E. D. 

We remark that the last part of the proof of lemma 2 as given in 

our paper [8; p. 183] contains a little gap. It should be replaced 

by the preceding argument involving equivalent N-functions. 

3.3. An abstract existence theorem 

Let (Y, Y ; Z, Z ) be a complementary system and consider a 

mapping T with domain in Y and values in Z . The following four 

assumptions will be made: 

(i) D(T) 3 Y and T is hem-icontinuous on Y , i. e. continuous 

from the finite dimensional subspaces of Y
n
 to Z , a(Z, Y _ ) , 

(ii) T is monotone, i. e. <y. - y„, Ty. - Ty_> ^ 0 for all y«, 

y
2
 in D(T) , 

(iii) T is -pseudo-monotone in the following sense: for any bounded 

net y. € D(T) such that y. ->• y € Y for a(Y, Z ) , Ty. ->• z € Z 

for a(Z, Y Q) and such that lim sup ^ . j * Ty. > 4 <y, z>, it follows 

that y e D(T), Ty -= z and <y., Ty. > -> <y, z>, 

(iv) T is locally bounded near any point of Z , i. e. for any 

z € Zfi, there exists a (norm) neighbourhood Jr of z in Z such 
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that T -1jf° = {y € Y; Ty e JP} i s bounded in Y . 

THEOREM. Suppose T :D(T) C Y ->• Z satisfy the above conditions. 

Suppose also that two additional technical assumptions are satisfied 

(see below). Then R(T) 3 Z . 

The first of the two additional assumptions mentioned above re

quires that T(Y ) meets Z . The second is an assumption of geo

metric nature on the complementary system. Let us consider a (equi-

striction of | | | | Y
 t o Yo > ^Y I I I I7 t*ie dual norm on Z and 

by M I L the restriction of || || to Z . We call || || L0 L v 1 

admissible if [| || is the norm on Y dual to | | | | o n z
0 

and if the inequality 

( i ) <y> *> < l l y | l Y I M I z 

holds for all y € Y and z € Z . The second additional assumption 

simply requires that such a norm exists on Y . 

We do not know whether an admissible norm always exists in an 

arbitrary complementary system. Non admissible norms exist when Z 4 

?- Z~: simply take | |y| | + |<y, z>| where I I | | is any norm on Y 

and z £ Z \ Zn . In the complementary system (L„, E__; L—, E—) both 
O M M M M 

the Luxemburg norm and the Orlicz norm are admissible, as is immedia

tely verified. And it is easy to see that if 

in (Y, Y Q; Z, ZQ) and if (E, EQ;F, FQ) is obtained from 

(Y, Y ;Z, Z ) by the procedure of section 2.1, then the restriction 

of I I I I on E is admissible in (E, E ; F, F ) . Consequently 

the usual norms on ( W ^ , W XE M; *, *) and (W^ L M, W^ E M; W ^ L - , 
M W U JM U M M. 

W E—) are also admissible. 
JM 

The purpose of this geometric assumption is to insure that the 

(equivalent) norm on Y and let || || »ll I I 7» II I I 7 b e defined 

0 ° Z 
as above. The corresponding duality mapping J :D(J) C Y ->• 2 is 
defined by 
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Jy = {z € Z; ||z|| z = ||y||Y and <y, z> = ||y||y ||z|| z}, 

with D(J) = {y e Y; Jy ^ 0}. Clearly J is coercive, bounded, and 

hemicontinuo.us on Y , and the restriction of J to Y C D(J) is 

the usual duality mapping from Y to 2 . Note that the meaning 

of the conditions of hemicontinuity and pseudo-monotonicity here have 

to be suitably modified since J may be multivalued. 

LEMMA. If |J || -is admissible3 then J is monotone and 

-pseudo-mono tone. 

PROOF. Monotonicity follows easily, as in the standard reflexive 

situation by using inequality (1). Let now (y., z.) be a net such 

that z. e Jy. , y. bounded, y. ->• y € Y for o(Y, Zrt) , z. •+ z 6 Z 
l J ± J ± J l J ' 0 ' i 

for a(Z, Y ) and lim sup <y. , z.> <̂  <y, z>, Since I I I lv * s a d _ 

missible, we have 

| | y | | Y I I z I I 7 i L < y > z > ^ = i i m S U P <y • > z . > ~ H-m i n f <y • > z • > = 

= lim inf I | y . | l Y \\z±\\z > both ||y||y and ||z| \ \ ; 

we have also used above the facts that || || is a(Y, Z ) 1. s. c. 

and that || || is a(Z, Y ) 1. s. c. From the above relation, we 

deduce ||y||y = llzllz
 a n d <y, z > = | | y | | Y | | z | | z , i . e. z 6 J y . 

Moreover <y. , z,> -> <y, z>. Q. E. D. 
J i l J 

Before going into the proof of the theorem we mention that the 

Nemyckii operator u(x)*-*- <j>(x) from L to L— considered in the 

previous section satisfies assumptions (i) - (iv). This will be clear 

from the results of section 3.4. We note also that in the particular 

reflexive situation where Y = Y and Z = Z , condition (iii) is 

implied by (i) and (ii), as is well known, so that our theorem reduces 

to the statement that an everywhere defined monotone hemicontinuous 

operator from a reflexive Banach space into its dual is onto if its 

inverse is locally bounded. This is a particular case of a result by 

ROCKAFELLAR [20]. 

The following lemma will be needed in the proof of the Theorem. 
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Its proof (cf. [8]) is identical to that of the corresponding "re

flexive" result in [2] and we omit it here. 

LEMMA. Suppose that S and T are two mappings with domains in 

Z 

Y and values in Z (or more generally in 2 ) . If both S and T 

are pseudo-monotone and if one of them is bounded, then S + T is 

pseudo-monotone. 

PROOF OF THE THEOREM. We first consider the case where T is 

coercive, which is a more restrictive condition than (iv). Then the 

result R(T) 3 Z_ follows easily, by standard arguments. Let us 
* 

sketch them. Let j^Tj- be the Galerkin approximant of T , where F 
r r 

mapping and j _, : Z -> F the dual projection. The mapping j_Tj_: 

* 
F ->• F is continuous and coercive, and so, given z € Z , there 

* * 
exists y_ € F solution of JT,TJT. (YT?) = J-cZ • Coercivity of T im-

r r r r r 

plies that y_ remains bounded in Y , so that, passing to a subnet 
r 

if necessary, y ->• y e Y for a(Y, Z ) . It is then easy, by means 

of condition (iii), to verify that Ty - z . 

Now consider the general case. Since T (Y ) meets Z , we can 

always assume, by making a translation if necessary, that T(0) € Z . 

Let us consider for e > 0 the mapping 

T = eJ + T :D(T) O D(J) ->- 2 Z . 

It satisfies the same assumptions as T ((iii) follows from the lemma) 

but is in addition coercive. Consequently it follows from the case 

considered above (suitably modified in order to deal with multivalued 

mappings) that R(T ) 3 Z_ . So, given z e Z Q, there exists y € Y 

such that z € (eJ + T)(y ) . We will show that y remains bounded 

in Y as e •*• 0 . It will then be easy to deduce, using (iii), that 

z € R(T) . 

To prove that y remains bounded, let us consider the segment 

[z, T(0)] in Z_ . Since T is locally bounded near any point of 

this segment, it follows by a simple compacity argument that there 
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exists 6 > 0 such that T is bounded in Y , where 

JP~ {u € Z; dist (u; [z, T(0)]) < <S}. 

Let K be such that | |T~ JP\ | 4 K . We will show that 

(5) llT'Ml < 2K 

for any u € [z, T(0)] and 0 < e < 6/2K , which implies that 

y e T~ (z) remains bounded in Y as e ->• 0 . Assume by contradic

tion that ||T~ u| I > 2K for some u € [z, T(0)] and some e with 

0 < e < 6/2K . The mapping v e R(T ) H- | | T~ v | | is singlevalued and 

(norm) continuous. Indeed, if y. e T (z.) and y„ € T (zo) > t n e n 

<yl " y2» zl " z 2 > ~ <yl " y2' al " a 2 > + e<yl ~ y 2 ' bl ~ V ' 

where z. = a. + eb. with a. € T(y.) and b1 6 J(y.), and similar

ly for z«; consequently 

< y i " y 2 ' z i " z 2 > - e ( l l y J I " I 'y 2 l l>2 » 

and we see that if z. = z2, then necessarily | j y _ | J = ||y«||> and 

in addition, if z. -»• z« , then ||y-i|| "*" I I yo I I • Consequently, since 

I |T"1(T(0))I I = 0 and ||T~1u|| > 2K , there must exist v in the 

segment [u, T(0)] such that ||T~ v|| = 2K . Let y € T~ v and 

write v = a + eb with a c T(y) and b € J(y) . We have ||y|| = 

= I|T~ v|I = 2K , thus I|b|I = 2K , and consequently ||a - v|| = 

= e2K < 6 , so that a € Uff°, But then y , which lies in T~ a , must 

have a norm 4 K , which is a .contradiction. Q. E. D. 

Several variants of the above theorem can be given. We mention 

briefly a few of them which are of interest in applications. For the 

precise statements and proofs, see [8] and [9]. 

The monotonicity condition (ii) may be replaced by the condition 

that T is odd for large values of its argument. Condition (ii) may 

also be replaced by the condition that T is positive for large 

values of its argument: <y, Ty> :> 0 for | |y| | large. Instead of 

assuming as above that T is monotone, odd or positive, it suffices 

to assume that T is homotopio to a mapping T. which is monotone, 
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odd or positive. The precise definition of the homotopy used here in

volves the pseudo-monotonicity condition (iii). In this situation, 

the local a priori bound condition (iv) is required to hold uniformly 

with respect to the homotopy. 

When Y and Z are separable, the above theorem as well as 

its variants admit sequential versions: it suffices to assume that 

condition (iii) holds for ordinary sequences (a fact which is useful 

in concrete applications where measure theoretical arguments are 

sometimes used to verify (iii), as in Theorem 2 of section 3.5). How

ever some additional assumption must then be imposed, for instance T 

should be strongly quasi bounded in the sense that y bounded and 

<y, Ty> bounded from above imply Ty bounded; one could also, in

stead of this boundedness restriction, use a modified condition (iii) 

which involves dense subspaces of Y n . 

3.4. Application 

N 

THEOREM. Let Q be a bounded open subset of JR. 3 with the seg
ment property. Let <f>: JR. ->• JR. be continuous3 strictly increasinga odd3 

with <f>(+°°) - +00 • Write M(t) = <\>(x)dx . Then for any f € 

-1 ° 1 
e W E— (fi) there exists an unique, u € W^L„(fi) such that c|>(3u/9x.)e 

M U M j 

€ L ^ W for j = 1, .. ., N and 

- ! af c *<!i->i - f 
j= l x j 3 

in the distribution sense in 9. . 

Unicity is easily verified, using the fact that §£)($.) is 

a(nLvr, IIL-) dense in W^L^ft) . 

M M U M 
PROOF OF EXISTENCE. We will apply the abstract theorem of section 

3.3 to the complementary system (W..L.., W^E..; W~ L—, W~ Err) and the 
U M U M M M 

operator T : D(T) C W*LM ->• W~
1L- defined by 

D(T) = {u € W*LM; H ^ ) «- L- for j = 1, ..., N) , 

Tu = - j ^ 7 [ * < | ^ ) ] for u € D ( T ) . 

3=1 3 3 
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We note that 
N 

<v, Tu> - I [ • (§-*-) |i-dx 
j-1 Jfl 3Xj 3XJ 

for u € D(T) and v € W*LM . 

The two technical assumptions of the abstract theorem are clearly 

satisfied. Also D(T) 73 YQ (see the study of the Nemyckii operator in 

section 3.2) and T is monotone. The hemicontinuity of T will fol

low from Lemma 1 bellow. So we have just to verify the pseudo-monoto-

nicity condition (iii) and the local a priori bounded condition (iv). 

Vseudo-mono tonicity condition. Let u. € D(T) be a bounded net 

with u. -> u € W*L-, for aCwh..,, W" 1 E ~ ) , Tu. -> g €• W"1Lrr for 1 O M O M M l M 

a(W"1LM, W^EM) and 

(2) 

We must show that u € D(T), Tu = g and <u., Tu.> -> <u, g> . It 

clearly suffices to prove the last convergence for a subnet. 

First (J>(3u./9x.) remains bounded in L— for each j = 1,...,N. 

Indeed, from (2) we have 

9u -
ч Г dU. dU. 

. > <u Tu > = l Ф(т-^) т— dx 
1 X j = lJfì Ә x j Ә x j 

N Г - Ә u -
> l и(ф(-r-3-)) dx , 

j = l J ß Ә X j 

which implies that each <|>(9u./9x.) remains bounded "in the mean" in 

L— , and so remains bounded in L— . Consequently, passing to a subnet 

if necessary, we can assum* that <}>(3u./9x.) -»• h. € Lrr for a(LM» EM^ * 

It follows from 
N Эu. 

v, Tu.> = l ф(^) ţjr dx . , , . uX. 9x. 
J = l Jfi J J 

for v € £>(ft) that 
N . 

(3) <v, g> - I \ h. fj- dx 
j = l J ^ J J 

for v €&(ft) . Since S.>(fi) is a(nLM> IIL-) dense in ^0
L

K , (3) 

also holds for v € W^L., . 
U JM 

Now, by monotonicity, we have 
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N r 3 u . 9u 

(4) I ( • f e r ) - • < w
1 ) > ( a r t ~ w i ) d x = ° j = l Jft d x j J d x j J 

for a l l (w.) i n , s ay , IIL . Going to the l i m i t and us ing (2) and 

( 3 ) , we o b t a i n 
N t a 

(5) I (h, - < K w . ) ) ( | ~ - - w.) dx > 0 
j = l J a 3 3 j J 

for all (w.) € JIL • One would like now to use Minty's classical ar

gument, i. e. putting w. equal to (9u/9x.) + tw. in (5) and let

ting t -*- 0 . But this is not allowed because 9u/3x. ̂  L in general. 

So let us introduce 

ftfc = {x € £1; lf^-(x) I < k for j = 1, ..., N> 

and let X, denote the characteristic function of ft, . We replace 

w. in (5) by w j xk - (9u/9Xj)xk + (9u/9xj)Xjl, where £ > k : 

N t 
_ . r /, , 3u , 9u \s/9u . 3u 9u X J 
0 - . - , J „ ( h j " ( w J x k " "3T7xk + i 77 x £ ) ) ( T77 "w j xk+ i5Txk" I 5 7 x * ) d x 

J - l " J J J J J N f 

1 
, /9u 9u . j 
h . (-r - -r X 0 ) <-X 

n j 3 X j 9Xj
A£ 

N f 

I Ф ( w . 
j=l

 J
ft

 J 

N , 
1 

J - l Jfì 

9u , 9u v /9u 9u N j 

iml Ja "jxk - ^ x k + i^x . ) ( i^ " ÍÍJXP dx 

+ l j^Chj - *(w j X k - f^jXk + |i-TCt» <-i-Xk "
 wjX k) dx . 

The first integral goes to zero as £->«», the second integral is 

zero because <J) (w. Xi - T X. + ~z X0) is zero outside ftfl since 

J K oX. K "X, x, x, 
A >, k , and the last integral is equal to 

N , 

- I 
j = i Jft 

/i_ ± / 3u , 9 u N W 3 u x , 
( h j " * ( w j X k " -3^-Xk + 3^7Xk))(-3^7Xk - w j X k ) dx 

Hence, fixing k and letting £ ->- +«> , we obtain 

N e 

(6) I (h. - «(w ))(-"- - w.) dx > 0 

J-i J o k
 3 3 3 J 

for any (w.) € IIL . Here, on ft, , we can apply Minty's argument and 

derive from (6) that h. = <j>(9u/9x.) on ft, . Since k is arbitrary, 
J J K 

we obtain h. = <J>(9u/3x.) on ft, for j = 1, ..., N . Consequently, 

u € D(T) and (3) implies that Tu = g . 
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It remains to see that <u. , Tu. > -*• <u, g>. We first deduce from 

(4) that 

L = l i m i n f 
N г Әu. Әu. 

ï HJЃ> JЃ d x 

j - 1 Jfì d x j d x j 

^ I Ф ( W І ) ( ! X - - w i ) d x + ? í Ф ( І X - ) W І 
j = l Jfì 3 d x j J j = i J Q

 d x j J 

dx 

for all (w.) €. nL . Let £2, and Xi. be as above. Then, putting w. 

i ^ 9u equal to -j^—Xk » we get 

dx 
IN r N c 
r . / 3 u \ / 9 u 3 u \ j , V . / 3 u v 3 u 

i .J *(IxTxk)(-aT: " ^T*k )dx + .J L^IxT^k 
J = l ^ J J J J = l J f t J J 

where the first integral is zero. Letting k -> °° , we obtain 

L^ ! I *<lr-> ^ d x • 
j = l JQ d Xj d Xj 

This inequality, combined with (2), implies <u., Tu.>* ->• <u, g>. 

Local a priori bound condition. Let 

? 98i -1 
B - 8 0 - I a i 1 ^ EM(fi) 

J = l J 
be given. We must prove that there exists a (norm) neighbourhood 

of g in W~ L—(ft) such that {u €. W^L„(ft); Tu €uf} is bounded in 
M U M 

W0L.,(ft) . We will make use of Poincare's inequality (cf. section 2.4): 

f or v e W 0L M . 

[ M(v)dx < a I M(b |j-) dз 
Jfì Jfì j = l d X j 

Take r > max {b, 1+ab} and choose c such that 

J Q 

(rg.)dx 4 c for j = 0, 1, ..., N . 

This is possible since g. € E— so that rg. € E— C L— . Now consider 
J M J M. M. 

N ӘҺ. 

*- {h " ho - .-, JĆ Є 

J = l J 

W
1
^ ; | M (rh.)dx 4 c + 1 

for j = 0, 1, ..., N} 

Clearly g € JP, and since the functional /_ M(w(x))dx is norm con

tinuous on the interior of 42— (cf. section 2.4), \J* is a (norm) 

neighbourhood of g in W L— . If u € Wn LM verifies Tu = h €.%/f°9 

then 
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(7) f f • ( | H - ) | S - d x - f [ h j ^ d x + [ h Q u dx . 
j - i J ň 9 x j a x j j - i }n 3 3 x j J n ° 

7) i s g reatť 

I í -<$=-> 
= 1 Jfl d X j 

The left-hand side of (7) is greater than 

-) dx 

)dx 

J 

by Young1s equality. The right-hand side is less than 

I [ M(rh.)dx + I [ M(£ ™-)dx + [ M(rhft)dx + [ M(f)c 
j = i J n J j = iJfi r d x j J Q u Jfi 

< N(c + 1) + i I [ M (•§£-> dx + (C + 1) + f k J [ M ( | ^ - ) d x . 
j = l Jfl d X j r j = l JQ d X j 

N 9 u 

From the choice of r , we deduce that J J0 M(-r )dx remains 
j-1 ° 3 

bounded and so, by Poincare's inequality again, u remains bounded 

in W^LM . Q. E. D. 

LEMMA 1. Let M and N be ^-functions and let f(x, t) sa

tisfy the Caratheodory conditions on Q. x tt . Assume that there exist 

a(x) 6 L 3 constants b and c such that 

(8) |f(x, t)| 4 a(x) + bN~1M(ct) 

for x € ft and t e H. Then f (x, u(x)) € L for u -£« some strip 

B arownd E_. 
M 

B = {u e LM; dist (u, EM) < j^} , 

and the mapping u(x) € B •> f(x, u(x)) €• L is continuous on the 

finite dimensional simplexes of B with values in L , °"(--N»
 E M ) • 

(T/ie distance in the definition of B is measured by means of the 

Luxemburg norm.) 

We remark that this lemma does not follow from the standard con

tinuity results on Nemyckii operators in Orlicz spaces as given in 

[13; §17]. 

PROOF OF LEMMA 1. It is well known (cf. [l3]; p. 82) that # M 

contains the strip 

A « {u € LM; dist (u, EM) < -}. 
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Let u e B . Then cu € A C& , so that M(cu) € L 1 and N XM(cu)€ 

€:<•_?„ . Consequently (8) implies that |f(x, u(x))| is majorized by 

a function in L , and so belongs to L . 

Now we show that if u runs over a simplex S C B , then 

f(x, u(x)) remains bounded in LXT . Let us write 
N 

R R 
S « C I A u ; A > 0 - I A = 1} 

i_l 1 1 1 i_i 1 

R 
where u. 6 B . If u = Y A.u. , then 

i - i x x 

R _ i R 

I Л cu) < N I 
i=l * i=l 

R R 

_ i _ i _ 1 
N M(cu) = N M( l Л.cu ) 4

N l A.M(cu.) 
-î _ i x -• _ i -• --

N(N_1M(cu)) ^ I A.M(cu.) 4 J M(cu.) . 
i-1 X 1 i=l X 

Since the right-hand side is a fixed (i. e. independent of u ) ele

ment of L , N M(cu) remains bounded in the mean in L , and so 

remains bounded in L . The conclusion that f(x, u(x)) also re

mains bounded in L follows then immediately from (8). 

Let now u. , u €L B , u. -> u , u. in a finite dimensional simplex of 

B . Thus f(x, u.(x)) remains bounded in L . Taking a subsequence 

if necessary, we can assume u. -> u a. e., so that f(x, u.(x)) ->• 

->• f(x, u(x)) a. e. The conclusion then follows from lemma 2 below. 

Q. E. D. 

LEMMA 2. Let u„ be a bounded sequence -in L and assume that 

u. -*- u a. e. Then u _. L and u. ->• u for a(L N, E—) . 

PROOF. There exists A such that | | u . | V . ^ A , i. e. 

/ N(u./A)dx ^ 1 . This implies, by Fatou's lemma, that J N(u/A)dx 4 

4 1 , i. e. u € LN(Q) . Now, since u. is bounded in L„ = (E^) » 

to prove that u. -> u for cr(LXT, E—) , it suffices to prove that 
v x N* N 

<u., v> -> <u, v> for v in some (norm) dense subset of E— . Thus, 

here, it suffices to prove that for any A measurable C ^ , 

(9) u. (x)dx ->• u(x)dx . 
JA X JA 
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We know that /fi N(u./A)dx 4 1 . This implies, by De La Vallee -

Poussin's theorem (cf. |~18; p. 15 9 j ) that the functions u. are 

equiabsolutely integrable on ft . Since they converge almost every

where, it follows from Vitalifs theorem (cf. ~6; p. 122J) that they 

converge in L (ft), which implies (9). Q. E. D. 

Lemma 1 yields the desire hemicontinuity result for T because 

it follows from inequality (2) of section 3.2, that 

|*(t)| <. M-1M(2t) for t 6 R , 

which is a condition of type (8). 

3.5. Comments 

a. A more general result can be proved by using essentially the 

same arguments. 

N 

THEOREM 1. Let ft be an open bounded set in R. 3 with the seg

ment property. Let A (x, £) , | ot | 4 m, be functions defined for 

x 6 ft and K ~ (£g)|g|< » £g £ -R » with the usual Caratheodory con

ditions. Suppose: 

(i) there exist an N- f u n c t i o n M^ a(x) e E|-(ft), constants h3 c such 

that 

|Aa(x, 5)| < a(x) + b I M"1M(c53) 
I ft I 4 m 

for all |o| < m , x and £ , 

(ii) for all x and £ 3 £" 3 one has 

(x, K) - A (x, 5'))<5„ - "'„) L 0 , 1 L <A° 
l a 14-n 

(Hi) there exist a (x) in E— (ft) / o r |a| = m 3 in L— (ft) for 

I ot I < m 3 b(x) e L (ft) 3 constants A3 e > 0 such that 

I (Aa(x, O - aa(x)Ha > d " M(e^a) - b (x) 
I a I 4 m J a [ = m 

for all x and ? . 

Then3 for any given f in W~ E— (ft) 3 there exists u € W L (ft ) 

such that Aa (x, £(u)) €
 L-f(^) .f0^ a ^ lal 4 m a n d 

I ctT4 m 
-l)l alD aA^(x, -<u)) - f 
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in the distribution sense in fl . Eere £(u) stands for (D u)ig i < . 

Other existence theorems can be given along the lines of LERAY-

LIONS [.16.1 » w nere the monotonicity assumptions involve only the top-

order terms. Their proofs depend on more complicated abstract theo

rems than the one of section 3.3. Here is an example of such an exis

tence theorem (for details see [9]). 

N 

THEOREM 2. Let 0. be an open bounded set in JR 3 with the seg

ment property. Let A (x, £) 3 | a | < m. Z?e functions defined for 

x € 0, and £ = ( C 0 ) I 0 I ^ .» £0 € JR , with the usual Caratheodory con-
P I P I <jn P 

ditions. We will split £ = (50)I0I. into its top order part 
P I P I <_m 

C - ( 5 g ) I 3|-«m
 and i t s loWer order part n = ^B^IfiUm * SuPPose: 

(i) there exist two ^-functions M and P 3 P growing essentially 

slower than M (i. e. P(t)/M(et) ->• 0 as t ->• <»., / o r anz/ e > Oj., 

functions a (x) -£n E— for \a|= m 3 in L— for [a| < m 3 a con

stant c such that for all x and £ 3 

if |a| = m: |Aa<xft-)| < *,(*) + c Y M ' H . K c ^ ) + c | ft | < m PM(c r , g ) , 

if |a| < m: |Ao(x,5)| < aa (x) + c M""1P(c^g) + c | g | < mM~ *M (c£g) , 

Tiij f o r eac/z x, n , C 9s £> 

C, n) - A (x, e % TI))(C - ?;) > 0 , 

|о|-m 

(Hi) for each x, 5" 

Y (A
a
(x, c, n) - c

a
)(C

a
 - c

a
' ) - *-

|a|=m 

as I c [ -> + °°j uniformly for bounded x>^ and n _» 

l/iyj there exist b (x) £ E— (Q) f o r |a| = m 3 in L— (ft) f o r |a| < 

< m, b(x) € L (ft) ., constants dj e > 0 swch t h a t 

7 (A (x. 5) - ba(K))Ca > d Y M(e5a) - b(«) 
j a I<m I a I=m 

for all x and i . 

Then3 for any given f in W~ E— (ft) ., there exists u € WQLM(ft) 
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suoh that A (x, £(u)) e L M ( ^ ) for a ^ lal 4 m an& 

(-l)lalDaA (x, 5(u)) = f 

I c.|4m 

in the distribution sense in ft . 

b. The arguments given in section 3.4 to verify the pseudo-monoto-

nicity condition can be used to prove that the Nemyckii operator 

u(x) € L M *> <|>(u(x)) 6 L— considered in section 3.2 is maximal mono-

LM t0 LS 

T : D(T) C W^L.. -»• W L— of section 3.4 is also maximal monotone is of 
U M M 

some interest. Here is a partial answer. 

PROPOSITION. Assume that M satisfies the A condition. Then 

the above operator is maximal monotone. 

PROOF. Since M satisfies the A_ condition, E— = L—, and so 

2 M M 

our complementary system takes a simpler form: (W L , W E ;W -̂vf'̂  ^M^ 

- (X *, X; X , X ) with X = W*E . And T : D(T) C X ->• X . Denote 

by T the restriction of T to X . So r#. 
N 

X , 1 x 7 < j > (¥77 ) • 
3 = 1 3 3 

It is monotone, hemicontinuous, everywhere defined, and so maximal 
* 

monotone from X to X And T appears as a monotone extension of 

** 
(for some results about such extensions, see 

[ i i ] ) . 

The operator T, is the (sub) gradient of the functional 

j-1 J^ 3 
• (u) = I | M(-^-) dx 

3 = 

on X . Indeed, $ is a convex continuous functional oh X (cf. Lemma 

1 of section 2.4), and so 3$ is a maximal monotone mapping. But, 

using the equality M1 = <j) , one easily verifies that T, C 8$ , and 

consequently, T.. = 3$ . 4-

Now we apply a result from convex analysis (cf. ROCKAFELLAR [l9]) 

which says that if $ is a lower semicontinuous, convex, ^ -K °° 

function on a Banach space X , then 3$ has an unique maximal mono-
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** 
tone extension T_ to the bidual X ; moreover the graph of 3 $ is 
dense in the graph of T_ in the sense that given any (x , x ) € 

.v 
6 g r T„ , there exists a net (x., x.) 6 gr 9$ such that x is 

ic :k it ic Jc * JV 

bounded in X , x. ->• x for o (X , X ) and x. -*• x in norm. In 

our situation, we have seen that T is pseudo-monotone; pseudo-mono-

tonicity is a closedness condition which clearly implies that the 

graph of T is closed for the above convergence. Consequently T 

contains T_ , and since T is monotone and T_ maximal monotone, 

We remark that the proof of the above proposition, based on re

sults from convex analysis, does not extend to the case of the opera

tor 

, I (-l)'a'DaAa(x, 5(u)) 

considered in theorem 1. 

c. Some partial results for the Dirichlet problem for the 

equation 

»> - . - . T £ : I « £ : > I - -
J = l J J 

in the case where <j> now is no longer odd at infinity have been ob

tained in [l2] . 
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