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ON THE SHAPE OF SOLUTIONS TOSOME VARIATIONAL PROBLEMSBernd KawohlThe �rst spring school that I ever attended was organized by the lateSvatopluk Fu�c��k in 1978 in Horn�� Bradlo. During the conference he jokinglyremarked that he might not be able to attend the next spring school, becauseit would be on free boundary problems and this is a topic which might bemisunderstood by the authorities. Unfortunately, he did not even have timeto �nd out that it became a regular institution. I dedicate my four lecturesduring the spring school 1994 in Praha to his memory.The lectures will deal with the following three problems:1. A free boundary problem with fuzzy free boundary.2. A conjecture of Saint Venant's on points of maximal stress.3. Newton's principle of minimal resistance.First ProblemLet 
 � R2 be the cross-section of a long cylindrical bar, whose torsionalrigidity we want to minimize subject to some side constraints. The outershape of 
 is prescribed as well as the proportions and physical properties(shear moduli) of the materials which �ll up 
. Suppose that ��1i denotesthe shear modulus of material i = 1, 2. The shear modulus measures howmuch one has to pull sideways at the top of an elastic block, which is �xed atthe bottom, in order to shear it by a standard amount. Therefore \strong"material will have a high shear modulus, that is a small value for �. I shallassume that 0 < �1 < �2 <1.Maximizing torsional rigidity amounts to solvingm = minv2H1;20 (
) Z
 ��(x)2 jrv(x)j2 � v(x)� dx: (1:1)77



78 B. KAWOHLIf u solves (1.1), thenZ
 f�(x)ru(x)r'(x)� u(x)'(x)g dx = 0 for all ' 2 C10 (
); (1:2)and consequently m = �12 Z
 u(x) dx (1:3)Now the torsional rigidity is de�ned as �2m, see [PS, p. 88].If 
 is a circular disc, then every engineer will immediately guess thesolution to our shape optimization problem. One has to put the strongermaterial in an annulus with outer boundary @
 and the softer material intothe interior disc of the annulus. In this case the free boundary betweenthose two materials consists of a circle, a line of constant (and prescribed)curvature.What if the disc is slightly perturbed to an ellipse, say? Then I claimthat there is no optimal solution to this shape optimization problem. Thereis, however, an almost optimal solution with a very fuzzy free boundary.This boundary consists among other things of many (nonclosed) circulararcs of identical (and prescribed) curvature. There the two materials areintertwined like two curved combs that have been pushed against each other.In other words, they form a sandwich-like homogenized material.To prove this claim will take up the rest of this lecture. Let 
1 = fx 2
 j �(x) = �1g and 
2 = fx 2 
 j �(x) = �2g, let u be a solution of (1.1),set ui(x) = uj
i and suppose �rst that ' 2 C10 (
i). Then (1.2) leads tothe Euler equations ��ui = 1�i in 
i; i = 1; 2: (1:4)Next suppose that 
1 and 
2 have a common boundary � of class C1 andthat ni is the outward normal to 
i along �. Then (1.2), integration byparts and (1.4) lead toZ� ��1 @u1@n1 + �2 @u2@n2�'ds = 0: (1:5)But (1.5) represents the continuity of ux across the free boundary. For 
a ball and radial u, condition (1.5) translates into�1 @u1@r = �2 @u2@r (1:6)The following lemma will be useful.



SHAPE OF SOLUTIONS 79Lemma 1.1. Suppose that the shape optimization problem has a Lipschitzcontinuous solution which is of class C1(
i) and which has a free boundary� of class C1. Then there exists a � 2 R such thatjru2(x)j �p2��1=�2 := �1 in 
2; (1:7)jru1(x)j �p2��2=�1 := �2 in 
1: (1:8)I postpone the proof of this lemma and derive some immediate conse-quences. The estimates (1.7) and (1.8) imply�2jru2j �p2��1�2 � �1jru1j: (1:9)If we split ru into a tangential and normal derivative, we obtain, using(1.9) (1.5) and the continuity of u along �,�22����@u2@n ����2 + �22����@u2@t ����2 � �21����@u1@n ����2 + �21����@u1@t ����2= �22����@u2@n ����2 + �21����@u2@t ����2 � �22����@u2@n ����2 + �22����@u2@t ����2:Since there is equality and since �1 < �2 we conclude@u1@t = @u2@t = 0 on �; (1:10)i.e. u = const along �: (1:11)But now (1.10), (1.9) and (1.5) imply�ijruij = �i ����@ui@ni ���� =p2��1�2 on �: (1:12)Now let D be a connected component of 
2 which is compactly containedin 
. Such is the case if 
 is a ball, and we might expect continuousdependence of � under small changes of 
. Then��u2 = 1=�2 in D;(1.13) u2 = c2 on @D;@u2@n = C2 on @D:But now, according to a famous result of Serrin [Se], D must be a circulardisc. By analyticity of u1, 
 must be a circular disc, too. Thus we haveshown



80 B. KAWOHLProposition 1.2. Unless 
 is a circular disc, the shape optimization prob-lem cannot have a smooth solution.It remains to prove Lemma 1.1. Notice that so far I have not broughtthe condition into play, that the size of 
1 is prescribed and that its shapeis optimal. The condition on the size of 
1 can be restated asZ
 �(x) dx = C0; �(x) 2 f�1; �2g (1:14)and it can be entered into the variational problem (1.1) by means of aLagrange parameter. We look forinf�2f�1;�2g;R
 �=C0 infv2H1;20 (
) Z
 n�2 jrvj2 � vo dx= infv;� sup�2RZ
 n�2 jrvj2 � v � ��o dx+ C0�:In fact, if R
 � dx 6= C0, the sup over � will be in�nite.Let us relax the condition �(x) 2 f�1; �2g for a moment to �(x) 2[�1; �2]. Then the inf is taken over a convex set of admissible functions �and v, and the above functional is convex in v and � and concave in �.Therefore we may exchange the sup and inf and studysup� infv;� Z
 ��12 jrvj2 � �� dx+ C0�� Z
 v dx: (1:15)Let us consider the curly bracket in (1.15). If it is negative we want � tobe as large as possible, i.e. � = �2, and if it is positive we want � = �1. Sothe inf over �(x) 2 [�1; �2] will be attained in f�1; �2g. We set(1.16)g�(jrvj) := inf�2[�1;�2]��12 jrvj2 � �� = � �2( 12 jrvj2 � �) if jrvj2 � 2��1( 12 jrvj2 � �) if jrvj2 � 2�:Therefore (1.15) can be rewritten assup� infv Z
 fg�(jrvj)� vg dx+ C0�; (1:17)



SHAPE OF SOLUTIONS 81and in particular for �xed � we are faced withinfv2H1;20 (
) Z
 fg�(jrvj)� vg dx; (1:18)where g� is de�ned in (1.16) and depicted in Figure 1.1.
���������	
����Figure 1.1 g� and gSuppose we can solve (1.18) for every �. Then (1.17) amounts to maxi-mizing a function of a single variable � only. But for �xed v the functionalin (1.17) is concave in �, i.e.tg�(s) + (1� t)g�(s) � g�t+(1�t)�(s) (1:19)for s � 0, t 2 [0; 1] and �, � 2 R; and the functional tends to �1 as j�jtends to 1. The derivation of (1.19) is a simple calculus exercise that hasto distinguish four di�erent cases. Therefore the maximization with respectto � will pose no problem.Unfortunately problem (1.18) is nonconvex, and therefore we cannot usethe direct method in the calculus of variations to derive existence of a solu-tion. This is in accordance with our observation, that in general there will



82 B. KAWOHLbe no solution of the shape optimization problem. However, if we convexify(1.18), i.e. if we replace g� by its convex envelope g, which is depicted inFigure 1.1, then we could at least solve the relaxed probleminfv2H1;20 (
) Z
 fg(jrvj)� vg dx: (1:20)What happens in the case that 
 is a circular disc? We may replace anyminimizer u; � of (1.15) by their circular meansu(r) = 12� 2�Z0 u(r; #) d#; �(r) = 12� 2�Z0 �(r; #) d#:This will lower the functional in (1.15), since it is convex in u and �. With-out loss of generosity we may therefore assume that minimizers are radial;and by the reasoning that leads to (1.16) we can be sure that �(r) 2 f�1; �2gand �(r) =2 (�1; �2). Let us now see why jruj =2 (�1; �2) in the radial case.If j@u=@rj 2 (�1; �2) on a set of positive measure, we can modify u to azig-zag-function u" on this set, so that u" approximates u in L1(
) and sothat jru"j =2 (�1; �2). This is illustrated in Figure 1.2.
������Figure 1.2 u and u"Therefore the inequalityZ
 g�(jru"j) dx = Z
 g(jru"j) dx = Z
 g(jruj) dx < Z
 g�(jruj) dx (1:21)would lead to a contradiction.



SHAPE OF SOLUTIONS 83The same argument can be applied in the nonradial case. Now the levellines of u serve as lines of discontinuity for jru"j, but along each line ofsteepest descent of u, the approximating function u" looks like the one inFigure 1.2. Again (1.21) leads to a contradiction and proves Lemma 1.1. �Inequality (1.21) has another consequence. Any minimizer of (1.18) willalso be a minimizer of the relaxed problem (1.20).Let us therefore from now on consider the relaxed variational problem(1.20). This problem has a solution u 2 H1;20 (
), which satis�es the Eulerequation 0 = Z
 fg0(jruj) rujruj r�� �g dx; for any � 2 C10 (
);or formally � div�g0(jruj)jruj ru� = 1:We split 
 into 
1 := fx 2 
 j jruj > �2g, 
2 := fx 2 
 j jruj < �1g andH = 
n(
1 [ 
2). In 
i we have (1.4), and in H we have g0 = p2��1�2;i.e. div� rujruj� = 1=p2��1�2: (1:22)If we rewrite (1.22) in curvilinear coordinates, tangent and normal to levellines of u, it is rewritten as � = 1=p2��1�2; (1:23)where � denotes the curvature of a level line of u for plane domains (or themean curvature of a level surface of u for higher-dimensional domains).In H the type of di�erential equation switches from elliptic, i.e. �2-operator, to degenerate elliptic, i.e. �1-operator. Here �pu :=div(jrujp�2ru). Relation (1.23) tells us, that level lines of u are, as long asthey run through H , circular arcs of constant curvature c1 = 1=p2��1�2.The derivation of (1.23), however, has to be justi�ed via regularity consid-erations.Theorem 1.3 (Regularity). Let u be a solution of (1.20). Theni) u 2 L1(
).



84 B. KAWOHLii) u 2 W 1;1loc (
) and, provided @
 is smooth, u 2 C�(
).iii) u 2 C1(int
i), i = 1, 2.iv) If the level lines fx 2 intH j u(x) = tg are locally Lipschitz contin-uous,then they are C1 for a.e. t 2 R and have constant (mean) curvaturec1 = 1=p2��1�2.Proof. To prove i) one compares the solution of (1.20) on 
 with a solutionof the same problem on 
�, a ball of the same volume as 
. On 
� thesolution is explicitly known and is L1, see [Ta]. Statement ii) follows froma result in [CE], iii) is a consequence of (1.4). To prove iv), let us �x u on
1 [ 
2 and vary it only in H . Then we have to minimizeJH(v) = ZH fc1jrvj � vg dx;and the coarea formula yieldsJH(v) = vmaxZ0 �c1 Perimfv > tg in H �Areafv > tg in H	 dt:So for a.e. t 2 R we minimize (N � 1)-dimensional perimeter minus N -dimensional volume for N = 2, a regular elliptic problem in N � 1 dimen-sions (since level lines were Lipschitz by assumption). Therefore iv) follows.Notice that this proof of iv) does not use the implicit function theorem andregularity of u. In fact, I do not even know that u 2 C2(H). �What can be said about uniqueness of solutions to (1.20)? Since we aredealing with a convex problem, there is hope to have uniqueness. But g isnot strictly convex, so there may as well be nonuniqueness. In fact, considerthe one-dimensional problemminv(0)=0;v(1)=(�1+�2)=2 1Z0 g(jv0j) dx: (1:24)This problem has u(x) = (�1 + �2)x=2 as one solution, but there are otherones depicted in Figure 1.3 with slope alternating between �1 and �2.



SHAPE OF SOLUTIONS 85
���������Figure 1.3 Solutions of (1.24) for �1 = 0Theorem 1.4 (Partial Uniqueness). Let u, v be solutions of (1.20). Thenrujrvj = rvjruj a.e. in 
; (1:25)i.e. ru and rv are parallel. Moreover the sets 
1 = fx j jruj > �2g and
2 = fx j jruj < �1g are uniquely determined (modulo nullsets) andru = rv a.e. in 
i; i = 1; 2: (1:26)A proof of this theorem can be found in [KSW].Remark 1.5. If u, v are di�erent solutions of (1.20), we may assume withoutloss of generality that u � v. In fact w1 = minfu; vg and w2 = maxfu; vgare solutions of (1.20).Lemma 1.6. Suppose that (1.24) holds and that the level lines of u and vare Lipschitz-continuous. Then u� v = const on every component La(u) ofthe set La(u) = fx 2 
 j u(x) = ag for a.e. a. In particular, we have thatv(x)�u(x) = c for some x 2 `a(u) implies v(x) = a+ c for every x 2 `a(u):Proof. rv and rv exist a.e. on La(u) and are parallel. Therefore the tan-gent vector on `a(u) is de�ned a.e., and it coincides with the tangent vectoron `a(v). �Lemma 1.7. Under the assumptions of Lemma 1.6, every nonempty com-ponent `a(u) of a level set La(u) has nonempty intersection with 
1 [ 
2:Proof. Else there exists a level C and a component `c(u) with positive dis-tance to 
1 [ 
2. Therefore an entire neighborhood of `c(u) is contained in



86 B. KAWOHLint H . According to Theorem 1.3. iv), `c(u) has to have constant curvaturec1. Since jruj 2 (�1; �2) in H, there must be an adjacent level d such that`d(u) � intH for another level line of constant curvature c1. Without lossof generality we may assume d > c. But now `d(u) and `c(u) are both closedcircles of radius p2��1�2, and `c(u) does not intersect `d(u) for reasons ofcontinuity of u, a contradiction. �Theorem 1.8 (Uniqueness). Suppose that the relaxed variational problem(1:20) has a solution u with starshaped level sets fu > tg and Lipschitzianlevel lines fu = tg , and @
1; @
2 are piecewise C1. Then (1:20) has onlyone solution.To prove Theorem 1.8 suppose that there are two solutions u and v.Then there exists a map f : R ! R with v(x) = f(u(x)), and f is locallyLipschitz continuous, so both u and v are Lipschitz continuous. Moreoverf 0(u(x)) = 1 in 
1 � 
2, because of Theorem 1.4. But according toLemma 1.7 every level line runs through 
1 [ 
2, i.e. f 0 = 1 on almost alllevels of u. Therefore v = u. �Remark 1.9. One can give su�cient conditions for the assumptions on levellines of Theorem 1.8, see [KSW]. They are in particular satis�ed for regularpolygons.For every �xed � we have now a unique solution u� to the relaxed problem(1.20), and we can maximizeZ
 fg(jru�j)� u�g dx+ C0�with respect to �. I denote the function u� associated with the maximizing� by u. If jruj =2 (�1; �2) a.e. in 
, as is the case for a circular disc only,then we have a solution to the unrelaxed problem (1.17). If, however, Hhas positive measure, then u can be approximated by a function u" withjru"j =2 (�1; �2) as depicted in Figure 1.2. The thin layers in H in whichjru"j � �2 are then �lled with material �1, those with jru"j � �1 withmaterial �2 and their common boundary consists of many circular arcs withidentical curvature c1. Second ProblemConsider the classical torsion problem(2.1) ��u = 1 in 




SHAPE OF SOLUTIONS 87(2.2) u = 0 on @
for a given domain 
 � R2. Can one predict those points x 2 
, wherejru(x)j attains its maximum simply by looking at the shape of 
? Thosepoints mark the onset of plasticity and I call them points of maximal stress.This question was raised by Saint Venant in his classical treatise [SV, p. 444]from 1856, and it was answered in the positive for domains, the boundary ofwhich is described in polar coordinates by (r=r0)2�a(r=r0)4 cos 4' = 1�a.There, Saint Venant writes\Les points dangereux sont donc, comme dans l'ellipse et le rectangle, lespoints du contour les plus rapproch�es de l'axe de torsion, ou les extr�emit�esdes petits diam�etres."In fact, it is easy to see (although it was not shown until 1930 by P�olya[Po]) that the point of maximal stress must lie on the boundary.Lemma 2.1. If u solves (2.1), (2.2), then jru(x)j attains its maximumover 
 on @
.For the proof we di�erentiate jru(x)j2 and show that it satis�es thedi�erential inequality�(jruj2) = 2 2Xi;j=1 @2u@xi@xj + 2rur(�u) � 0Now Lemma 2.1 follows from the maximum principle. �It is not so easy to see, where on @
 the points of maximal stress must belocated. Take an ellipse for instance. There they are located on the shortaxes, a result why \may be startling to many" according to [TT, Vol. 1,Part II, x710]. On the other hand J. Boussinesq gave a heuristic explanationfor this in [B, p. 200]. Imagine going down from the maximal point of u inthe center of the ellipse to various boundary points. Going along the shortaxis will require more slope than following the long axis. This reasoning issuggestive as long as level sets of u are convex, and the convexity of levelsets, given convex 
, was not shown until 1971, see [ML]. In any case theseresults have lead people to believe in the general conjectureConjecture 2.2. For a doubly symmetric domain 
, jruj attains its max-imum on the intersection of @
 and the largest inscribed circle.



88 B. KAWOHLIf 
 is not convex, this conjecture is false, as can be seen from an I-beamor a domain like the one in Figure 2.1, which was found by Saint Venant in1859 and \rediscovered" in 1900 in [Fi].
���������	Figure 2.1 Saint Venant's railUnder some additional assumptions on the geometry of 
, I was able toprove the following result in 1985 [K].Theorem 2.3. Suppose that u solves (2:1), (2:2), and that 
 � R2 isconvex and symmetric with respect to x1 and x2. Suppose in addition that@
 is of class C3;�;(2.3) the curvature of @
 \ fx1 > 0; x2 > 0g is nondecreasing in x1:(2.4)Then maxx2
 jru(x)j is attained only at those points (x1; x2) 2 @
 which haveminimal distance to the origin. Furthermore, unless @
 is a circle, there areprecisely two points of maximal stress, namely the points of intersection of@
 with the x2-axis.The idea of proof is fairly simple. Let s denote arclength of @
, increasingas we approach the x2-axis along @
 \ fx1 > 0; x2 > 0g. We want to show@@s jruj2 � 0; (2:5)or equivalently @@s �@u@n� = @@n � @u@s + �@u@s � 0 along @
: (2:6)But @u=@s = 0 along @
, and to evaluate @@n �@u@s � at a �xed point x0 2 @
,we �x �!t to be tangent to @
 at x0 and pointing in s-direction and obtain@@n �@u@s� = lim"!0 1" �@u@t (x0)� @u@t (x0 � "n)� � 0 (2:7)



SHAPE OF SOLUTIONS 89or @u@t (x0 � "n) � 0 (2:8)as the desired inequality. But (2.8) follows from a well-known result ofGidas, Ni and Nirenberg, provided the lower cap that the normal to x0 cutso� from 
 can be reected across this normal into 
. Now a �ner analysisshows that (2.3), (2.4) lead to the reection property (incidentally, thereis a typographical error in [K,p. 200 line 2], the inequality sign has to bereversed) and that jruj increases strictly unless @
 is a circle. �Remark 2.4. Of course there is an extension of Theorem 2.3 to quasilinearelliptic equations. See [K] for details.Remark 2.5. Can one drop the assumptions (2.3) and (2.4), which werecaused by the method of proof? This question has a negative answer. Infact G. Sweers has shown in [S1] that Conjecture 2.2 is not true for thebarrel-shaped domain in Figure 2.2 or a nearby domain.
���������Figure 2.2 The barrelIn fact, as Ramaswamy showed in [R], the max of jruj is attained on thehorizontal, but not on the vertical axis. The proof of Theorem 2.3 can beeasily extended to regular polygons, though.In 1989 there was another and independent attempt [Ko] to prove Con-jecture 2.2. Unfortunately it contained an error, as was later pointed outin [S2]. In fact, G. Sweers found yet another counterexample to Conjecture2.2, a rhombus with rounded corners as in [K, Fig. 1(b)].



90 B. KAWOHLThird ProblemImagine a threedimensional ball ying through a liquid. In 1685 I. New-ton showed that the resistance of such a ball is half the resistance of acylinder of same diameter, if ying in axial direction. In his words [N]:\If in a rare medium, consisting of equal particles freely disposed at equaldistances from each other, a globe and a cylinder described on equal diametermove with equal velocities in the direction of the axis of the cylinder, thenthe resistance of the globe will be half as great as that of the cylinder. : : :I reckon that this proposition will be not without application in the buildingof ships."How did Newton come up with such a statement? Let us think of theuid as a rare gas, consisting of many free particles with large mean freepaths. Suppose that these particles do not collide with each other, but thatthey interact with the ball or cylinder through at most one perfectly elasticcollision. Other e�ect, such as friction, turbulence etc. are neglected in New-ton's model. If the part of the body, which is exposed to such collisions, canbe described by a function u : 
 � R2 ! R and if the uid ows verticallydownward, the portion of the momentum which a particle transfers to thebody upon impact at �x; u(x)� can be described by sin� = (1+ jruj2)�1=2.The horizontal component of this portion will be balanced for rotationalbodies by a corresponding momentum at �� x; u(�x)�. The vertical com-ponent, however, is of magnitude (1 + jruj2)�1, see Figure 3.1.
���������Figure 3.1 The sine-square pressure law



SHAPE OF SOLUTIONS 91Therefore the total resistance of the body can be measured byR(u) = Z
 11 + jru(x)j2 dx: (3:1)Now we calculate the resistance of a circular cylinder of radius 1 to be �.To calculate the resistance of a ball, we evaluate (3.1) at u(x) =p1� jxj2.Since @u=@r = �r(1� r2)� 12 , we obtainR(u) = 2� Z 10 (1� r2)r dr = 2�hr22 � r44 i10 = �=2;i.e. a con�rmation of I. Newton's observation that a ball has half the resis-tance of a cylinder.Incidentally, Newton's considerations were illustrated by the drawing inFigure 3.2, and they have been extensively studied by D.T. Whiteside.
���������	
���Figure 3.2 Newton's drawingAnother body of same resistance as the ball is the cone u(r) = 1 � r.Until recently [BK, BFK] the functional (3.1) was written di�erently (forradial functions) as MZ0 vv031 + v02 dt; v(0) = 0; v(M) = R: (3:2)If M denotes the maximum of u and 0 � u � M , then we can set v =u�1(M � t) and perform a simple change of variables. To do this we haveto assume, that u or v are monotone.



92 B. KAWOHLSo if we want to minimize (3.1) or the resistance of a body described bya function u(x), we have to specify the class of admissible functions for u.Since R(2u) < R(u) for nonconstant u, any class of admissible functionsshould be bounded in L1(
). Moreover we want the body to have theproperty thatevery particle interacts at least once with the body. (3:3)A su�cient criterion (but not a necessary one) is the convexity of the bodyor concavity of admissible functions. We setCM := fv 2 W 1;1loc (
) j 0 � v �M;v concavegand study the problem minv2CM R(v): (3:4)Since R is bounded from below there exists a minimizing sequencefung � CM . Does it converge? If we writeR(v) = Z
 f(jrv(x)j) dx; (3:5)then standard problems from the calculus of variations have an integrand fwhich is convex and coercive, e.g. f(s) = (1 + s2)�1 is neither coercive norbounded, and so we cannot expect compactness of a minimizing sequencefrom the structure of f alone. This disadvantage is made up for by the setCM , as was noticed by Marcellini.Lemma 3.1. If fung � CM , then fung has a subsequence, still denoted byfung which converges strongly in W 1;ploc (
) to a limit u.The proof of Lemma 3.1 can be found in [M] and [BK], but let me outlinethe idea. In a �rst step it is shown by geometric considerations that thepointwise estimate jrun(x)j � 2Mdist(x; @
) (3:6)holds for every un 2 CM , so that the sequence fung is locally uniformlyLipschitz continuous. By the Arzela{Ascoli theorem it has a uniform limitu 2W 1;1loc (
), after passing to a subsequence. So un ! u is L1loc(
).In a second step one has to show that run ! ru pointwise a.e. in 
.This is done by taking di�erence quotients from the left and right, by usingthe concavity of un, and by proper limits. Convergence inW 1;ploc follows fromLebesgue's dominated convergence theorem. �



SHAPE OF SOLUTIONS 93Theorem 3.2 (Existence). Problem (3:4) has a solution.Proof. In fact, let 
n
0 be a thin neighbourhood of @
 in 
, then Lemma 3.1implieslim infn!1 R(un) = lim infn!1 Z
0 f(jrunj) dx+ Z
n
0 f(jrunj) dx� Z
0 f(jruj) dx+ lim infn!1 Z
n
0 f(jrunj) dx= Z
 f(jruj) dx+ Z
n
0 ff(jrunj)� f(jruj)g dx� R(u)� 2j
n
0j kfk1:But since f is bounded, and since we can make j
n
0j arbitrarily small, wehave lim inf R(un) � R(u);i.e. u is a solution of problem (3.4). �Notice that the noncoerciveness of f has been extremely helpful in thisproof, and that W 1;1loc (
) is the natural function space for problem (3.4).Later I shall change the class CM of admissible functions and come up withW 1;2loc (
) or even BV(
) as natural function spaces.Remark 3.3. Proving the existence of a solution has been a relatively easytask. But how about uniqueness? This appears to be a hard open prob-lem. The functional R(u) is not convex in u, for instance, which prohibitsconvexity arguments.Another approach to proving uniqueness might be to show that withoutloss of generality solutions are ordered, i.e. if u and v are two solutions, thenw1 = minfu; vg and w20maxfu; vg are solutions. Clearly R(w1) = R(w2) =R(u) = R(v) holds in such a case, but unfortunately we cannot guaranteethat w2 2 CM , i.e. that w2 is admissible.Those readers who are familiar with Newton's problem of minimal resis-tance will object to this Remark. If 
 is a circular disc, and if the classof admissible functions is restricted to radial functions in CM , then u isknown to be unique, and in fact in this case u has been known for centuries.Its representation is described in [BK] and its shape looks like the one inFigure 3.3.
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����Figure 3.3 Optimal radial solution in CMRemark 3.4. It is remarkable that u is at on top. In fact anybody workingin uid dynamics will immediately argue that the shape in Figure 3.3 cannotbe optimal, because the body has a whole surface of stagnation points wherethe uid will settle and cause frictional e�ects. This macroscopic point ofview, although realistic for most uids, neglects Newton's model may neglecte�ects from interactions among particles.It is even more remarkable that Newton was aware of the advantageof \atness", as can be seen from his drawing in Figure 3.2. The factthat jruj is discontinuous has a simple reason: the nonconvexity of f inR(v) = R f(jrvj) dx. Along the boundary of the at part, jruj jumps fromzero to at least one, and at 1 the convex lower envelope ~f of f touches fagain, see Figure 3.4.

��������Figure 3.4 The functions f and ~fSuppose that there is a set D of positive measure where jru(x)j 2 (0; 1),the set where f di�ers from ~f . Then one can construct a function w whichcoincides with u outside D, and whose slope (or modulus of gradient) is 0or 1 only. De�ne w(x) to be the in�mum of M and of all those tangentplanes to the graph of u whose slope is outside (0; 1). It is easily seen thatw 2 CM , provided u is, and that the equality sign holds in (3.7) below.



SHAPE OF SOLUTIONS 95Moreover, an application of the coarea formula leads to the �rst inequalitysign in (3.7). ThereforeR(w) = ~R(w) = Z
 ~f(jrwj) dx < ~R(u) < R(u); (3:7)a contradiction which provesLemma 3.5. If u solves (3:4), then jru(x)j =2 (0; 1) almost everywherein 
.Remark 3.6. Note that ~f(jruj) is convex in jruj, but not convex in u. Notealso that the proof of Lemma 3.5 shows more: Minimizers of R over CMare minimizers of ~R over CM and vice versa.The classical questions in PDE are existence, uniqueness and regularity.To investigate regularity one looks for the Euler equation associated to (3.4).If u, v 2 CM , then (1�")u+"v 2 CM for 0 < " < 1, and if u solves (3.4),then R(u) � R((1� ")u+ "v), so that u solves the variational inequalityZ
 rur(v � u)(1 + jruj2)2 dx � 0 for any v 2 CM : (3:8)Now consider the set N of those points x 2 
, where v � u can vary insign, i.e. where 0 < u(x) < M and where the matrix of second derivativesD2u(x) is negative.Then the Euler equation in weak form can be stated asZ
 ru(x)(1 + jru(x)j2)2r'(x) dx = 0 for any ' 2 C10 (N); (3:9)and formally, after integration by parts, it readsdiv� ru(x)(1 + jru(x)j2)2� = 0 in N; (3:10)or in curvilinear coordinates (n = normal, t = tangent to a level line of u)(1 + u2n)utt + (1� 3u2n)unn = 0: (3:11)



96 B. KAWOHLThis equation is of elliptic-hyperbolic type. It is hyperbolic where jru(x)j >1=p3, i.e. on the non-at part of u. The \natural boundary condition" on@
 \N is un(1 + jru(x)j2)2 = 0; (3:12)i.e. un(x) = 0 or un = �1 on @
 \ N . But in the �rst case u(x) mustequal M , so x =2 N . And on @
n(@
 \ N) we can have u = 0 or a van-ishing eigenvalue for D2u(x) as well. In summary, little seems to be knownabout the boundary behaviour of u except that u(x) vanishes in at leastone boundary point.Remark 3.7 (On Symmetry). Figure 3.3 shows the optimal radial solutionin CM , but is it the solution of problem (3.4)? Is it the optimal solution inCM? In other words, if 
 has symmetries, does u have symmetries? Thisappears to be a nontrivial open problem. There are many tricks in thecalculus of variations to prove symmetry of minimizers, and many of themseem to fail due to the nonconvexity of ~R in its argument u. Let me listsome strategies that fail:a) Show that u is unique, then it must be radial. This has been discussedin Remark 3.3.b) Replace u by its spherical meanu(r) = 12� Z 2�0 u(r; ') d';show that u 2 CM and hope that R(u) < R(u). A counterexample isprovided by u(x; y) = 1� jxj.c) Replace u by u#, its Schwarz-symmetrization as de�ned in the lecturesof G. Talenti, show that u 2 CM implies u# 2 CM and hope that R(u#) <R(u). Unfortunately, u(x; y) = 1�minfjxj; jyjg provides a counterexample.d) Replace jruj = w by its radially increasing symmetrization w# andset w# = �@v=@r. Then R(v) = R(u) and v 2 CM and one might hopethat kvk1 < kuk1, in which case there exists � > 1 such that �v 2 CMand R(�v) < R(v) = R(u). G. Aronsson found out that this hope isunjusti�ed, because u(x; y) = p1� y2 � jxj serves as a counterexample.Incidentally, this approach leads to an interesting question for Hamilton{Jacobi{Bellmann equations. Suppose jru(x)j = h(x) is given and h canvary over its equimeasurable rearrangements. For which function h is theL1-norm of u extremal? This question has been addressed in a recent paper



SHAPE OF SOLUTIONS 97[FPV] of Ferone, Posteraro and Volpicelli, who found out that there is nogeneral answer.e) Replace jruj = w by its spherical mean, set w = �@v=@r and showthat R(v) < R(u). In fact, ~R(v) � ~R(u) follows from Jensen's inequality.Unfortunately, the counterexample from d) shows that v is not necessarilyin CM , because its L1-norm can exceed M .In summary, there are many open questions on solutions to problem (3.4).When I told these questions to my friends and colleagues in Praha, theysuggested to look for solutions in a di�erent class of admissible functions.Equations of hyperbolic-elliptic type occur also in transsonic ow problems,and those equations can have multiple (nonphysical) solutions. The physi-cally meaningful solution can be extracted by imposing an entropy conditionon the class of admissible functions. In our case this condition amounts torequiring �u � 0, i.e. less than concavity of u, and the notation of \en-tropy" has no physical meaning and was chosen for purely formal reasonsof analogy. In [FN] entropy has a meaning.A week formulation of the entropy condition is� Z
 ru(x)r'(x) dx � 0 for every ' 2 H10 (
); (3:13)and (3.13) suggests the use of H1;2loc (
) as the appropriate function space.Therefore, let us setEM = fv 2 H1;2loc (
) j 0 � v �M in 
; v satis�es (3.13)gand investigate the problem minv2EM R(v) (3:14)Fortunately, the set EM , although larger than CM , still has some compact-ness properties.Lemma 3.8. If fung is a sequence in EM , then for every 
0 �� 
 we havekunkH1;2(
0) � C(
0;M); (3:15)i.e. the sequence is uniformly bounded in H1;2loc (
). Moreover, for every� > 0 there is a small set A� of measure jA�j < � and a subsequence suchthat run ! ru strongly in L2loc(
nA�).In the proof of Lemma 3.8 one chooses ' = �2(M�un) as a test function,with � being a usual cut-o� function. This leads to (3.15) and to weak



98 B. KAWOHLconvergence in H1;2loc (
) or strong convergence in L2(
) of a subsequence.The superharmonicity of admissible function is helpful in the proof of strongconvergence in H1;2loc (
) as well. Rather than give the details of proof, whichcan be found in [BFK], let me give a heuristic reason. Sequences in H1;2which are weakly but not strongly convergent show oscillatory behaviour.In particular, their second derivatives change sign. But (3.13) prohibitssuch sign chances. �As a consequence of Lemma 3.8 there is an existence result:Theorem 3.9. Problem (3:14) has a solution.The proof follows the same reasoning as the proof of Theorem 3.2. �Aside from the existence result, all the questions that were discussed forproblem (3.4) remain open for problem (3.14); in particular, uniqueness,regularity and symmetry. Not even an analogue of Lemma 3.5 seems to beknown for solutions of (3.14). It is interesting to note, however, that theproperties of admissible functions determine the underlying function space.In fact, a �rst tentative description had~EM = fv 2 D0(
) j 0 � v �M;��v � 0 in D0(
)g:as class of admissible functions, but (3.15) justi�es the use of H1;2loc as ap-propriate function space in the \entropy case".Remark 3.10. Another generalization of concave functions are quasiconcavefunctions, i.e. functions with the property that the set fx 2 
 j v(x) � cgare all convex. If CM is replaced by the class of bounded, quasiconcavefunctions, a companion to Lemma 3.8 states that sequences in this classof functions are uniformly bounded in BV (
), the space of functions ofbounded variation. In this case, however, we cannot even give an existenceresult for minima of the original functional R. Instead even the functional~R has to be suitably modi�ed to obtain an existence result, see [BFK] fordetails.Remark 3.11. As noted earlier, concave functions have the property (3.3)that every particle interacts at most once with the body. If we take (3.3)as a characterization of admissible functionsPM := fv 2W 1;1loc (
) j 0 � v �M; v satis�es (3:3)g;we can study the problem minv2PM R(v); (3:16)



SHAPE OF SOLUTIONS 99If this problem has a solution, then it will lie outside CM . In fact, insteadof Newton's optimal shape for 
 a circular disk, modify the at part ofNewton's solution into a cone of opening angle exceeding 2�=3, see Figure3.5.
���������	
�Figure 3.5 \better" pro�les than Newton'sPart of this cone can be ipped up as in Figure 3.5 without changing theresistance of the pro�le. In fact, one can construct a sequence of oscillatingsolutions which tends to Newton's solution (with a rough surface on the atpart) in L1, but not in W 1;1loc (
). Such a development of microstructureand lack of weak lower semicontinuity is due to the nonconvexity of thefunctional R. At present, the investigation of problem (3.16) is still goingon but there are some preliminary results.Lemma 3.12. Given M , the set PM is bounded in W 1;1loc (
). In fact, forv 2 PM we have the pointwise estimatejrv(x)j � M +qM2 + dist2(x; @
)dist(x; @
) in 
: (3:17)For the proof of Lemma 3.12 we note that rv(x) and the vertical axisspan a plane, and in this plane any reected particle path represents anupper bound for v. The rest is trigonometry and arithmetic. I refer to[BFK] for details. �Unfortunately, unlike Lemma 3.1, Lemma 3.12 does not provide point-wise convergence of the gradients of a minimizing sequence. Therefore theexistence question for (3.16) appears to be open.Remark 3.13. Suppose that a solution of (3.16) sits on the boundary ofthe admissible set PM , and thus fails to satisfy the Euler equation almosteverywhere. Then a following kind of question from geometric optics comes



100 B. KAWOHLup (at least in the radially symmetric case). What is the shape of a mirrorwith the property that every vertically incoming ray is reected through theaxis of rotation and leaves at the edge of the mirror? So parallel light wouldcause a halo to appear on the outer rim. This question has a simple answer,a polynomial of degree 2 in r, which is not di�erentiable at zero. If theat part of Newton's solution is replaced by such a \mirror", the resultingpro�le has less resistance than the ones in Figure 3.5.There are many more questions about Newton's problem than answers,and I shall address only one additional question. What if 
 is not a discbut a square and if u is a solution to problem (3.3), i.e. u minimizes R inCM? To a certain extent this question can be answered by a computer. Wereplace CM by a set of piecewise linear functions and try to minimize thecorresponding discrete functional. But how can we tell that a modi�cationof an approximate solution unh in a single nodal point, which might lower thevalue of R(uh), results in a concave function un+1h ? Concavity is a nonlocalproperty.For lack of time let me skip the details and be vague about answering thisquestion. Details are written in [KS]. Concave functions have the propertythat their negative gradient is a monotone operator or, in other words, thattheir graph bends only one way. So if it bends the wrong way, the product(ru(xk)�ru(xk+1))(xk�xk+1), is positive, where xk and xk+1 are centersof adjacent triangles in a triangulation of 
. This defect is heavily penalizedin [KS] by modifying the functional R; and then one can show that �niteelement solutions of the penalized problem converge to a concave solution ofthe continuous problem as the grid-size goes to zero. Similar to penalizingabsence from CM one can penalize the violation of �u � 0 and obtain aconvergent �nite element method for problem (3.14).A �nite element solution in CM is depicted forM = 2 in Figure 3.6. Here
 is the square [�1; 1]2, and the plot shows [0; 1]2 and u on this northeastquarter square. The jumps in gradient seem to be no numerical artefacts.Hyperbolic equations can have nonsmooth solutions. Moreover, Figure 3.6shows that u does not need to vanish everywhere on @
. If you reectthe graph of u it looks like the nose of a TGV train, which I once saw atHole�sovice station in Praha, and whose sight apparently caused my curiosityabout the subject of minimal resistance. And as you all noted during thisconference, Praha is worth visiting more than once.
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���������	������Figure 3.6 Finite element solution of (3.4) in a quarter squareReferences[B] Boussinesq, J., �Etude nouvelle sur l'equilibre et le movement des corp solides�elastiques dont certaines dimensions sont tr�es-petit per rapport �a d'autres,J. Math. Pures Appl. 16 (1871), 125{274.[BFK] Buttazzo, G., V. Ferone & B. Kawohl, Minimum problems over sets of concavefunctions and related questions, Preprint 93{55, Institut f�ur WissenschaftlichesRechnen und SFB 359, Heidelberg, submitted to Math. Nachr..[BK] Buttazzo, G & B. Kawohl, On Newton's problem of minimal resistance, Math.Intelligencer 15 (1993), no. 4, 7{12.[CE] Chipot, M., & L.C. Evans, Linearisation at in�nity and Lipschitz estimates forcertain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh 102A (1986), 291{303.[FN] Feistauer, M. & J. Ne�cas, On the solvability of transonic potential ow prob-lems, Z. Anal. Anwend. 4 (1985), 305{329.[FPV] Ferone, V., M.R. Posteraro & R.Volpicelli, An inequality concerning rearrange-ments of functions and Hamilton Jacobi equations, Arch. Rational Mech. Anal.125 (1993), 257{269.[Fi] Filon, L.N.G., On the resistance to torsion of certain forms of shafting, withspecial reference to the e�ect of keyways, Philos. Trans. Roy. Soc. London Ser.A 193 (1900), 309{352.



102 B. KAWOHL[K] Kawohl, B., On the location of maxima of the gradient for solutions to quasi-linear elliptic problems and a problem raised by Saint Venant, J. Elasticity 17(1987), 195{206.[KS] Kawohl,B. & C. Schwab, Convergent �nite elements for a class of nonconvexvariational problems, Preprint 94{10, Institut f�ur Wissenschaftliches Rechnenund SFB 359, Heidelberg, submitted to Numer. Math..[KSW] Kawohl, B., J. Star�a & G. Wittum, Analysis and numerical studies of a shapedesign problem, Arch. Rational Mech. Anal. 114 (1991), 349{363.[Ko] Kosmodem'yanskii Jr, A.A., The behaviour of solutions for the equation�u = �1 in convex domains, Soviet Math. Dokl. 39 (1989), 112{114.[M] Marcellini, P., Nonconvex integrals of the calculus of variations, Methods ofNonconvex Analysis (A. Cellina, ed.), Springer Lecture Notes in Math. 1446,1990, pp. 16{57.[ML] Makar-Limanov, L.G., Solution of Dirichlet's problem for the equation �u =�1 in a convex region, Math. Notes 9 (1971), 195{206.[N] Newton, I., Philisophiae Naturalis Principia Mathematica, 1686.[Po] Polya, G., Liegt die Stelle der gr�o�ten Beanspruchung an der Ober�ache?,Z. Angew. Math. Mech. 10 (1930), 353{360.[PS] Polya, G.& G. Szeg�o, Isoperimetric Inequalities in Mathematical Physics, Ann.of Math. Stud. 27 (1951), Princeton Univ. Press.[R] Ramaswamy, M., A counterexample to the conjecture of Saint Venant by re-ection methods, Di�erential Integral Equations 3 (1990), 653{662.[Se] Serrin, J., The problem of Dirichlet for quasilinear elliptic di�erential equationswith many independent variables, Phil. Trans. Roy. Soc. London Ser A 264(1969), 413{496.[S1] Sweers, G., A counterexample with convex domain to a conjecture of De SaintVenant, J. Elasticity 22 (1989), 57{61.[S2] Sweers, G., On examples to a conjecture of De Saint Venant, Nonlinear Anal.18 (1992), 889{991.[SV] Saint Venant, B. de, M�emoire sur la torsion des prismes, avec des consid�era-tions sur leur exion ainsi que sur l'�equilibre int�erieur des solides �elastiques eng�en�eral, et de formules pratiques pour le calcul de leur r�esistance �a divers ef-forts s'exercant simultan�ement, M�emoires pr�esent�es par divers savants �a l'Aca-d�emie des sciences de l'institut imp�erial de France, 2 S�er. 14 (1856), 233{560.[Ta] Talenti, G., Non linear elliptic equations, rearrangements of functions and Or-licz spaces, Ann. Mat. Pura Appl. (4) 120 (1977), 159{184.[TT] Thomson, W.& P.G. Tait, Treatise on natural philosophy, 1st edn., Oxford,1867.[W] Whiteside, D.T., The Mathematical Papers of Isaac Newton { Vol. VI, Cam-bridge University Press, London, 1974.
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