
NAFSA 5

David Eric Edmunds
Recent developments concerning entropy and approximation numbers

In: Miroslav Krbec and Alois Kufner and Bohumír Opic and Jiří Rákosník (eds.):
Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School
held in Prague, May 23-28, 1994, Vol. 5. Prometheus Publishing House, Praha, 1994.
pp. 33--76.

Persistent URL: http://dml.cz/dmlcz/702461

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702461
http://project.dml.cz


RECENT DEVELOPMENTS CONCERNINGENTROPY AND APPROXIMATION NUMBERSDavid E. EdmundsIntroductionThe ideas underlying the concept of entropy numbers go back a long way,certainly to the work of Kolmogorov in the 1930s on the metric entropy ofcompact subsets of a metric space. With the introduction of linear struc-tures, in the form of linear mappings between Banach spaces, the studyof this topic acquired fresh impetus both at the abstract and the concretelevel: the work of Pietsch did much to promote the development of thetheory of entropy numbers, while embeddings of Sobolev spaces were anal-ysed from the entropy point of view by Birman and Solomyak, Triebel andnumerous others. A second landmark in the growth of the subject was pro-vided in 1980 by Carl's observation that the entropy numbers of a compactlinear map T from a Banach space to itself are related to the eigenvaluesof T by a simple inequality. This immediately gave the possibility of esti-mating eigenvalues by means of estimates for entropy numbers; and sinceinteresting maps (such as those arising from integral operators) can often befactorised into the composition of compact embedding maps and continuousmaps, it was clear that knowledge of the behaviour of the entropy numbersof compact embeddings could be translated into eigenvalue estimates. Inview of this, it is perhaps a little surprising that not until the 1990s wasany systematic attack made along the lines indicated on problems involvingthe distribution of eigenvalues of elliptic operators. A possible explanationfor this delay is that to obtain really satisfactory results it is crucial tohave accurate estimates for the entropy numbers of embedding maps actingbetween very general function spaces, even in delicate limiting situations;and these were not available until comparatively recently, when Fourier-analytical techniques based on advances in the theory of function spaceswere used to establish them.Our main object here is to describe these embedding results and to showhow they can be used to study the eigenvalue distributions of degenerate33



34 D.E. EDMUNDSelliptic di�erential and pseudodi�erential operators: in particular, we pro-vide a survey of the papers [31] - [34]. Although we shall be concentratingon entropy numbers we shall, where appropriate, give results concerningapproximation numbers, for these numbers have independent interest andare also intimately connected with eigenvalue distributions. While we shallfocus on embeddings, it should be noted that a good deal of work has beendone on the analysis of various operators, such as Volterra integral op-erators, from the standpoint of entropy and approximation numbers, andmeasures of non-compactness. For details of this, and further references, werefer to [24], [25], [30] and [58].2. Entropy and approximation numbers2.1. Quasi-normed spacesWe begin with some basic facts about quasi-normed spaces: these canbe found, for example, in [49]. A quasi-norm on a (real or complex) linearspace B is a map  � jB : B ! R+ = [0;1) such that (i) xjB = 0 if, andonly if, x = 0; (ii) �xjB = j�jxjB for all scalars � and all x 2 B; (iii)there is a constant C such that for all x, y 2 B,x+ yjB � C�xjB+ yjB�:Clearly C � 1; if C = 1 is allowed then  � jB is a norm on B. Each quasi-norm on B de�nes a topology on B, with a basis of neighbourhoods of anypoint x 2 B given by the sets �y 2 B : x � yjB < 1=n	 (n 2 N ): Thepair �B;  � jB� is called a quasi-normed space; if every Cauchy sequence(de�ned in the obvious way) in B converges to an element of B; we call Ba quasi-Banach space.Given any p 2 (0; 1]; a p-norm on a linear space B is a map � jB : B ! R+ which satis�es conditions (i) and (ii) above and instead of(iii) satis�es(iii') x+ yjBp � xjBp + yjBpfor all x; y 2 B: It can be shown that if  � jB is a quasi-norm on B;thenthere exists p 2 (0; 1] and a p-norm on B which is equivalent to  � jB inthe sense that one is bounded above and below by constant multiples ofthe other; the constant C in (iii) can be taken to be 21=p�1. Conversely,any p-norm is a quasi-norm with C =21=p�1: If  � jB is a p-norm, thepair �B;  � jB� is called a p-normed space; if it is complete it is called a p-Banach space. The sequence spaces `q are quasi-Banach spaces if 0 < q < 1;and of course they are Banach spaces if q � 1:



ENTROPY AND APPROXIMATION NUMBERS 35Let A, B, be quasi-Banach spaces and let T : A ! B be linear. Just asin the Banach space case the notions of boundedness and compactness of Tare de�ned, as is the spectrum �(T ) of T . It can be shown (cf. [35]) thatif B is a complex, in�nite-dimensional quasi-Banach space and T : B ! Bis bounded and linear, then �(T ) n f0g consists of an at most countablyin�nite number of eigenvalues, each of �nite algebraic multiplicity, whichmay accumulate only at 0.2.2. Entropy numbersFor general information about these, in a Banach space setting, we referto [23] and [48].De�nition. Let A, B be quasi-Banach spaces, let UA = �a 2 A : ajA� 1	 and let T 2 L(A;B); the space of all bounded linear maps from A toB. Then for all k 2 N , the kth entropy number ek(T ) of T is de�ned by(2.1)ek(T ) = inf n" > 0: T (UA) � 2k�1[j=1 (bj + "UB) for some b1; : : : ; b2k�1 2 Bo:It is easy to verify that if A, B, C are quasi-Banach spaces andS, T 2 L(A;B); R 2 L(B;C); then(i) kTk � e1(T ) � e2(T ) � � � � � 0; e1(T ) = kTk if B is a Banach space;(ii) if B is a p-Banach space (0 < p � 1); then for all k, ` 2 N ;(2.2) epk+`�1(S + T ) � epk(S) + ep̀(T );(iii) for all k, ` 2 N ;(2.3) ek+`�1(R � S) � ek(R)e`(S):Since the ek(T ) are non-negative and decrease as k !1, it is plain thatlimk!1 ek(T ) exists and equalsinff" > 0: T (UA) can be covered by �nitely many B-balls of radius "g:This limit is called the ball measure of non-compactness of T and is denotedby e�(T ); e�(T ) = 0 if, and only if, T is compact. Note also that unlessT 2 L(A;B) is the zero operator, none of the ek(T ) is 0. The dependence



36 D.E. EDMUNDSof ek(T ) upon k for particular maps T , and especially for embedding maps,will be examined later, but for the moment we observe that if A is a complexBanach space of �nite dimension m and I : A! A is the identity map, then1 � 2(k�1)=(2m)ek(I) � 4 (k 2 N );if A, B are Banach spaces and T 2 L(A;B), T 6= 0 has the property thatthere are positive numbers c, � such that for all k 2 N , ek(T ) � c2��k; thenT is of �nite rank (cf. [16]).If T 2 L(A;B); where A, B are Banach spaces, a question which has at-tracted much interest is what relationship exists between the entropy num-bers of T and those of its adjoint T �: When A and B are Hilbert spacesthe answer is easy, using the polar decomposition theorem: ek(T ) = ek(T �)for all k 2 N . The question in general Banach spaces is still open, butBourgain, Pajor, Szarek and Tomczak{Jaegermann [13] have shown that ifA is uniformly convex and T is compact, then there is a positive constant c(depending only on A) such that for all m 2 N and all p 2 [1;1);c�1� mXk=1 epk(T �)�1=p � � mXk=1 epk(T )�1=p � c� mXk=1 epk(T �)�1=p;similar inequalities hold if the `p norm is replaced by any symmetric norm,such as that on the Lorentz spaces `p;q ; so that if ek(T ) = O(k�1=p) ask !1, then ek(T �) = O(k�1=p).The entropy numbers behave reasonably well under interpolation, atleast when one end-point is �xed. Thus let A be a quasi-Banach space,let fB0; B1g be an interpolation couple of p-Banach spaces, let 0 < � < 1and let B� be a quasi-Banach space such that B0 \B1 � B� � B0+B1 andbjB� � bjB01��bjB1� for all b 2 B0 \ B1:Let T 2 L(A;B0 \ B1) where B0 \ B1 is given the quasi-normmax �bjB0;bjB1�: Thenek+`�1(T : A! B�) � 21=pe1��k (T : A! B0) e�̀(T : A! B1):Corresponding results hold when the domain space A is allowed to varyand the target space is held �xed. In a Banach space setting these results,expressed in terms of entropy functions and entropy ideals, were developedby Peetre and Triebel (see [61, 1.16.2]); their reformulation in terms of



ENTROPY AND APPROXIMATION NUMBERS 37entropy numbers is given in Pietsch [48, 12.1]. For a treatment of the quasi-Banach case see Haroske and Triebel [43]. It is not clear what happenswhen both end-points A and B can vary simultaneously: the techniquesused to show that the property of compactness interpolates well in suchcircumstances (see [19], [20] and [22], for example) do not seem to be delicateenough to obtain the necessary estimates.Another interesting question relates to the estimation of the entropy num-bers of tensor products of operators. We refer to [37] for some recent workon the size of the sequence �en(S b
�T )� in the scale of Lorentz sequencespaces for tensor norms �, and also for some information about the subtler`local' question of estimating the individual entropy numbers of S b
�T interms of those of S and T . In particular, asymptotic bounds are given forthe entropy numbers of tensored operators on the Schatten trace classescp(`2): References to earlier work in this area will also be found in [37].2.3. Approximation numbersDe�nition. Let T 2 L(A;B) where A, B are quasi-Banach spaces. Thengiven any k 2 N ; the kth approximation number ak(T ) of T is given byak(T ) = inffkT � Lk : L 2 L(A;B); rankL < kg;where rankL = dimL(A):The ak(T ) have properties similar to (i), (ii), (iii) listed above in 2.2 forentropy numbers. Despite these resemblances, there are radical di�erencesbetween the two sets of numbers. Thus if A, B are Banach spaces andT 2 L(A;B); then ak(T ) = 0 if, and only if, rankT < k; and if dimA � nand I : A ! A is the identity map, then ak(I) = 1 for k = 1, : : : , n:Moreover, if T 2 L(A;B) is compact and A, B are Banach spaces, thenak(T �) = ak(T ) for all k 2 N ; if the compactness condition is dropped,then ak(T �) � ak(T ) � 5ak(T �) for all k 2 N (cf. [37] and [23]). Thiscontrasts sharply with the complicated current situation insofar as adjointsand entropy numbers are concerned; but by way of balance we shall seelater, in 3.2, that the approximation numbers do not behave well underinterpolation.It is natural to ask whether there are connections between ek(T ) andak(T ) for a compact map T : for example, is there a constant C > 0 suchthat for all k 2 N , ek(T ) � Cak(T )?



38 D.E. EDMUNDSPlainly this cannot hold if T is of �nite rank; but even for maps with in�nite-dimensional range there are di�culties, for Carl and Stephani [16] give anexample of a diagonal map D : `p ! `p for which ak(D) = 2�k yet2�p2k�1 � ek+1(D) � 3p2 2�p2kfor all k 2 N . This suggests that the rate of decay of the approximationnumbers may be a relevant factor in obtaining the desired inequality or someglobal version of it. The following result, due to Triebel [65], implementsthese ideas.Theorem. Let A and B be quasi-Banach spaces and let T 2 L(A;B) becompact.(i) Suppose that for some c > 0;a2j�1(T ) � ca2j (T ) for all j 2 N :Then there is a positive constant C such that for all j 2 N ;ej(T ) � Caj(T ):(ii) Let f : N ! R be positive and increasing, and suppose that for somec > 0; f(2j) � cf(2j�1) for all j 2 N :Then there is a positive constant C such that for all n 2 N ;sup1�j�n f(j)ej(T ) � C sup1�j�n f(j)aj(T ):As particular consequences of this theorem we see immediately that ifaj(T ) = O(j��) (resp. aj(T ) = O((log j)��)) as j ! 1; where � is a posi-tive constant, then ej(T ) = O(j��) (resp. ej(T ) = O((log j)��)). This willbe of interest because, as we shall see, the approximation numbers of embed-dings between function spaces typically have power-type or logarithmic-typedecay.2.4. EigenvaluesTo conclude this section we mention the connections between eigenvaluesof a compact map and entropy and approximation numbers. Let A bea complex quasi-Banach space and let T 2 L(A) (:= L(A;A)) be compact.



ENTROPY AND APPROXIMATION NUMBERS 39We know that the spectrum of T; apart from the point 0, consists solely ofeigenvalues of �nite algebraic multiplicity: let f�k(T )g be the sequence of allnon-zero eigenvalues of T , each repeated according to algebraic multiplicityand ordered so that j�1(T )j � j�2(T )j � � � � � 0:If T has only m(< 1) distinct eigenvalues and M is the sum of theiralgebraic multiplicities, we put �n(T ) = 0 for all n > M:So far as the entropy numbers of T are concerned, the most useful con-nection between them and the eigenvalues of T , from our point of view, isgiven by the following theorem, proved by Carl and Triebel [17] when A isa Banach space.Theorem. Let T and f�k(T )gk2N be as above. Then for all k 2 N ,� kYm=1 j�m(T )j�1=k � infn2N2n=(2k)en(T ):The proof is a modi�cation of the volume-covering argument used byCarl and Triebel to handle the case when A is a Banach space: cf. [35].Note that by taking n = k we obtain the following(2.4) j�k(T )j � p2ek(T ):This was originally proved by Carl [14], using a di�erent method of proof,in the Banach space setting. It is this corollary which will be extensivelyused later on to estimate eigenvalues of certain (pseudo-) di�erential oper-ators.The approximation numbers also have strong connections with eigenval-ues. For example, if H is a complex Hilbert space and T 2 L(H) is compact,then T �T has a positive, self-adjoint, compact square root jT j and for allk 2 N , ak(T ) = �k(jT j)(see [23], for example). (Hence the approximation numbers of T coincidewith its eigenvalues if T is compact and positive.) Also, a famous inequalityof Weyl states that for all n 2 N and all p 2 (0;1);nXj=1 j�j(T )jp � nXj=1 apj (T ):



40 D.E. EDMUNDSThese are Hilbert space results, but even in general Banach spaces muchcan be established. Thus K�onig (cf. [45]) has shown that if A is a complexBanach space and T 2 L(A) is compact, thenj�n(T )j = limk!1 a1=kn (Tn)and � nXk=1 j�k(T )jp�1=p � Kp� nXk=1 apk(T )�1=p (n 2 N ; 0 < p <1)where Kp = � 2e=pp if 0 < p < 1;21=pp2e if 1 � p <1:There are Lorentz space analogues of this last inequality which, in partic-ular, show that if for some � > 0; an(T ) = O(n��) (resp. o(n��)); thenj�n(T )j = O(n��) (resp. o(n��)) as n!1:3. Embeddings; nonlimiting casesThe importance of embedding maps from one function space to another,typi�ed by the Sobolev embedding theorems, arises from the possibility offactorising the maps derived from di�erential or integral operators into thecomposition of maps, one of the components being an embedding map. Weshall see later on in detail how this procedure works. Accepting this for themoment, we introduce the scale of function spaces that will be used.3.1. Function spacesThe Schwartz space S(Rn) and its dual space S 0(Rn) of all complex-valued tempered distributions are supposed to have the usual meaning here.Also, if 0 < p � 1; Lp(Rn) is the usual complex quasi-Banach space withrespect to Lebesgue measure, quasi-normed by  � jLp(Rn): Let � 2 S(Rn)be such that(3.1) supp� � fy 2 Rn : jyj < 2g and �(x) = 1 if jxj � 1;put �0 = � and �j(x) = �(2�jx) � �(2�j+1x) for j 2 N : Then f�jg givea dyadic partition of unity: P1j=0 �j(x) = 1 for all x 2 Rn: Given anyf 2 S 0(Rn); we denote by bf and f_ its Fourier transform and its inverseFourier transform respectively, and recall that (�j bf)_ is an entire analyticfunction on Rn.



ENTROPY AND APPROXIMATION NUMBERS 41De�nition 1. (i) Let s 2 R, 0 < p � 1 and 0 < q � 1: Then Bspq(Rn) isthe collection of all f 2 S 0(Rn) such that(3.2) f jBspq(Rn)� := � 1Xj=0 2jsq(�j bf)_jLp(Rn)q�1=q(with the usual modi�cation if q =1) is �nite.(ii) Let s 2 R, 0 < p < 1 and 0 < q � 1: Then F spq(Rn) is the collectionof all f 2 S 0(Rn) such that(3.3) f jF spq(Rn)� := � 1Xj=0 2jsq j(�j bf)_jq�1=qjLp(Rn)(with the usual modi�cation if q =1) is �nite.The theory of these spaces has been systematically developed in [62], [63],and in particular it has been shown that Bspq(Rn) and F spq(Rn) are quasi-Banach spaces (Banach spaces if p; q � 1) which are independent of theparticular � 2 S(Rn) chosen according to (3.1), in the sense of equivalentquasi-norms. We shall therefore omit the subscript � in (3.2) and (3.3) inwhat follows.De�nition 2. Let 
 be a bounded domain in Rn with C1 boundary.(i) Let s 2 R, 0 < p �1 and 0 < q �1: Then Bspq(
) is the restriction ofBspq(Rn) to 
:(ii) Let s 2 R, 0 < p <1 and 0 < q �1: Then F spq(
) is the restriction ofF spq(Rn) to 
:In other words, f 2 D0(
) �D(
) = C10 (
)� is an element of Bspq(
) if,and only if, there exists g 2 Bspq(Rn) with f = g��
 in D0(
); and(3.4) f jBspq(
) = inf gjBspq(Rn)where the in�mum is taken over all such g. Analogous considerations holdfor the spaces F spq(
). For each of the spaces Bspq(
) and F spq(
) there isan extension operator from 
 to Rn, that is, a bounded linear map ext:Bspq(
) ! Bspq(Rn) with ext f j
 = f for all f 2 Bspq(
); and similarly forF spq(
): If � 2 S(Rn) is such that �(x) = 1 for all x 2 
; then ��ext is alsoan extension operator.



42 D.E. EDMUNDSThe B and F scales cover many of the well-known classical spaces. ThusBs1;1(
) for s > 0 is the H�older-Zygmund space; Bspq(
); with s > 0,1 < p < 1, 1 � q � 1; is the classical Besov space; F 0p2(
); with 0 <p <1; is the (non-homogeneous) Hardy space hp(
); which coincides withLp(
) if 1 < p < 1; and F sp2(
); when s 2 R and 0 < p < 1; is the(fractional) Sobolev (-Hardy) spaceHsp(
); which is the (fractional) Sobolevspace (or Bessel potential space) when 1 < p < 1 and coincides with theclassical Sobolev space W sp (
) when s 2 N and 1 < p <1:We refer to [62],[63] for a systematic account of this.Alternative characterisations of these spaces are possible. In particular,an intrinsic characterisation of Hsp(
) = F sp2(
) (s 2 R, 0 < p <1) can begiven. Given any f 2 Lp(
) (0 < p <1) we de�ne the di�erence (�1hf)(x)(x, h 2 Rn) by(�1hf)(x) = � f(x+ h)� f(x) if x; x+ h 2 
;0 otherwise.Higher-order di�erences (�mh f)(x) are de�ned by iteration:(�mh f)(x) = (�m�1h �1hf)(x) (m 2 N ;m � 2):We also need mean values of di�erences and set(dmt f)(x) = t�n Zjhj�t j�mh f(x)j dhfor m 2 N , x 2 
, t > 0: It turns out (cf. Triebel [63]) that if 0 < p < 1,s > n� 1p � 1�+, m 2 N , m > s; thenHsp(
) = nf 2 Lmax(p;1)(
) :(3.5) f jLp(
)+ � 1Z0 t�2s(dmt f)2(�)dtt �1=2jLp(
) <1o:The choice of m 2 N , m > s is unimportant, di�erent choices merely givingequivalent (quasi-) norms. If s � n� 1p � 1�+; we choose m 2 N so thats + 2m > n� 1p � 1�+ and de�ne Hsp(Rn) to be (� id��)m Hs+2mp (Rn);where � is the Laplace operator and Hs+2mp (Rn) is de�ned as in (3.5) but



ENTROPY AND APPROXIMATION NUMBERS 43with 
 replaced by Rn: Then Hsp(
) may be de�ned to be the restrictionof Hsp(Rn) to 
; and de�ned in this way it again coincides with F sp2(
) (seeTriebel [63]). We remind the reader that when s 2 N and 1 < p < 1the space Hsp(
) = F sp2(
) also coincides, up to equivalent norms, with theclassical Sobolev spaceW sp (
) = fu : D�u 2 Lp(
) for all � 2 Nn0 with j�j � sg:Triebel [63] has also given intrinsic characterisations of Bspq(
) and Fspq(
)via oscillations, derivatives and di�erences of functions if, as we have as-sumed in this paper, 
 is a bounded domain with C1 boundary ands > n� 1p � 1�+; and with Winkelvoss [67] he has recently given atomiccharacterisations of these spaces under very mild and natural restrictionson 
 (allowing a quite rough boundary @
) and for the whole range ofvalues of s, p and q:3.2. H�older inequalitiesThroughout this section 
 will stand for a bounded domain in Rn withC1 boundary. The classical H�older inequality may be written as(3.6) Lr1(
)Lr2(
) � Lr(
);where r1, r2 2 [1;1] and 1=r = 1=r1 + 1=r2 � 1: This may be interpretedas a statement that any g 2 Lr2(
) is a pointwise multiplier f 7�! gf fromLr1(
) to Lr(
): Sickel and Triebel [53] generalised this to the setting ofthe spaces Bspq(
) and Fspq(
); and we shall need some of their results lateron, in the context of the space Hsp(
): This is contained in the followingTheorem (cf. [53], [34]). Let r1, r2 2 (1;1) and suppose that 1=r =1=r1 + 1=r2 � 1: Suppose also that(3.7) s 2 R and 1r1 + sn > 0:Then(3.8) Hsrs1 (
)H jsjrjsj2 (
) � Hsrs(
);where(3.9) 1rs = 1r + sn



44 D.E. EDMUNDSand rs1; rjsj2 are de�ned analogously.Note that if s = 0; then (3.8) coincides with (3.6), apart from limitingcases. If s > 0; (3.8) gives what we shall describe as a H�older inequality atthe level s: To aid the understanding of this result we refer to Fig. 1 andremark that any line of slope n in �1=p; s� diagram is characterised by thepoint at which it meets the axis s = 0: if this point is �1=r; 0�, then any
���������	
��������Fig. 1point on the line has coordinates �1=rs; s�, where rs is de�ned as in (3.9)above. Thus any g 2 Hsrs2 gives a mapping f 7�! gf : Hsrs1 (
) ! Hsrs(
);characterised by the large dots in Fig. 1. The result (3.8) with s > 0 isa special case of Theorem 4.2 of [53]. If s < 0; (3.8) follows from (3.8) withjsj instead of s together with duality(Hsp(Rn))0 = H�sp0 (Rn); 1p + 1p0 = 1; 1 < p <1;and restriction to 
: Briey, (3.8) simply means that H�older's inequality isshifted along the lines of slope n in the �1=p; s�-diagram to the appropriates-level.



ENTROPY AND APPROXIMATION NUMBERS 45In the limiting case r1 = 1; we have 1=rs1 = s=n and 1 < r2 = r < 1:As a consequence of more general results (cf. [53, Theorem 4.3]) we thenhave(3.10) Hsrs1 (
)Hsrs(
) � Hsrs(
) if, and only if, s � n:3.3 Entropy and approximation numbersHere we give estimates for these numbers when the mapping in question isan embedding from one function space in our scales of spaces to another. Tobe able to present the results in a succinct form we shall let Aspq(
) stand foreither Bspq(
) or F spq(
), with the understanding that if Aspq(
) = F spq(
)then p must be �nite. Once again 
 will stand for a bounded domain inRn with C1 boundary. The principal result in the non-limiting situationswhich we are here handling is the following:Theorem ([31,32]). Let �1 < s2 < s1 < 1; suppose that p1, p2, q1,q2 2 (0;1] and assume that(3.11) � := s1 � s2 � n� 1p1 � 1p2�+ > 0:Let id : As1p1q1(
) ! As2p2q2(
) be the natural embedding. Then for theentropy numbers ek(id) we have(3.12) ek(id) � k�(s1�s2)=n;that is, there are positive numbers c1 and c2 such that for all k 2 N ;c1k�(s1�s2)=n � ek(id) � c2k�(s1�s2)=n:For the approximation numbers ak(id) the position is more complicated: ifin addition to the general hypotheses, either(3.13) 0 < p1 � p2 � 2or(3.14) 2 � p1 � p2 � 1or(3.15) 0 < p2 � p1 � 1;



46 D.E. EDMUNDSthen(3.16) ak(id) � k��=n;if in addition to the general hypotheses,(3.17) 0 < p1 � 2 � p2 <1 and � = s1 � s2n �max�12� 1p2 ; 1p1� 12� > 12 ;then(3.18) ak(id) � k��;and if in addition to the general hypotheses,(3.19) 0 < p1 � 2 � p2 �1;then there are positive constants c1 and c2 such that for all k 2 N ;(3.20) c1k�"��=n � ak(id) � c2k��=n;where " = min�1=2� 1=p2; 1=p1 � 1=2�:Remarks. 1. The theorem as stated is proved in [31] and [32]. Of course,special cases of this result hve been known for many years, and go backto the work of Birman and Solomjak [7], [8], [9], [10], who showed that ifs 2 N , 1 < p1 < p2 �1, s�n=p1 > �n=p2; then the entropy number ek ofthe natural embedding of the Sobolev space W sp1(
) in Lp2(
) satis�esek � k�s=n;with the same estimate for the approximation numbers. Their method ofproof used the technique of piecewise polynomial approximations which isdue to them and which has been often used in modi�ed and re�ned versionssince its introduction in 1967. Of these versions, that of spline approxi-mation which, when combined with the so-called Ciesielski isomorphism,enables problems of our type for Besov spaces Bspq(
) with p, q 2 [1;1] tobe reduced to corresponding problems for diagonal operators acting in `psequence spaces. For this approach and other earlier work on classical Besovspaces we refer the reader to Carl [15], K�onig [45], Linde [47], Pietsch [49]and Triebel [61]. The approach of [31], [32] is completely di�erent from thisearlier work, and is based on Fourier-analytical techniques for the spaces



ENTROPY AND APPROXIMATION NUMBERS 47Bspq(
) which work for all values of the parameters p and q; that is, for allp, q 2 (1;1]:2. While the results in the theorem concerning entropy numbers are aes-thetically pleasing, those for the approximation numbers appear less ele-gant. Of course, this is partly due to the curious role played by the number2 in (3.13){(3.20), but this is simply a fact of life so far as these and otherwidth numbers are concerned and is well established in the literature: see[45, 3.c.2, 3.c.7], [49, 6.4.14] and [47]. There is still a gap in the results:what is the true rate of decay of the ak(id); if there is one, if (3.19) holdsbut s1 � s2 � nmax(1� 1=p2; 1=p2)?3. The di�erent rates of decay given in (3.16) and (3.18) show that there canbe no unrestricted interpolation property for approximation numbers andthat there is no common best approximating operator covering all cases.3.4. Rough indication of the proof of the TheoremIn view of the embeddingsBsp;min(p;q)(
) � F spq(
) � Bsp;max(p;q)(
)it is enough to deal with the B spaces. We may also assume, without lossof generality, that 
 � Q1; where Qr = fx 2 Rn : jxj j � r for j = 1; : : : ; ng:Let  2 C10 (Rn) be such that supp � Q2 and  (x) = 1 for all x 2 Q1:SinceBs1p1q1(
) E! ff : f 2 Bs1p1q1(Rn); supp f � Q1g � Bs2p2q2(Rn) R! Bs2p2q2(
);where E is an appropriate extension operator and R is the restriction op-erator, it is enough to prove the theorem for the middle embedding. Inparticular, f =  f and hence, using the dyadic partition of unity, we usethe splitting(3.21) f =  NXj=1(�j bf)_ +  1Xj=N+1(�j bf)_ := fN + fN ; N 2 N :Now let f jBs1p1q1(Rn)k � 1, f 2  f: By pointwise multiplier and Fouriermultiplier properties, together with Nikolskij's inequality (see Triebel[62, (1.3.2/5)]) it can be shown that(3.22) fN jBs2p2q2(Rn) � 2�N�c:



48 D.E. EDMUNDSTo handle fN in (3.21) we need a representation formula for (�j bf)_:Expand �j bf in the cube Q2j� in a trigonometric series (in the sense ofperiodic distributions):(3.23) (�j bf)(�) = Xm2Zn ame�2�j im�� (� 2 Q2j�);wherem�� is the scalar product ofm 2 Zand � 2 Rn:Write  �(�) =  (2��);where � = �(n) is a positive number so chosen that( �  �)(2�j�1�)�j(�) = �j(�) if � 2 Rn and j 2 N :Then put, for an appropriate constant c;(3.24)f jN (x) = c (x) Xjmj�max(N2�2;2j+npn)(�j bf)_(2�jm)( �  �)_(2j+1x� 2m)so that the term fN in (3.21) may be decomposed as(3.25) fN = NXj=0 f jN + fN;2 := fN;1 + fN;2:Pointwise multiplier properties enable us to estimate the norm of fN;2 by(3.26) fN;2jBs2p2q2(Rn) � c2�N� :This implies that f � fN;1jBs2p2q2(Rn) � c2�N�;and since the map f 7�! fN;1 has rank less than c2nN it follows quicklythat ak(id) � ck��=n: A more re�ned analysis gives the other upper boundslisted in the Theorem.To obtain an upper estimate for ek(id) is a good deal more complicated:it involves a detailed analysis of the geometric structure of the so-called`N -core', which is de�ned to be(3.27) N[j=0�f jN : f 2 Bs1p1q1(Rn); f jBs1p1q1(Rn) � 1; supp f � Q1	:



ENTROPY AND APPROXIMATION NUMBERS 49Further decomposition of fN;1 is needed:fN;1 = KXj=0 f jN + LXj=K+1 fjN + NXj=L+1 f jN ;and the various components of the N -core have to be covered in Bs2p2q2(Rn)by balls of appropriate radii. We refer to [31], [32] for the details, and for theproof of the lower estimate for ek(id); which again depends upon a detailedexamination of the N -core.As for the lower estimates for ak(id), these rely upon sharp estimatesfor the approximation numbers of embeddings between �nite-dimensionalsequence spaces. To explain this, recall that given any m 2 N and anyp 2 (0;1], `mp is the linear space of all complex m-tuples y = (yi); endowedwith the quasi-norm yj`mp  = � mXj=1 jyj jp�1=pif p < 1; with the usual modi�cation if p = 1: The idea is to prove thatthere is a positive number c such that for all j, k 2 N ;(3.28) ak(id) � c2�j(s1�s2)+jn(1=p1�1=p2)ak(id`);(where id` : `Njp1 ! `Njp2 (Nj = 2jn) is the identity map) and, as before, idis the natural embedding of Bs1p1q1(
) in Bs2p2q2(
): With the help of twofurther bounded operators S and T we construct a commutative diagramBs1p1q1(
) id�! Bs2p2q2(
)S " # T`Njp1 id`�! `Njp2such that id` = T � id �S: If such bounded operators can be found, thenak(id) � kSk�1kTk�1ak(id`);and this will reduce the estimation of ak(id) to that of ak(id`), provided thatkSk and kTk can be estimated in a useful way. To construct S, supposewithout loss of generality that 
 contains the unit cube Q1 in Rn; divideQ1 in the usual way into 2jn congruent cubes of side length 2�j and withcentres xr: Let � 2 C1(Rn) be a standard bump function with support



50 D.E. EDMUNDScontained in some small cube centred at the origin, set �(x) = �(2jx) and�r(x) = �(x� xr): Then we de�ne S bySf�rg = NjXr=1 �r�r(x);and choose � in such a way that the 2�j(s1�n=p1)�r are atoms in Bs1p1q1(Rn)in the sense of Frazier and Jawerth (cf. [38] and [63, Theorem 1.9.2]). Bythe atomic characterisation of Bs1p1q1(Rn) given there we haveSf�rgjBs1p1q1(
) � c� NjXr=1 j�rjp1�1=p12j(s1�n=p1);where c is independent of j: As for T; we let �r be as above and de�neBf = f2jn(�M2�jhf; �)L2g;where M 2 N is to be chosen appropriately, h 2 Rn with jhj � 1; and�M2�jh is the usual di�erence (appropriately interpreted if f is a distribution)de�ned in 3.1. It turns out thatBf j`Njp2  � c2�j(s2�n=p2)f jBs2p2q2(
)where c is independent of j: These considerations give us the desired in-equality (3.28).The lower estimates for ak(id) now follow from the following lemma, inwhich �k stands for the kth approximation of the natural embedding of `mpin `mq ; where m 2 N , 0 < p � 1 and 0 < q � 1:Lemma ([32]). Let m 2 N be even.(i) Let 0 < p � q � 2 and put k = m=2. Then �k � 1:(ii) Let 0 < q � p � 1 and put k = m=2. Then�k � cm1=q�1=pfor some positive constant c which is independent of m; but may dependupon p and q:(iii) Let 0 < p < 2 � q < p0 and k � m=2: Then�k � min(1;m1=qk�1=2):



ENTROPY AND APPROXIMATION NUMBERS 51The proof of the Lemma depends crucially on the fundamental work ofGluskin [41] on the �k:Remark 2. The results described in this section all require 
 to be a boun-ded domain with C1 boundary. For similar estimates of the entropy andaproximation numbers of embeddings between weighted B and F spaces onthe whole of Rn, and with weights with at most polynomial growth, we referto the very recent work of Haroske [42] and Haroske and Triebel [43], [44].4. Limiting embeddings4.1. Orlicz embeddingsThroughout this section 
 will stand for a bounded domain in Rn withC1 boundary and, for the sake of simplicity, we shall deal with the (frac-tional) Sobolev spaces Hsp(
) which, as was pointed out in 3.1, are just thespaces F sp2(
):The results given in 3.3 show that if 1 < p < 1, then Hn=pp (
) iscompactly embedded in Lq(
) for all q 2 (0;1): There is no embeddingin the limiting space L1(
); but one can come quite near to this by meansof the Orlicz space L1(logL)�a(
) (a > 0), which we recall is the linearhull of the set of all (equivalence classes of) functions f : 
! C such thatZ
 exp(jf(x)j1=a) dx <1;endowed with the (Luxemburg) norm(4.1) inf n� > 0: Z
 exp(jf(x)=�j1=a) dxo;L1(logL)�a(
) is a Banach space. It is well known that Hn=pp (
) is contin-uously embedded in L1(logL)�a(
) if, and only if, a � 1=p0; the embeddingbeing compact if, and only if, a > 1=p0: This type of result goes back cer-tainly to Trudinger [68] and Strichartz [59]; but in [1] references to earlierRussian work will be found. (For very recent variants of this result andfor related work, see [26], [27], [28], [29] and [39].) After various upperestimates had been obtained for the approximation and entropy numbersof the embedding map I of the limiting space Hn=pp (
) in L1(logL)�a(
);Triebel [64] made a striking advance by showing that(4.2) ek(I) � k�1=p if a > 1+2p



52 D.E. EDMUNDSand(4.3) ak(I) � (log k)1=p0�a if a > 1=p0:For the remaining cases, there exist a positive number c and for any " > 0a positive number c(") such that(4.4) ck�1=p � ek(I) � c(")k� 13 (a�1=p0)+" if 1 � a � 1 + 2p;and(4.5) ck�(a�1=p0) � ek(I) � c(")k� 13 (a�1=p0)+" if 1=p0 < a � 1:The result contained in (4.3) establishes a long-standing conjecture, and(4.2), (4.4) and (4.5) disprove the conjecture that ek(I) behaves like ak(I); ashad been expected from earlier work on this limiting case: cf. [64] for a briefaccount of the history of this. To obtain these results, Triebel reduced theproof to corresponding estimates for embeddings in non-limiting situations,and control of the constants in, for example,ek� id : Hn=pp (
)! Lq(
)� � cq1+2=pk�1=p:He coupled these precise estimates with the observations that the spaceL1(logL)�a(
) consists of all f : 
! C such that(4.6) sup0<�<n�af jLn=�(
) <1;and that the expression in (4.6) gives a norm on L1(logL)�a(
) equivalentto the Luxemburg norm (4.1).4.2. The spaces Lp(logL)a(
)The idea advanced here is that the results described in 4.1 and involv-ing L1(logL)�a(
) should be extended from this `L1-situation' to an`Lp-situation' in which there should be analogues of the estimates (4.2){(4.5) obtained by using an Lp analogue of the norm (4.6). We begin witha formal de�nition of the well-known spaces Lp(logL)a(
):De�nition. Let 0 < p < 1 and a 2 R: Then Lp(logL)a(
) is the set ofall measurable functions f : 
! C such that(4.7) Z
 jf(x)jp logap(2 + jf(x)j) dx <1:



ENTROPY AND APPROXIMATION NUMBERS 53Remark 1. These spaces can be characterised by the non-increasing re-arrangement f� of a function: we recall that this is de�ned byf�(t) = inf �� > 0: jfx 2 
: jf(x)j > �gj � t	;where j
0j denotes the Lebesgue n-measure of a measurable subset 
0 of
: It is shown in [5] that f 2 Lp(logL)a(
) if, and only if,(4.8) � j
jZ0 [(1 + j log tj)af�(t)]p� dt <1The expression in (4.8) is, in general, only a quasi-norm but it is shown in[5] that if 1 < p <1 and a 2 R, the analogue of (4.8) with f�(t) replaced byf��(t) = t�1 R t0 f�(s) ds de�nes a norm on Lp(logL)a(
) which is equivalentto the quasi-norm (4.8). Also, all these spaces are complete. Henceforth weshall assume that Lp(logL)a(
) is provided with the quasi-norm (4.8), andwe may regard it as a Banach space if 1 < p <1:Remark 2. Let 0 < " < p < 1, �1 < a2 < a1 < 1: Since 
 is bounded,we have the elementary embeddings(4.9) Lp+"(
) � Lp(logL)a1(
) � Lp(logL)a2(
) � Lp�"(
)and(4.10) Lp(logL)"(
) � Lp(
) � Lp(logL)�"(
):Moreover, if �1 < b1 < b2 < 0; then(4.11) L1(
) � L1(logL)b2(
) � L1(logL)b1(
):This shows that the spaces Lp(logL)a(
) provide a re�ned tuning of the Lpscale.Remark 3. It is also useful to have the Lorentz space version ofLp(logL)a(
): Let 0 < p <1, 0 < q � 1 and a 2 R. Then Lp;q(logL)a(
)is de�ned to be the set of all measurable functions f : 
! C such that(4.12) � j
jZ0 [t1=p(1 + j log tj)af�(t)]q dtt �1=q <1



54 D.E. EDMUNDS(with the obvious modi�cation if q = 1). It can be shown that this isa quasi-Banach space with quasi-norm given by (4.12), and that for 1 < p<1, 1 < q �1 and a 2 R, the functional obtained from (4.7) by replacingf� by f�� is a norm on Lp;q(logL)a(
) equivalent to the original quasi-norm.Of course, Lp;p(logL)a(
) = Lp(logL)a(
) and Lp;q(logL)0(
) is the usualLorentz space Lp;q(
):We can now give the promised alternative characterisation of the spaceLp(logL)a(
); con�ning attention to the case in which 1 < p <1: Follow-ing the notation introduced in 3.2 we write(4.13) 1p� = 1p + �nwhere(4.14) 1 < p <1; � 2 R and 1 < p� <1:For notional convenience we put(4.15) �j = 2�j ; �j = �2�j (j 2 N ):The phrase `small " > 0' will mean that p" satis�es (4.14) with " instead of�; the phrase `large J 2 N 0 is to be similarly interpreted.Theorem [34]. (i) Let 1 < p < 1 and a 2 R. Then Lp(logL)a(
) isa reexive Banach space and C10 (
) is a dense subset of it.(ii) Let 1 < p <1 and a < 0: Then Lp(logL)a(
) is the set of all measur-able functions f : 
! C such that(4.16) � "Z0 ���af jLp� (
)�p d�� �1=p <1for small " > 0; and (4:16) de�nes a norm on Lp(logL)a(
) equivalent tothe standard one. In addition, (4:16) can be replaced by the equivalentnorm(4.17) � 1Xj=J 2japf jLp�j (
)p�1=pfor large J 2 N .



ENTROPY AND APPROXIMATION NUMBERS 55(iii) Let 1 < p <1 and a > 0: Then Lp(logL)a(
) is the set of all measur-able functions g : 
! C which can be represented as(4.18) g = 1Xj=J gj ; gj 2 Lp�j (
)for large J , with(4.19) � 1Xj=J 2japgj jLp�j (
)p�1=p <1:The in�mum of the expression in (4:19) taken over all admissible represen-tations (4:18) is a norm on Lp(logL)a(
) equivalent to the standard one.The proof of this theorem is given in [34]. Here we merely observe thatthere is not much to prove in (i) in view of the characterisation of thedual of Lp(logL)a(
) as Lp0(logL)�a(
) given in [4, Theorem 8.4]. More-over, (iii) follows from (ii) by use of the Banach space `p(Lp�j (
)) of allsequences F = (FJ ; FJ+1; : : : ) with Fj 2 Lp�j (
); normed in the naturalway; consideration of the subspace `symp �Lp�j (
)� which consists of all el-ements F = (FJ ; FJ+1; : : : ) with Fj = 2�jaf , f 2 Lp(logL)�a(
); anduse of the Hahn{Banach theorem. The heart of the matter is the proof of(ii). Since C10 (
) is dense in Lp(logL)a(
), we must show that (4.16) isan equivalent norm on Lp(logL)a(
) for f 2 C10 (
); when 1 < p <1 anda < 0. First we prove the desired equivalence for the modi�ed norm(4.20) kfkp;a := � "Z0 ���af jLp�;p(
)�p d�� �1=p;where Lp�;p(
) is the Lorentz space introduced in Remark 3. Sincepp� � 1 = �npwe see that, from (4.12),f jLp�;p(
) = � j
jZ0 t�p=n�f�(t)�p dt�1=p:



56 D.E. EDMUNDSThus kfkpp;a = j
jZ0 �f�(t)�p "Z0 ��ap�1t�p=n d� dt:For small t we write the inner integral as"Z0 ��ap�1 exp���pn j log tj� d� = � pn j log tj�ap "pj log tj=nZ0 ��ap�1e��d�and note that the �nal integral tends to �(�ap) as t # 0: Hencekfkpp;a � j
jZ0 �f�(t)�p(1 + j log tj)ap dtwhich gives the equivalence needed. It is now comparatively easy to showthat k � kp;a is equivalent to (4.16).Remark 4. The advantages of the norms (4.16), (4.17) and (4.19) over (4.7)and (4.8) are quite plain. They enable assertions which hold for Lp(
),such as mapping properties of integral operators or pseudodi�erential oper-ators, to be carried over immediately to Lp(logL)a(
); as long as accurateinformation about any constants involved is available.4.3. EmbeddingsLet �1 < s2 < s1 < 1, 0 < p1 < 1 and 0 < p2 < 1: We recallthat (cf. [53], [62], [63], [66]), when 
 is a bounded domain in Rn with C1boundary,(4.21)id : Hs1p1 (
)! Hs2p2 (
) is continuous if, and only if, s1 � np1 � s2 � np2 ;and(4.22) id: Hs1p1 (
)! Hs2p2 (
) is compact if, and only if, s1� np1 > s2� np2 :There is no embedding if s1�n=p1 < s2�n=p2; and in the limiting situation(4.23) s1 � np1 = s2 � np2 ;



ENTROPY AND APPROXIMATION NUMBERS 57the embedding id is continuous but not compact.Taking s2 = 0 we see that(4.24) id: Hsp1(
)! Lp2(
);with(4.25) s > 0; s� np1 = � np2 ; 1 < p1 < p2 <1;is continuous but not compact. We use this to form the Lp counterpart ofthe embedding(4.26) Hn=pp (
)! L1(logL)�1=p0(
)discussed in 4.1. The counterpart of the embeddingHn=pp (
)! L1(logL)�a(
); a > 1=p0;is given by(4.27) id: Hsp1(
)! Lp2(logL)a(
)with a < 0 and with conditions (4.25) holding. It turns out that this limitingembedding is compact and so we seek to determine the behaviour of itsentropy numbers. With the strategy employed by Triebel in his work onembeddings in exponential Orlicz spaces in mind, we �rst look for accurateestimates in non-limiting situations. These are provided by the followingProposition [34]. Let 
 be a bounded domain in Rn with C1 boundaryand suppose that 1 < p < 1 and s > 0: Then given any " > 0; thereis a constant c" > 0 such that for all � > 0 with p� > 1 (recall that1=p� = 1=p+ �=n),(4.28) ek� id : Hsps(
)! Lp� (
)� � c"��(2s=n)�"k�s=n (k 2 N):The proof is a `battle against the constants', employing the same gen-eral techniques as in [31], [32] and [64], plus an additional interpolationargument; we refer to [34] for the details.Now we can consider the limiting embedding(4.29) id : Hsps(
)! Lp(logL)a(
); a � 0where 1 < p < 1 and s > 0: Of course, this is just a rewritten version of(4.26). If a = 0, id is continuous but not compact; if a � 0, id is continuous,by (4.10). Let ek be the kth entropy number of id.



58 D.E. EDMUNDSTheorem. ([34]) Let 
 be a bounded domain in Rn with C1 boundaryand suppose that(4.30) 1 < p <1; s > 0; a < 0:Then the embedding (4:29) is compact.(i) In addition, suppose that a < �2s=n: Then(4.31) ek � k�s=n:(ii) Suppose that �2s=n � a < �s=n and " > 0: Then there are positivenumbers c and c" such that(4.32) ck�s=n � ek � c"k a2+" (k 2 N ):(iii) Suppose that �s=n � a < 0 and " > 0: Then there are positive numbersc and c" such that(4.33) cka � ek � c"k a2+" (k 2 N ):This theorem may be considered as the counterpart of Theorem 3.2.3 ofTriebel [64]; see (4.2), (4.4), (4.5). Its proof follows a strategy similar tothat of Triebel's theorem.4.4. The spaces Hsp(logH)aRoughly speaking, these spaces are lifted versions of Lp(logL)a(
) whichare natural counterparts in an `Hsp-situation' of the spaces L1(logL)�a(
)in an `L1-situation'. Throughout this section 
 will again stand fora bounded domain in Rn with C1 boundary. Let 1 < p < 1 and let1=p� = 1=p + �=n, �j = 2�j , �j = �2�j ; as before. The phrases `small" > 0' and `large J 2 N 'are assumed to have the same meaning as thatgiven just before Theorem 4.2. To exhibit further connections with theLp(logL)a(
) spaces we introduce the space(4.34) eHsp(
) := ff 2 Hsp(Rn) : supp f � 
g:De�nition 1. Let 1 < p <1 and s 2 R.(i) Let a < 0: Then Hsp(logH)a(
) is the set of all (complex) distributionsf 2 D0(
) such that(4.35) � 1Xj=J 2japf jHsp�j (
)p�1=p <1



ENTROPY AND APPROXIMATION NUMBERS 59for large J 2 N : It is normed by the expression in (4:35).(ii) Let a > 0: Then Hsp(logH)a(
) is the set of all (complex) distributionsg 2 D0(
) which can be represented as(4.36) g = 1Xj=J gj ; gj 2 Hsp�j (
) for large J 2 N ;with(4.37) � 1Xj=J 2japgj jHsp�j (
)p�1=p <1:It is normed by the in�mum of all expressions in (4:37) over all admissiblerepresentations (4:36).(iii) Let a 2 R, a 6= 0: Then eHsp(log eH)a(
) is de�ned as in (i) and (ii) witheH instead of H:Note that in view of the monotonicity properties of the spaces Hsp(
);the norm (4.35) can be replaced by the (equivalent) norm(4.38) � "Z0 ���af jHsp� (
)�p d�� �1=pfor small " > 0: This corresponds to (4.16). Note also thatH0p (logH)a(
) = Lp(logL)a(
):Put(4.39) Amf = (��+ id)mf (m 2 N );where � is the Laplace operator. Then Am;D and Am;N ; de�ned byAm;Df = Amf;domAm;D = nf 2 H2mp (
): @jf@�j ��@
 = 0 for j = 0; : : : ;m� 1o(4.40)and Am;Nf = Amf;



60 D.E. EDMUNDSdomAm;N = nf 2 H2mp (
) : @j+m@�j+m ��@
 = 0 for j = 0; : : : ;m� 1;o(4.41)are the Dirichlet and Neumann realisations, respectively of Am: Followingthe arguments given in [61, 4.9.2], we have for the fractional powers A�m;Dand A�m;N ;(4.42) domA�m;D = eH2m�p (
); domA�m;N = H2m�p (
) for 0 � � � 12 ;and with appropriate interpretations we have, up to isomorphisms,(4.43) A�m;NHs+2m�p (
) = Hsp(
); 0 � s � s+ 2m� � mand(4.44)A�m;DHs+2m�p (
) = Hsp(
); �m � s � s+ 2m� � m; 0 � � � 12 ;where H�p(
) = eH�p (
) if � � 0 and H�p(
) = H�p (
) if � � 0: In this senseA�m;N and A�m;D ; now even with j� j � 1=2; provide isomorphic maps in theway indicated. Further details will be found in [61, 4.9.2].The connections mentioned above are those given in the following theo-rem:Theorem 1 ([34]). Let 
 be a bounded domain in Rn with C1 boundaryand let 1 < p <1, a 2 R:(i) Let 0 � � � 12 : Then(4.45) A��m;NLp(logL)a(
) = H2m�p (logH)a(
);(4.46) A��m;DLp(logL)a(
) = eH2m�p (log eH)a(
);and(4.47) A�m;DLp(logL)a(
) = H�2m�p (logH)a(
):(ii) For all s 2 R, C10 (
) is dense in eHsp(log eH)a(
):



ENTROPY AND APPROXIMATION NUMBERS 61(iii) If s � 0; then in the sense of the dual pairing between C10 (
) andD0(
);(4.48) [ eHsp(log eH)a(
)]0 = H�sp0 (logH)�a(
):(iv) If s 2 N0; then(4.49) Hsp(logH)a(
) = ff 2 D0(
): D�f 2 Lp(logL)a(
) if j�j � sg;with the equivalent norm(4.50) Xj�j�s D�f jLp(logL)a(
):Remark 1. The equivalent norm (4.50) and the practice of omitting the word`fractional' from the phrase `fractional Sobolev spaces Hsp ' lead us to call thespaces Hsp(logH)a(
) logarithmic Sobolev spaces despite the competitiono�ered by logarithmic Sobolev inequalities.Remark 2. By (i) of the theorem, the embeddings in Remark 2 in Section4.2 can be extended. Let 1 < p < 1 and s 2 R. Then if " > 0 and0 < � < p� 1 we have(4.51)Hsp+�(
) � Hsp(logH)"(
) � Hsp(
) � Hsp(logH)�"(
) � Hsp��(
)together with similar embeddings with eH instead of H:We can now extend the results of 4.3 to the setting of logarithmic Sobolevspaces.Proposition 1 ([34]). Let(4.52) �1 < s2 < s1 <1; 1 < p1 < p2 <1; s1 � np1 = s2 � np2 ;and suppose that a1, a2 2 R: Then(4.53) id: Hs1p1 (logH)a1(
)! Hs2p2 (logH)a2(
)is continuous if, and only if, a2 � a1; it is compact if, and only if a2 < a1:For the proof we refer to [34].



62 D.E. EDMUNDSCorollary 1. Suppose that (4:52) holds, let a2 2 R be such thata2 < � 2n (s1 � s2) and let ek be the kth entropy number of(4.54) id : Hs1p1 (
)! Hs2p2 (logH)a2(
):Then(4.55) ek � k�(s1�s2)=n:Proof. We use the liftings of the Theorem. Since 
 has the extension prop-erty for all the spaces in question (cf. [63, 5.1.3] and its obvious generalisa-tion to these spaces) it does not matter whether we use the H or eH spaces.Thus (4.55) follows from lifting and Theorem 4.3(i). �Corollary 2. Suppose that (4:52) holds, let a1 2 R satisfy 0 < a1 � 2n (s1� s2) and let ek be the kth entropy number of(4.56) id : Hs1p1 (logH)a1(
)! Hs2p2 (
):Then(4.57) ek � k�(s1�s2)=n:Proof. The idea is to use Theorem 1 of [13] which implies that ifT 2 L(X;Y ) is compact and X is uniformly convex, then ek(T ) � k��(� > 0) implies that ek(T �) � k�� also. Now if 1 < p < 1 and a � 0;then eHsp(log eH)a(
) is uniformly convex (see [18] for related statements).We apply Theorem 1 of [13] to (4.53) with a1 = 0; s2 = 0 and eH instead ofH: Then by (4.48) and lifting we obtain the desired result (4.57). �So far we have restricted consideration of the spaces Hsp(logH)a(
) tothe situation in which 1 < p <1: We now remove this limitation.De�nition 2. Let 0 < p < 1, a 2 R, s 2 R: Then Hsp(logH)a(
) isde�ned just as in De�nition 1.If 0 < p � 1 there is no direct connection with Lp(logL)a(
); no dual-ity and no immediate isomorphism properties such as those in Theorem 1.Despite this the spaces, especially when a < 0; are useful. We give somepartial extensions of Proposition 4.3 and Theorem 4.3.



ENTROPY AND APPROXIMATION NUMBERS 63Proposition 2 ([34]). Suppose that(4.58) �1 < s2 < s1 <1; 0 < p1 < p2 <1; s1 � np1 = s2 � np2 :Then given any " > 0; there is a constant c" > 0 such that for all � > 0;(4.59)ek� id : Hs1p�1 (
)! Hs2p2�2 (
)� � c"��2(s1�s2)=n�" k�(s1�s2)=n (k 2 N ):The proof is essentially the same as that of Proposition 4.3.Theorem 2 ([34]). (i) Let(4.60) �1 < s2 < s1 <1; 0 < p1 < p2 <1; s1 � np1 = s2 � np2 ;(4.61) a1 � 0; a2 < a1 � 2n (s1 � s2):Then(4.62) ek� id : Hs1p1 (logH)a1(
)! Hs2p2 (logH)a2(
)� � k�(s1�s2)=n:(ii) Suppose that(4.63) �1 < s2 < s1 <1; 1 < p1 < p2 <1; s1 � np1 = s2 � np2 ;(4.64) a1 > 0; a2 < a1 � 2n (s1 � s2):Then (4:62) holds.For the proof we refer to [34]. However, note that the restriction p1 > 1arises from duality arguments used in the proof; presumably this restrictioncan be removed.



64 D.E. EDMUNDS5. Applications to eigenvalue problemsOur object here is to apply the results described in the earlier sections,and particularly those related to entropy numbers of embeddings, to studythe distribution of eigenvalues of degenerate elliptic (pseudo-) di�erentialoperators. The operators studied typically have the structureB = b2Cb1;where b1 and b2 are singular functions belonging to some function space suchas Hsp ; and C may be the inverse of a regular elliptic di�erential operatoror a fractional power of it, or an (exotic) pseudodi�erential operator. Muchwork has been done on the symmetric case in which b1 = b2 = b and C issymmetric with respect to, say, the L2 inner product; in this case, providedthat b and C are compatible with the techniques used, excellent resultshave been obtained about the distribution of eigenvalues, now counted withrespect to their geometric multiplicity. The work of Birman and Solomyak[8]{[12], Rosenbljum [50, 51], Solomyak [57] and Tashkian [60] is especiallynoteworthy in this connection. These results extend the classical theory ofthe distribution of eigenvalues of self-adjoint elliptic di�erential operatorswith smooth coe�cients. Moreover, mapping properties of operators of typeb(X)a(D), including the distribution of eigenvalues, have been thoroughlyexamined in a Hilbert space setting, mostly L2(Rn) : see Birman, Karadhzovand Solomyak [6], Cwikel [21], Lieb [46] and Simon [54], together with thereferences contained in these works. In these speci�c situations the deepHilbert space techniques employed by these authors often give better resultsthan those provided by the simple arguments to be given here; on the otherhand, these arguments are not con�ned to Hilbert spaces or symmetricoperators. We thus present our method largely (but not exclusively { see5.3) for more general non-symmetric operators in Banach or quasi-Banachspaces.5.1. Regular elliptic di�erential operatorsThroughout this section 
 will be a bounded domain in Rn with C1boundary. Our object is to collect various mapping properties which origi-nated in the work of Agmon [2] and Agmon, Douglis and Nirenberg [3], sothat they may be used in conjunction with our work on entropy numbers.For details of these properties we refer to [51] and [52].Let A be a properly elliptic operator,(5.1) Af = Xj�j�2ma�(x)D�f; where each a� 2 C1(
);



ENTROPY AND APPROXIMATION NUMBERS 65with boundary operators(5.2) Bjf = Xj�j�`j bj;�(x)D�f; where each bj;� 2 C1(@
);with j = 1, : : : , m and 0 � `1 < � � � < `m � 2m� 1; which form a normalsystem satisfying the complementarity condition. Under these conditionsfA;B1; : : : ; Bmg is called a regular elliptic system: see [62, 4.1.2] for details.We assume that(5.3) � Af = 0 in 
;Bjf = 0 on @
 for j = 1; : : : ;mhas only the trivial C1 solution. Let(5.4) 0 < p <1; s � n�1p � 1�+:Then A maps(5.5) ff 2 Hs+2mp (
): Bjf = 0 on @
 for j = 1; : : : ;mgisomorphically onto Hsp(
):If we denote by As;p the operator A with domain of de�nition (5.5),then (5.3) ensures that 0 is not in the spectrum �(As;p) of As;p; and thus�(As;p) consists of isolated eigenvalues of �nite algebraic multiplicity. When1 < p < 1 all this is contained in Agmon [2]; Triebel [62] gives a partialextension to p � 1 and the full proof is provided by Franke and Runst [40].Fractional powers will be needed later on. We consider the ground levels = 0 and 1 < p < 1; write Ap = A0;p: The basic theory of fractionalpowers is given in Triebel [61, 1.15] and its application to Ap is covered by[61, 4.9.1]: the fractional powers A�p can be constructed for every � 2 R (cf.[61, 1.15]). If �1 � � < 0; then A�p is compact in Lp(
); and indeed it isnot hard to show (cf. [33]) that in this case,(5.6) ek(A�p) � k2m�=n:We shall also need the inclusion(5.7) dom(Aj�jp ) � H2mj�jp (
); j�j � 1;where with the exception of those � such that 2mj�j � 1=p = `j for somej 2 f1; : : : ;mg, dom(Aj�jp ) is even a closed subspace of H2mj�jp (
): See[33, 2.5] for further discussion of this point.



66 D.E. EDMUNDS5.2. Eigenvalue distributionsWe shall consider the fractional powers A�p , where Ap = A0;p as in 5.1,and shall write A� for A�p as it will be clear from the context between whichspaces A� acts. Our goal is to study(5.8) Bf = b2A��b1f; 0 < � � 1;where b1 and b2 belong to certain spaces Lr1(logL)a1(
) and Lr2(logL)a2(
)or to Hrs1 (logH)a1(
) and Hrs2 (logH)a2(
); respectively. Initially we shallcon�ne discussion to the ground level s = 0, 1 < p <1: In the theorem tobe given below B will be a compact operator in a certain Lp(
): we denoteby �k the eigenvalues of B, ordered by decreasing modulus and repeatedaccording to algebraic multiplicity. The object is to estimate j�kj:Theorem 1 ([34]). Let 
 be a bounded domain in Rn with C1 boundary,let(5.9) r1; r2 2 (1;1]; 0 < � � 1; m 2 Nwith(5.10) 1 > 1r1 + 1r2 = 2m�n ;and let a1, a2 2 R be such that(5.11) 1r2 < 1p < 1r01 and a1 + a2 > 4m�n :Suppose that(5.12) b1 2 Lr1(logL)a1(
) and b2 2 Lr2(logL)a2(
):Then the map B given by (5:8) is compact in Lp(
) and there exists c > 0such that(5.13)j�kj � cb1jLr1(logL)a1(
) b2jLr2(logL)a2(
) k�2m�=n (k 2 N ):Sketch of proof. First suppose that a2 = 0, r2 = 1: Then b2 2 L1(
);assume without loss of generality that b2 = 1: We use the decompositionB = b2 � id �A�� � b1
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���������	
��������Fig. 2(5.14) 8><>: b1 : Lp ! Lq(logL)a1 ; 1=q = 1=p+ 1=r1;A�� : Lq(logL)a1 ! H2m�q (logH)a1 ;id : H2m�q (logH)a1 ! Lp:Here, and subsequently in the proof, we omit the symbol `
' from thespaces. The �rst embedding follows immediately from Theorem 4.2 (iii)and H�older's inequality; the second is covered by (5.7) and De�nition 4.4.The last embedding is compact: by Corollary 4.4/2, if we observe that(5.15) 2m�� nq = �np ; a1 > 4m�n ;it follows that(5.16) ek(id) � k�2m�=n:Use of Carl's inequality (2.4) now gives (5.13).



68 D.E. EDMUNDSNow suppose that a1 = 0, r1 = 1; so that b1 2 L1(
); again withoutloss of generality we assume that b1 = 1: This time we use the decompositionB = b2 � id �A��;with(5.17) 8><>: A�� : Lp ! H2m�p ;id : H2m�p ! Lt(logL)�a2 ; 1=t = 1=p� 1=r2;b2 : Lt(logL)�a2 ! Lp:The �rst mapping is covered by (5.7), and the last mapping essentially comesfrom H�older's inequality, extended to the spaces Lu(logL)v : see Theorem4.2. To handle id we apply Theorem 4.3. Again (5.13) folows.Next, let a1 > 0 and a2 > 0: Choose �1, �2 such that(5.18) a1 > 4m�1n ; a2 > 4m�2n ; �1 + �2 = �;use the decomposition(5.19) B = (b2A��2) � (A��1b1)plus the �rst two stages of the proof and the multiplicative properties ofentropy numbers and obtain(5.20) ek(B) � ck�2m�=n;from which (5.13) follows.Finally, we have to deal with the cases a1 < 0, a2 > 0 or a1 > 0, a2 < 0:Then a1(�a2) > 0; and we use the decomposition(5.21) 8>>><>>>: b1 : Lp ! Lq(logL)a1 ; 1=q = 1=p+ 1=r1;A�� : Lq(logL)a1 ! H2m�q (logH)a1 ;id : H2m�q (logH)a1 ! Lt(logL)�a2 ; 1=t = 1=p� 1=r2;b2 : Lt(logL)�a2 ! Lp:This time we use Theorem 2 of Section 4.4, coupled with the observationthat 2m�=n� 1=q = �1=t, to show that(5.22) ek(id) � ck�2m�=n;



ENTROPY AND APPROXIMATION NUMBERS 69and the rest follows much as before. �Remark 1. It is plain from this proof that all we need of the fractional powerA�� is that it should have certain mapping properties; the rest is taken careof by the entropy number estimates for id and the mapping properties of b1and b2: Then A�� could be replaced by any operator with the right mappingbehaviour: in particular, it can be replaced by a pseudodi�erential operatorin the H�ormander class S�2m�1;� (
) (see [63] for details of this class) with0 � � � 1: This idea is pursued in [34]; it is especially remarkable that eventhe so-called exotic case � = 1 is included. In [34] there is also an extensionof the theorem to allow, say b2; to belong to a space of type Hsp(logH)a(
):To give some impression of the scope of the theorem an example may behelpful. Let 
 = ny 2 Rn : jyj < 1=2o, 0 < r <1 and � 2 R; put(5.23) b(x) = jxj�n=rj log jxk��:It is easy to see that b 2 Lr(logL)a(
) if, and only if,(5.24) � > 1r + a:Theorem 2 ([34]). Let 
 be as above, letr1; r2 2 (1;1); 0 < � � 1; m 2 Nwith(5.25) 1 > 1r1 + 1r2 = 2m�n ;and let �1, �2 2 R be such that(5.26) 1r2 < 1p < 1r01 and �1 + �2 > 1r1 + 1r2 + 4m�n :Suppose that bj(x) = jxj�n=rj j log jxk��j (j = 1; 2)and let A be a regular elliptic di�erential operator of order 2m: Then themap B de�ned by B = b2A��b1



70 D.E. EDMUNDSis compact in Lp(
) and there is a constant c such thatj�kj � ck�2m�=n (k 2 N ):Proof. The proof is immediate from Theorem 1 and the observation (5.24)above. �Remark 2. If b1(x) 6= 0 and b2(x) 6= 0; a.e. and � = 1; then B is invertiblein Lp(
) and, at least formally, D = B�1; D = b�11 Ab�12 is a degenerateelliptic di�erential operator, considered as an unbounded operator in Lp(
):Let f�kg be the sequence of its eigenvalues, counted according to algebraicmultiplicity and ordered by increasing modulus. Then �k = ��1k and soj�kj � cb1jLr1(logL)a1(
)�1 b2jLr2(logL)a2(
)�1k2m=n:For elliptic operators of order 2m and with smooth coe�cients it is wellknown that the kth eigenvalue behaves like a multiple of k2m=n; so that wehave the expected behaviour. If p = 2 and D is symmetric, with b1 = b2 = b;then mild additional conditions are enough to ensure lower bounds of thesame form: thus if 1=b 2 C2 in some subdomain of 
; then by Courant'sprinciple on the monotonicity of eigenvalues with respect to domain varia-tions, j�kj � c1k2m=n:Remark 3. Note in particular that �1 might be negative; of course, thismust be compensated by �2 so that (5.26) holds. For other examples see[33] and [34]: [34] deals with a case in whichB = b2A�� nXj=1 b1;j @@xj ;where b2 belongs to a space of the form H1r (logH)a(
) and the b1;j to spacesLs(logL)t(
):5.3. The negative spectrumHere we propose to estimate the number of negative eigenvalues whichcertain di�erential operators may have. The key idea is to use the Birman{Schwinger principle, which we now recall.Let A be a positive self-adjoint operator acting in a Hilbert space H; letV be a closable operator acting in H; let K : H ! H be a compact linearoperator such thatKu = V A�1V �u for all u in dom(V A�1V �); and suppose



ENTROPY AND APPROXIMATION NUMBERS 71that dom(A) \ dom(V �V ) is dense in H: The Birman{Schwinger principle(cf. [52, Theorem 5.3]) states that under these conditions, A � V �V hasa self-adjoint extension H, with spectrum �(H); and that#f�(H) \ (�1; 0]g � #f�(K) \ [1; kKk]g:In view of Carl's inequality (2.4) this can be immediately reformulated asTheorem 1. Under the above assumptions,#f�(H) \ (�1; 0]g � #fk 2 N : p2ek(K) � 1g:We shall now obtain upper estimates of the number of non-positive eigen-values of the operator H� (acting in L2(
)), where(5.27) H�f = Gf � �V f;and G = gA�g, g(x) > 0 a.e. in 
, 0 < � � 1, V > 0 a.e. in 
, � � 0 andA is a regular elliptic, positive self-adjoint operator of order 2m: As before,it is assumed that 
 is a bounded domain in Rn with C1 boundary.Theorem 2. Let 2 < r <1 and rm� = n; and suppose that(5.28) V 1=2g�1 2 Lr(logL)a(
) with ra > 2:Then(5.29) #f�(H�) \ (�1; 0]g � c�r=2V 1=2g�1jLr(logL)a(
)rfor some c > 0 which is independent of V , g and �:Proof. We apply Theorem 1 of Section 5.2, with a1 = a2 = a and r1 = r2 =r; to K�f = �V 1=2g�1A��g�1V 1=2f:Naturally ek(K�) = �ek(K1): Then by Theorem 1 of Section 5.2 and theBirman-Schwinger principle we simply have to count the k 2 N such that1 � c�V 1=2g�1jLr(logL)a(
)2 k�2=r;and (5.29) follows. �Other results of this nature will be found in [33].By way of generalisation of Theorem 1 we mention the following result,contained in [34]: it is designed to illustrate how the Hsr (logH)a(
) spacesmay be used.



72 D.E. EDMUNDSTheorem 3. Let 
 be a bounded domain in Rn with C1 boundary, letr1, r2 2 (1;1), m 2 N ; with1 > 1r1 + 1r2 = 2mn ;suppose that 1r2 < 1p < 1� 1r1 and a > 4mn ;that s > 0 and thatb1 2 Hsrs1 (
) and b2 2 Hsrs2 (logH)a(
);and let A be a regular elliptic di�erential operator of order 2m: ThenB = b2A�1b1is compact in Hsps(
) and its eigenvalues �k satisfyj�kj � cb1jHsrs1(
) b2jHsrs2 (logH)a(
) k�2m=n (m 2 N ):The idea of the proof is to use the decompositionB = b2 � id �A�1 � b1;where b1 : Hsps ! Hsqs with 1q = 1p + 1r1 ;A�1 : Hsqs ! Hs+2mqs ;id : Hs+2mqs ! Hsts(logH)�a+"; with a� " > 4m=n;b2 : Hsts(logH)�a+" ! Hsps :For details we refer to [34]: here we mention only that the �rst embeddingis a consequence of the H�older inequality (3.8).References1. D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. ofMath. 128 (1988), 385{398.
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