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RECENT DEVELOPMENTS CONCERNING
ENTROPY AND APPROXIMATION NUMBERS

Davip E. EDMUNDS

INTRODUCTION

The ideas underlying the concept of entropy numbers go back a long way,
certainly to the work of Kolmogorov in the 1930s on the metric entropy of
compact subsets of a metric space. With the introduction of linear struc-
tures, in the form of linear mappings between Banach spaces, the study
of this topic acquired fresh impetus both at the abstract and the concrete
level: the work of Pietsch did much to promote the development of the
theory of entropy numbers, while embeddings of Sobolev spaces were anal-
ysed from the entropy point of view by Birman and Solomyak, Triebel and
numerous others. A second landmark in the growth of the subject was pro-
vided in 1980 by Carl’s observation that the entropy numbers of a compact
linear map T from a Banach space to itself are related to the eigenvalues
of T' by a simple inequality. This immediately gave the possibility of esti-
mating eigenvalues by means of estimates for entropy numbers; and since
interesting maps (such as those arising from integral operators) can often be
factorised into the composition of compact embedding maps and continuous
maps, it was clear that knowledge of the behaviour of the entropy numbers
of compact embeddings could be translated into eigenvalue estimates. In
view of this, it is perhaps a little surprising that not until the 1990s was
any systematic attack made along the lines indicated on problems involving
the distribution of eigenvalues of elliptic operators. A possible explanation
for this delay is that to obtain really satisfactory results it is crucial to
have accurate estimates for the entropy numbers of embedding maps acting
between very general function spaces, even in delicate limiting situations;
and these were not available until comparatively recently, when Fourier-
analytical techniques based on advances in the theory of function spaces
were used to establish them.

Our main object here is to describe these embedding results and to show
how they can be used to study the eigenvalue distributions of degenerate
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elliptic differential and pseudodifferential operators: in particular, we pro-
vide a survey of the papers [31] - [34]. Although we shall be concentrating
on entropy numbers we shall, where appropriate, give results concerning
approximation numbers, for these numbers have independent interest and
are also intimately connected with eigenvalue distributions. While we shall
focus on embeddings, it should be noted that a good deal of work has been
done on the analysis of various operators, such as Volterra integral op-
erators, from the standpoint of entropy and approximation numbers, and
measures of non-compactness. For details of this, and further references, we
refer to [24], [25], [30] and [58].

2. ENTROPY AND APPROXIMATION NUMBERS

2.1. Quasi-normed spaces

We begin with some basic facts about quasi-normed spaces: these can
be found, for example, in [49]. A gquasi-norm on a (real or complex) linear
space Bis amap | -|B||: B — Ry = [0,00) such that (i) ||«[B|| = 0 if, and
only if, x = 0; (i) ||Az|B|| = [A|||x|B|| for all scalars A and all x € B; (iii)
there is a constant C' such that for all x, y € B,

lz +y1B]| < C([[«IB]| + [y/B]])-

Clearly C > 1; if C =1 is allowed then || . |B|| is a norm on B. Each quasi-
norm on B defines a topology on B, with a basis of neighbourhoods of any
point @ € B given by the sets {y € B: ||x - y|B|| < 1/n} (n € N). The
pair (B, || - |B||) is called a quasi-normed space; if every Cauchy sequence
(defined in the obvious way) in B converges to an element of B, we call B
a quasi-Banach space.

Given any p € (0,1], a pnorm on a linear space B is a map
|-|B|: B — Ry which satisfies conditions (i) and (ii) above and instead of
(i) satisfies
(i) |z +y1B||" < |]|B[" + y1B]"

for all z,y € B. It can be shown that if || . |B|| is a quasi-norm on B,then
there exists p € (0,1] and a p-norm on B which is equivalent to || - |B|| in
the sense that one is bounded above and below by constant multiples of
the other; the constant C' in (iii) can be taken to be 21/P=1_ Conversely,
any p-norm is a quasi-norm with ¢ =2'/7=1_If | - IB]| is a p-norm, the
pair (B, | -|B||) is called a p-normed space; if it is complete it is called a p-
Banach space. The sequence spaces ¢, are quasi-Banach spaces if 0 < ¢ < 1,
and of course they are Banach spaces if ¢ > 1.
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Let A, B, be quasi-Banach spaces and let T: A — B be linear. Just as
in the Banach space case the notions of boundedness and compactness of T’
are defined, as is the spectrum o(7T") of T. It can be shown (cf. [35]) that
if B is a complex, infinite-dimensional quasi-Banach space and T: B — B
is bounded and linear, then o(7T) \ {0} consists of an at most countably
infinite number of eigenvalues, each of finite algebraic multiplicity, which
may accumulate only at 0.

2.2. Entropy numbers
For general information about these, in a Banach space setting, we refer

to [23] and [48].

Definition. Let A, B be quasi-Banach spaces, let Uy = {a € A: ||a|A||
< 1} and let T' € L(A, B), the space of all bounded linear maps from A to
B. Then for all k € N, the £*® entropy number e, (T') of T is defined by
(2.1)

21;71

ex(T) = inf{s >0: T(Ua) C U (b; +eUpg) for some by,...,by-1 € B}.

=1

It is easy to verify that if A, B, C are quasi-Banach spaces and
S, T e L(A,B), Re L(B,C), then

@) T > e(T) > ex(T)>--->0; ea(T) = ||T| if B is a Banach space;
(ii) if B is a p-Banach space (0 < p < 1), then for all k, £ € N,

(2.2) o 1 (S+T) <eg(S) +ef(T);

(iii) for all k, £ € N,

(23) €k+g_1(R o S) S (&% (R)eg(S)

Since the e, (T") are non-negative and decrease as k — 00, it is plain that
limy, . o €x(T) exists and equals

inf{e > 0: T(U4) can be covered by finitely many B-balls of radius €}.

This limit is called the ball measure of mon-compactness of T and is denoted
by B(T); B(T) = 0 if, and only if, T' is compact. Note also that unless
T € L(A, B) is the zero operator, none of the ey (7)) is 0. The dependence
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of ex(T') upon k for particular maps 7', and especially for embedding maps,
will be examined later, but for the moment we observe that if A is a complex
Banach space of finite dimension m and I: A — A is the identity map, then

1< 20=D/Cme 1) <4 (ke N);

if A, B are Banach spaces and T € L(A, B), T # 0 has the property that
there are positive numbers ¢, p such that for all k € N, e;(T) < ¢27°*, then
T is of finite rank (cf. [16]).

If T € L(A, B), where A, B are Banach spaces, a question which has at-
tracted much interest is what relationship exists between the entropy num-
bers of T" and those of its adjoint T*. When A and B are Hilbert spaces
the answer is easy, using the polar decomposition theorem: ey (T") = e, (1)
for all £k € N. The question in general Banach spaces is still open, but
Bourgain, Pajor, Szarek and Tomczak—-Jaegermann [13] have shown that if
A is uniformly convex and T is compact, then there is a positive constant c
(depending only on A) such that for all m € N and all p € [1, 00),

C—1(§:€Z(T*)>l/p < (iez(T)>1/p < c(iei(T*))l/p;
k=1 k=1

similar inequalities hold if the £, norm is replaced by any symmetric norm,
such as that on the Lorentz spaces (, ., so that if e, (T) = O(k~'/?) as
k — oo, then e, (T*) = O(k~1/7).

The entropy numbers behave reasonably well under interpolation, at
least when one end-point is fixed. Thus let A be a quasi-Banach space,
let {By, B1} be an interpolation couple of p-Banach spaces, let 0 < 8 < 1
and let By be a quasi-Banach space such that Bo N By C By C By + B; and

I'~°[|61B|” for all b e By N By.

161Bs| < 610
Let T € L(A,Bp N By) where By N B; is given the quasi-norm
max (||b|Bol|, ||b|B1||)- Then

erro_1(T: A— By) < 2Pel=%(T: A — By) e(T: A — By).

Corresponding results hold when the domain space A is allowed to vary
and the target space is held fixed. In a Banach space setting these results,
expressed in terms of entropy functions and entropy ideals, were developed
by Peetre and Triebel (see [61, 1.16.2]); their reformulation in terms of
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entropy numbers is given in Pietsch [48, 12.1]. For a treatment of the quasi-
Banach case see Haroske and Triebel [43]. It is not clear what happens
when both end-points A and B can vary simultaneously: the techniques
used to show that the property of compactness interpolates well in such
circumstances (see [19], [20] and [22], for example) do not seem to be delicate
enough to obtain the necessary estimates.

Another interesting question relates to the estimation of the entropy num-
bers of tensor products of operators. We refer to [37] for some recent work
on the size of the sequence (en(S’@)aT)) in the scale of Lorentz sequence
spaces for tensor norms «, and also for some information about the subtler
‘local’ question of estimating the individual entropy numbers of S®,7 in
terms of those of S and T'. In particular, asymptotic bounds are given for
the entropy numbers of tensored operators on the Schatten trace classes
¢p(l2). References to earlier work in this area will also be found in [37].

2.3. Approximation numbers

Definition. Let T' € L(A, B) where A, B are quasi-Banach spaces. Then
given any k € N, the k' approximation number a;(T') of T is given by

ap(T) =inf{||T — L||: L € L(A, B),rank L < k},
where rank L = dim L(A).

The ax(T') have properties similar to (i), (ii), (iii) listed above in 2.2 for
entropy numbers. Despite these resemblances, there are radical differences
between the two sets of numbers. Thus if A, B are Banach spaces and
T € L(A, B), then a;(T) = 0 if, and only if, rankT < k; and if dim A > n
and I: A — A is the identity map, then ar(I) = 1 for k = 1, ..., n.
Moreover, if T € L(A, B) is compact and A, B are Banach spaces, then
ap(T*) = ax(T) for all k € N; if the compactness condition is dropped,
then ar(T*) < ax(T) < 5a,(T*) for all & € N (cf. [37] and [23]). This
contrasts sharply with the complicated current situation insofar as adjoints
and entropy numbers are concerned; but by way of balance we shall see
later, in 3.2, that the approximation numbers do not behave well under
interpolation.

It is natural to ask whether there are connections between ey (T") and
ax(T) for a compact map T': for example, is there a constant C' > 0 such
that for all k € N,

€L (T) S C(J,k (T)?
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Plainly this cannot hold if T is of finite rank; but even for maps with infinite-
dimensional range there are difficulties, for Carl and Stephani [16] give an
example of a diagonal map D: (, — ¢, for which aj(D) = 2% yet

27Vl <oy (D) < 3v227V

for all k& € N. This suggests that the rate of decay of the approximation
numbers may be a relevant factor in obtaining the desired inequality or some
global version of it. The following result, due to Triebel [65], implements
these ideas.

Theorem. Let A and B be quasi-Banach spaces and let T € L(A, B) be
compact.

(i) Suppose that for some ¢ > 0,
asi-1(T) < cayi (T) for all j € N.
Then there is a positive constant C' such that for all j € N,

ej(T) < Cay(T).

(ii) Let f: N — R be positive and increasing, and suppose that for some
c>0, _ _
f(27) < ef(271) forall j € N.

Then there is a positive constant C' such that for all n € N,

sup f(7)e;(T) < C sup f(5)a;(T).

1<j<n 1<j<n

As particular consequences of this theorem we see immediately that if
a;(T) = 0(j ") (resp. a;(T) = O((logj) ")) as j — oo, where p is a posi-
tive constant, then e;(T) = O(j %) (resp. e;(T") = O((log ) *)). This will
be of interest because, as we shall see, the approximation numbers of embed-
dings between function spaces typically have power-type or logarithmic-type
decay.

2.4. Eigenvalues

To conclude this section we mention the connections between eigenvalues
of a compact map and entropy and approximation numbers. Let A be
a complex quasi-Banach space and let T' € L(A) (:= L(A, A)) be compact.
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We know that the spectrum of 7', apart from the point 0, consists solely of
eigenvalues of finite algebraic multiplicity: let {A;(T")} be the sequence of all
non-zero eigenvalues of T', each repeated according to algebraic multiplicity
and ordered so that

M (T)] = Po(T)] > - > 0.

If T has only m(< oo) distinct eigenvalues and M is the sum of their
algebraic multiplicities, we put A\, (7") = 0 for all n > M.

So far as the entropy numbers of 1" are concerned, the most useful con-
nection between them and the eigenvalues of 7', from our point of view, is
given by the following theorem, proved by Carl and Triebel [17] when A is
a Banach space.

Theorem. Let T and {\;(T)}ren be as above. Then for all k € N,
k 1/k
< inf on/(2k) .
(mll An(D)]) " < inf 27/De, (1)

The proof is a modification of the volume-covering argument used by
Carl and Triebel to handle the case when A is a Banach space: cf. [35].
Note that by taking n = k we obtain the following

(2.4) Ak (T)] < V2er(T).

This was originally proved by Carl [14], using a different method of proof,
in the Banach space setting. It is this corollary which will be extensively
used later on to estimate eigenvalues of certain (pseudo-) differential oper-
ators.

The approximation numbers also have strong connections with eigenval-
ues. For example, if H is a complex Hilbert space and T' € L(H) is compact,
then T*T has a positive, self-adjoint, compact square root || and for all
keN,

ar(T) = Ae(IT1)

(see [23], for example). (Hence the approximation numbers of T' coincide
with its eigenvalues if T' is compact and positive.) Also, a famous inequality
of Weyl states that for all n € N and all p € (0, 00),

DI <3 al(T),
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These are Hilbert space results, but even in general Banach spaces much
can be established. Thus Konig (cf. [45]) has shown that if A is a complex
Banach space and T' € L(A) is compact, then

An(T)| = lim a;/"(T™)

k— o0

and

(ZW(T)IP) SKP(Xn:a’g(T))l/p (neN, 0<p< o)

ES
Il
-
~
Il
-

K_{2e/\/]_) ifo<p<i,
Pl 2t/ry/2e if1<p< oo

There are Lorentz space analogues of this last inequality which, in partic-
ular, show that if for some p > 0, a,(T) = O(n~") (resp. o(n" ")), then
[An(T)] = O(n=") (resp. o(n™")) as n — 0.

3. EMBEDDINGS; NONLIMITING CASES

The importance of embedding maps from one function space to another,
typified by the Sobolev embedding theorems, arises from the possibility of
factorising the maps derived from differential or integral operators into the
composition of maps, one of the components being an embedding map. We
shall see later on in detail how this procedure works. Accepting this for the
moment, we introduce the scale of function spaces that will be used.

3.1. Function spaces

The Schwartz space S(R™) and its dual space S'(R™) of all complex-
valued tempered distributions are supposed to have the usual meaning here.
Also, if 0 < p < o0, L,(R™) is the usual complex quasi-Banach space with
respect to Lebesgue measure, quasi-normed by || | Lp(R™) || Let ¢ € S(R™)
be such that

(3.1) suppd C {y € R": |y| < 2} and ¢(x) =1if |z| < 1;

put ¢o = ¢ and ¢;(z) = ¢(277x) — ¢(277F'z) for j € N. Then {¢;} give
a dyadic partition of unity: E;’;O ¢j(z) = 1 for all x € R™. Given any

f € §'(R"), we denote by f and fV its Fourier transform and its inverse

~

Fourier transform respectively, and recall that (¢;f)" is an entire analytic
function on R™.
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Definition 1. (i) Let s € R, 0 < p < oo and 0 < ¢ < co. Then B, (R™) is
the collection of all f € §’'(R™) such that

(6,0 L&) "

(3:2) |£1B5, )], = (32
j=0

(with the usual modification if ¢ = 00) is finite.

(ii) Let s € R, 0 < p < oo and 0 < ¢ < oo. Then F}, (R") is the collection
of all f € 8'(R™) such that

63 IAEE], = (2l P I) L )
=0

(with the usual modification if ¢ = c0) is finite.

The theory of these spaces has been systematically developed in [62], [63],
and in particular it has been shown that B; (R™) and F, (R") are quasi-
Banach spaces (Banach spaces if p,¢ > 1) which are independent of the
particular ¢ € S(R™) chosen according to (3.1), in the sense of equivalent
quasi-norms. We shall therefore omit the subscript ¢ in (3.2) and (3.3) in
what follows.

Definition 2. Let © be a bounded domain in R™ with C*° boundary.
(i) Let s € R, 0 <p < oo and 0 < g < oo. Then B, () is the restriction of
By (R™) to Q.

(ii) Let s € R, 0 < p < o0 and 0 < ¢ < oo. Then F};, (1) is the restriction of
F;, (R™) to €.

In other words, f € D'() (D(Q) = C5°(2)) is an element of B3, () if,
and only if, there exists g € B;,(R") with f = g|Q in D'(Q2); and

(34) 171855 ()| = inf [|g] B, (&™)

where the infimum is taken over all such g. Analogous considerations hold
for the spaces F);, (2). For each of the spaces B, (2) and F},(2) there is
an extension operator from 2 to R™, that is, a bounded linear map ext:
B;,(Q) — B;,(R") with ext flo = f for all f € B;,(Q2); and similarly for
F5.(Q). If x € S(R™) is such that x(z) = 1 for all x € 2, then x-ext is also
an extension operator.
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The B and F scales cover many of the well-known classical spaces. Thus
B3, () for s > 0 is the Holder-Zygmund space; B;, (), with s > 0,
1 <p<oo,1<q < oo, is the classical Besov space; ng(ﬂ)v with 0 <
p < 00, is the (non-homogeneous) Hardy space h,(£2), which coincides with
Ly(Q) if 1 < p < o0; and Fj»(2), when s € R and 0 < p < o0, is the
(fractional) Sobolev (-Hardy) space H, (£2), which is the (fractional) Sobolev
space (or Bessel potential space) when 1 < p < oo and coincides with the
classical Sobolev space W7 (Q2) when s € Nand 1 < p < co. We refer to [62],
[63] for a systematic account of this.

Alternative characterisations of these spaces are possible. In particular,
an intrinsic characterisation of H3(2) = F5»,(Q) (s € R, 0 < p < 00) can be
given. Given any f € L,(2) (0 < p < 0o) we define the difference (A} f)(z)
(x, h € R™) by

flz+h)— f(x) ife,o+heqQ,
0 otherwise.

@inw ={

Higher-order differences (A} f)(x) are defined by iteration:
(AR @) = AR AL (meNm>2).

We also need mean values of differences and set

(@ f) (@) =t / AT f ()| dh

Ihj<t

form € N, z € Q, t > 0. It turns out (cf. Triebel [63]) that if 0 < p < oo,
s>n(%—1)+,m€N,m>s,then

(3.5)

H3(Q) = {f € Linax(p,1)(2):

i@+ [ arnos) @] < ).

t
0

The choice of m € N, m > s is unimportant, different choices merely giving
equivalent (quasi-) norms. If s < n(% - 1) ,» we choose m € N so that

s+2m > n(; — 1), and define Hj(R") to be (—id—A)™ Hy**™(R"),
where A is the Laplace operator and H5"?™(R™) is defined as in (3.5) but
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with 2 replaced by R". Then H;(Q2) may be defined to be the restriction
of Hy(R™) to 2, and defined in this way it again coincides with F};,(Q2) (see
Triebel [63]). We remind the reader that when s € Nand 1 < p < o©
the space H, () = F;,(2) also coincides, up to equivalent norms, with the
classical Sobolev space

W, () = {u: Du € L,(Q?) for all a € Ny with |a| < s}

Triebel [63] has also given intrinsic characterisations of B? (€2) and F7 ()
via oscillations, derivatives and differences of functions if, as we have as-
sumed in this paper, 2 is a bounded domain with C* boundary and
5 > n(% - 1) 5 and with Winkelvoss [67] he has recently given atomic
characterisations of these spaces under very mild and natural restrictions
on ) (allowing a quite rough boundary 9) and for the whole range of
values of s, p and q.

3.2. Holder inequalities

Throughout this section 2 will stand for a bounded domain in R™ with
C® boundary. The classical Holder inequality may be written as

(3.6) L., ()L, () C L.(2),

where r1, 79 € [1,00] and 1/r = 1/r; + 1/ry < 1. This may be interpreted
as a statement that any g € L,,(Q) is a pointwise multiplier f — g¢f from
L., (22) to L.(£2). Sickel and Triebel [53] generalised this to the setting of
the spaces B, () and F7 (£2), and we shall need some of their results later
on, in the context of the space H;(€2). This is contained in the following

Theorem (cf. [53], [34]). Let ri, ro € (1,00) and suppose that 1/r =
1/r1 +1/ry < 1. Suppose also that

1
(3.7) sER and — + > > 0.
1 n

Then
(3.8) HY (H]] () € H (),
where

11
(3.9) —=-4+2

r T n
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and r§, 75! are defined analogously.

Note that if s = 0, then (3.8) coincides with (3.6), apart from limiting
cases. If s > 0, (3.8) gives what we shall describe as a Holder inequality at
the level s. To aid the understanding of this result we refer to Fig. 1 and

remark that any line of slope n in (1/p, s) diagram is characterised by the
point at which it meets the axis s = 0: if this point is (1/r,0), then any

1/p

Fig. 1

point on the line has coordinates (1/r%,s), where r* is defined as in (3.9)
above. Thus any g € H;. gives a mapping f—gf: Hﬁl(ﬂ) — HE.(Q),
characterised by the large dots in Fig. 1. The result (3.8) with s > 0 is
a special case of Theorem 4.2 of [53]. If s < 0, (3.8) follows from (3.8) with
|s| instead of s together with duality

1
+—==1, 1<p<oo,

(H,(R™)" = H,*(R"), v

SR

and restriction to €. Briefly, (3.8) simply means that Holder’s inequality is
shifted along the lines of slope n in the (1/p, s)—diagram to the appropriate
s-level.
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In the limiting case r; = oo, we have 1/rf = s/n and 1 <7y = r < 0.
As a consequence of more general results (cf. [53, Theorem 4.3]) we then
have

(3.10) HP()H.(Q) C H.(Q) if, and only if, s > n.

3.3 Entropy and approximation numbers

Here we give estimates for these numbers when the mapping in question is
an embedding from one function space in our scales of spaces to another. To
be able to present the results in a succinct form we shall let A7 (€2) stand for
either By () or F;, (), with the understanding that if 47 () = F, ()
then p must be finite. Once again Q will stand for a bounded domain in
R™ with C"*® boundary. The principal result in the non-limiting situations
which we are here handling is the following:

Theorem ([31,32]). Let —oo < s2 < s; < 00, suppose that pi, pa, qi,
g2 € (0,00] and assume that

11
(3.11) §:= s —sz—n(— ——) > 0.
p1 P2/ +

Let id: Asr (Q) — A2 () be the natural embedding. Then for the

P191 P292
entropy numbers ey (id) we have

(3.12) ex(id) x k= (s1==2)/m;
that is, there are positive numbers ¢, and ¢y such that for all k € N,
crk~rms2)/n <o (id) < ok~ (1m52)/

For the approximation numbers ay(id) the position is more complicated: if
in addition to the general hypotheses, either

(3.13) 0<pr <py <2
or
(3.14) 2<p1 <p2<0
or

(315) 0<p <p1 <00,
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then
(3.16) ar(id) < k=0,

if in addition to the general hypotheses,

— 1 1 1 1 1
(3.17) 0<pl§2§pg<ooamd/\:81 Sz—max(———,——§)>§,
n

then

(3.18) ay(id) <k

and if in addition to the general hypotheses,

(3.19) 0<p £2<p2 <o

then there are positive constants ¢; and ¢y such that for all k € N,

(3.20) k7 < ag(id) < ek,
where ¢ = min (1/2 —1/p2,1/p1 — 1/2).

Remarks. 1. The theorem as stated is proved in [31] and [32]. Of course,
special cases of this result hve been known for many years, and go back
to the work of Birman and Solomjak [7], [8], [9], [10], who showed that if
seEN, 1< p <p2<o0,8—n/p1 > —n/ps, then the entropy number ey, of
the natural embedding of the Sobolev space W (Q2) in L,, () satisfies
er < kis/n,

with the same estimate for the approximation numbers. Their method of
proof used the technique of piecewise polynomial approximations which is
due to them and which has been often used in modified and refined versions
since its introduction in 1967. Of these versions, that of spline approxi-
mation which, when combined with the so-called Ciesielski isomorphism,
enables problems of our type for Besov spaces B; () with p, ¢ € [1, 0] to
be reduced to corresponding problems for diagonal operators acting in ¢,
sequence spaces. For this approach and other earlier work on classical Besov
spaces we refer the reader to Carl [15], Konig [45], Linde [47], Pietsch [49]
and Triebel [61]. The approach of [31], [32] is completely different from this
earlier work, and is based on Fourier-analytical techniques for the spaces
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B;q(ﬂ) which work for all values of the parameters p and ¢; that is, for all
P, q € (1,00].

2. While the results in the theorem concerning entropy numbers are aes-
thetically pleasing, those for the approximation numbers appear less ele-
gant. Of course, this is partly due to the curious role played by the number
2 in (3.13)—(3.20), but this is simply a fact of life so far as these and other
width numbers are concerned and is well established in the literature: see
[45, 3.c.2, 3.c.7], [49, 6.4.14] and [47]. There is still a gap in the results:
what is the true rate of decay of the ay(id), if there is one, if (3.19) holds
but s1 — so < nmax(l —1/ps,1/ps)?

3. The different rates of decay given in (3.16) and (3.18) show that there can
be no unrestricted interpolation property for approximation numbers and
that there is no common best approximating operator covering all cases.

3.4. Rough indication of the proof of the Theorem

In view of the embeddings

Bzimin(pﬂ)(ﬂ) = szq(Q) = B;maX(p,q)(Q)
it is enough to deal with the B spaces. We may also assume, without loss
of generality, that & C @1, where @, = {z € R": |z;| <rforj=1,...,n}.
Let ¢ € C§°(R™) be such that suppy C Q2 and ¢(z) =1 for all x € Q.
Since
S E S n S2 n R S2
By (@) = {f: f€ B, (R"),supp f C @1} C B2, (R") = B2 (),

where F is an appropriate extension operator and R is the restriction op-
erator, it is enough to prove the theorem for the middle embedding. In
particular, f = ¢ f and hence, using the dyadic partition of unity, we use
the splitting

N [o%e)
Y (6 )Y+ Y (0 =fv+ Y, NeN

j=1 J=N+1

(321) f

Now let ||f|B;iq1 (R™)|| < 1, f € ¢ f. By pointwise multiplier and Fourier

multiplier properties, together with Nikolskij’s inequality (see Triebel
[62, (1.3.2/5)]) it can be shown that

(3.22) | FV1Bs2,, (RM)]| <27 Me.

Pp292
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~

To handle fy in (3.21) we need a representation formula for (¢, f)Y.

Expand (;ﬁjf in the cube Qg in a trigonometric series (in the sense of
periodic distributions):

(3.23) (6 = D ame™ ™ (£ € Quir),

mEZL™

where m-¢ is the scalar product of m € Z and £ € R™. Write 9, (£) = ¥(2*¢),
where A = A(n) is a positive number so chosen that

(¥ —0)277718;(€) = ¢;(€) HEER” and jeN

Then put, for an appropriate constant c,
(3.24) ~
fa(@) = cp(z) > (6, 1)" (279 m) (¥ — )Y (27T — 2m)

|m|<max(N262,2i+n/n)

so that the term fy in (3.21) may be decomposed as

N
(3.25) n=> fa+fve=Ffri+froe

j=0
Pointwise multiplier properties enable us to estimate the norm of fy 2 by

(3.26) el Bz, B < 2.

P29q2

This implies that

I = FnalBy g, (RM)]| < 277,
and since the map f — fy1 has rank less than ¢2"V it follows quickly
that ay(id) < ck~%/". A more refined analysis gives the other upper bounds
listed in the Theorem.

To obtain an upper estimate for ey (id) is a good deal more complicated:
it involves a detailed analysis of the geometric structure of the so-called
‘N-core’, which is defined to be

N
(3.27) | JA{f: £ e By, (R, || £IByL,, (R™)|| < 1,supp f C Q1 }.
j=0
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Further decomposition of fx; is needed:

K L N
fua =D fe+ > B+ Y s
j=0 J=K+1 J=L+1
and the various components of the N-core have to be covered in B;2  (R™)
by balls of appropriate radii. We refer to [31], [32] for the details, and for the
proof of the lower estimate for ey (id), which again depends upon a detailed
examination of the N-core.

As for the lower estimates for ay(id), these rely upon sharp estimates
for the approximation numbers of embeddings between finite-dimensional
sequence spaces. To explain this, recall that given any m € N and any
p € (0,00], £ is the linear space of all complex m-tuples y = (y;), endowed

with the quasi-norm

m 1/p

ol = (X lws1?)

j=1
if p < 0o, with the usual modification if p = co. The idea is to prove that
there is a positive number ¢ such that for all j, k € N,
(3.28) ay(id) > CQ—J'(Sl—52)4-]'7%(1/171—1/172)6%(idl)7
(where id,: KIIXj — ﬁf,\g’ (N; = 27™) is the identity map) and, as before, id

is the natural embedding of B;! () in B2  (©2). With the help of two
further bounded operators S and T we construct a commutative diagram

Bl () — B, ()
S | T
&Z)Vlj ﬂ) 4)\2"

such that idy = T oid oS. If such bounded operators can be found, then
ar(id) > [|S|I7H 1T ax (ide),

and this will reduce the estimation of ay,(id) to that of a(id,), provided that
|IS|| and ||T|| can be estimated in a useful way. To construct S, suppose
without loss of generality that 2 contains the unit cube @7 in R™, divide
Q, in the usual way into 2" congruent cubes of side length 277 and with
centres x”. Let ® € C*(R"™) be a standard bump function with support
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contained in some small cube centred at the origin, set ¢(x) = ®(27x) and
or(x) = ¢(x — 2”). Then we define S by

Nj
S{A} = Z Ar¢r(2)

and choose ® in such a way that the 2=7(1="/P1) 4 are atoms in B, (R™)

in the sense of Frazier and Jawerth (cf. [38] and [63, Theorem 1.9.2]). By

the atomic characterisation of By, (R™) given there we have

S0 HB3, (9 ||<c(zu ) 7 i,

where c is independent of j. As for T, we let ¢, be as above and define

Bf = {Zjn(Aéw—jhfv ¢)L2}7

where M € N is to be chosen appropriately, h € R™ with |h| ~ 1, and
AZM_ ;5, i the usual difference (appropriately interpreted if f is a distribution)
defined in 3.1. It turns out that

|BFIC || < c2™ i

By ()

where ¢ is independent, of j. These considerations give us the desired in-
equality (3.28).

The lower estimates for ay(id) now follow from the following lemma, in
which ay, stands for the k*® approximation of the natural embedding of o
in £7", where m € N, 0 < p < o0 and 0 < ¢ < oo.

Lemma ([32]). Let m € N be even.
(i) Let 0 < p< ¢ <2 and put k =m/2. Then oy < 1.
(ii) Let 0 < ¢ < p < oo and put k = m/2. Then

ap > emlt/a—1/p

for some positive constant ¢ which is independent of m, but may depend
upon p and q.

(i) Let 0 < p <2< ¢ < p' and k <m/2. Then

o < min(1, mk=1/2),



ENTROPY AND APPROXIMATION NUMBERS 51

The proof of the Lemma depends crucially on the fundamental work of
Gluskin [41] on the ay.

Remark 2. The results described in this section all require © to be a boun-
ded domain with C* boundary. For similar estimates of the entropy and
aproximation numbers of embeddings between weighted B and F' spaces on
the whole of R”, and with weights with at most polynomial growth, we refer
to the very recent work of Haroske [42] and Haroske and Triebel [43], [44].

4. LIMITING EMBEDDINGS

4.1. Orlicz embeddings

Throughout this section §2 will stand for a bounded domain in R™ with
C* boundary and, for the sake of simplicity, we shall deal with the (frac-
tional) Sobolev spaces H;(£2) which, as was pointed out in 3.1, are just the
spaces Fy»(Q2).

The results given in 3.3 show that if 1 < p < oo, then H./P(Q) is
compactly embedded in Lg(€2) for all ¢ € (0,00). There is no embedding
in the limiting space L (), but one can come quite near to this by means
of the Orlicz space Lo, (log L)_,(Q) (a > 0), which we recall is the linear
hull of the set of all (equivalence classes of) functions f:  — C such that

/exp(|f(x)|1/”)dx < 00;

Q

endowed with the (Luxemburg) norm

(4.1) inf {1 > 0: /exp(|f(sc)/)\|1/”) ar},

Q

Lo (log L) _,(9) is a Banach space. It is well known that H,?/p(ﬂ) is contin-
uously embedded in Lo (log L) _,(€) if, and only if, a > 1/p', the embedding
being compact if, and only if, a > 1/p’. This type of result goes back cer-
tainly to Trudinger [68] and Strichartz [59]; but in [1] references to earlier
Russian work will be found. (For very recent variants of this result and
for related work, see [26], [27], [28], [29] and [39].) After various upper
estimates had been obtained for the approximation and entropy numbers
of the embedding map I of the limiting space H./?(Q) in Lo (log L)_. (),
Triebel [64] made a striking advance by showing that

(4.2) ex() < k77 ifa> 1+z
p
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and

(4.3) ar(I) < (log k)P~ ifa>1/p.

For the remaining cases, there exist a positive number ¢ and for any £ > 0
a positive number ¢(¢) such that

(44) kTP <ep(I) < c(e)kT3 /Pt if1<a <1+ 2,
P

and
(4.5) ck=@=1/P) < e (1) < c(f—:)k:_%(‘l_l/pl)"'E if1/p' <a<1.

The result contained in (4.3) establishes a long-standing conjecture, and
(4.2), (4.4) and (4.5) disprove the conjecture that ey () behaves like ay(I), as
had been expected from earlier work on this limiting case: cf. [64] for a brief
account of the history of this. To obtain these results, Triebel reduced the
proof to corresponding estimates for embeddings in non-limiting situations,
and control of the constants in, for example,

e (id: H;/p(ﬂ) — Ly()) < cq TP,

He coupled these precise estimates with the observations that the space
Lo (log L) _4(9) consists of all f: @ — C such that

(4.6) sup a“||f|Ln/g(Q)|| < 00,
0<o<n

and that the expression in (4.6) gives a norm on L, (log L)_,(€) equivalent
to the Luxemburg norm (4.1).

4.2. The spaces L,(logL),()

The idea advanced here is that the results described in 4.1 and involv-
ing Lo (log L)_,(€) should be extended from this ‘L.-situation’ to an
‘L,-situation’ in which there should be analogues of the estimates (4.2)-
(4.5) obtained by using an L, analogue of the norm (4.6). We begin with
a formal definition of the well-known spaces L, (log L), (2).

Definition. Let 0 < p < oo and a € R. Then L,(log L),(f) is the set of
all measurable functions f: 2 — C such that

(4.7) / (@) log™ (2 + |f(2)]) dz < oo.
Q
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Remark 1. These spaces can be characterised by the non-increasing re-
arrangement f* of a function: we recall that this is defined by

fr@t) =inf {7 > 0: |[{z € Q: |f(z)] > 7} < t},

where |Qg| denotes the Lebesgue n-measure of a measurable subset 2y of
Q. It is shown in [5] that f € L,(log L),(?) if, and only if,
1]

(4.8) (/[(1 + |logt|)“f*(t)]p> dt < oo
0

The expression in (4.8) is, in general, only a quasi-norm but it is shown in
[5] that if 1 < p < co and a € R, the analogue of (4.8) with f*(¢) replaced by
)=t fot f*(s) ds defines a norm on L, (log L), (£2) which is equivalent
to the quasi-norm (4.8). Also, all these spaces are complete. Henceforth we
shall assume that L,(log L), () is provided with the quasi-norm (4.8), and
we may regard it as a Banach space if 1 < p < oo.

Remark 2. Let 0 < e < p < oo, —00 < ay < a; < 00. Since 2 is bounded,
we have the elementary embeddings

(49)  Lype() C Ly(log L), () C Ly(l0g L)y () C Lo ()
and

(4.10) L,(log L)-(2) C L,(®) C Ly(log L) . ().
Moreover, if —oco < b; < by < 0, then

(4.11) Loo(9) C Loo(log L)y, () C Loo(log L)y, (42).

This shows that the spaces L, (log L), (?) provide a refined tuning of the L,
scale.

Remark 8. It is also useful to have the Lorentz space version of
L,(logL)o (). Let 0 < p < 00,0 < ¢ < ocoanda € R. Then L, 4(log L), (£2)
is defined to be the set of all measurable functions f: Q@ — C such that

2
(4.12) (/[tl/m + |1ogt|)“f*(t)]q@) " < 00

t
0
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(with the obvious modification if ¢ = 00). It can be shown that this is
a quasi-Banach space with quasi-norm given by (4.12), and that for 1 < p
< 00,1 < g <ooanda € R, the functional obtained from (4.7) by replacing
f* by f**isanormon L, ,(log L), () equivalent to the original quasi-norm.
Of course, L, »(log L) (2) = L,(log L)o () and L, 4(log L)o(f2) is the usual
Lorentz space L, ,(2).

We can now give the promised alternative characterisation of the space
L,(log L),(2), confining attention to the case in which 1 < p < co. Follow-
ing the notation introduced in 3.2 we write

(4.13) 11,7
p p n
where
(4.14) l1<p<oo, c€R and 1<’ <.
For notional convenience we put
(4.15) o; =277, \j=-277 (j€N).

The phrase ‘small ¢ > 0’ will mean that p® satisfies (4.14) with ¢ instead of
o; the phrase ‘large J € N is to be similarly interpreted.

Theorem [34]. (i) Let 1 < p < oo and @ € R. Then L,(logL),(Q) is
a reflexive Banach space and C§°(f2) is a dense subset of it.

(ii) Let 1 < p < o0 and @ < 0. Then L,(log L), () is the set of all measur-
able functions f: Q — C such that

€

(4.16) ([l @"2)" <

0

for small ¢ > 0, and (4.16) defines a norm on L,(log L),(Q) equivalent to
the standard one. In addition, (4.16) can be replaced by the equivalent
norm

[ee]

) p\ /P
(4.17) (ZZJ‘”’HJ"ILP”J ]l )

j=J

for large J € N.
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(iii) Let 1 < p < o0 and a > 0. Then L,(log L), () is the set of all measur-
able functions g: Q@ — C which can be represented as

(4.18) 9=> 95, 9 €Ly (Q)
j=J

for large J, with
o) ) 1/

(4.19) (2 lglr @) < oo
j=J

The infimum of the expression in (4.19) taken over all admissible represen-
tations (4.18) is a norm on L,(log L), () equivalent to the standard one.

The proof of this theorem is given in [34]. Here we merely observe that
there is not much to prove in (i) in view of the characterisation of the
dual of L,(log L), () as L, (logL)_.(£) given in [4, Theorem 8.4]. More-
over, (iii) follows from (ii) by use of the Banach space (,(L,7; (£2)) of all
sequences F' = (Fj, Fyiq,...) with F; € L,»; (), normed in the natural
way; consideration of the subspace £3Y™ (Lpoj (Q)) which consists of all el-
ements F = (Fj,Fyyq,...) with F; = 279°f f € L,(logL)_,(Q); and
use of the Hahn—-Banach theorem. The heart of the matter is the proof of
(ii). Since CF () is dense in L,(log L), (€2), we must show that (4.16) is
an equivalent norm on L, (log L), () for f € C§°(?), when 1 < p < oo and
a < 0. First we prove the desired equivalence for the modified norm

€

w0 Il = ([ T Wit s 2"

0
where L. ,(Q) is the Lorentz space introduced in Remark 3. Since

»_,_9,
n

pa
we see that, from (4.12),

2]

||f|Lp”7p(Q)|| = (/top/n(f*(t))pdt)l/p.

0
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Thus
194 e
1l = [ (@) [omer e o

0 0

For small ¢ we write the inner integral as

€ ep|logt|/n
— ap
/U_‘”’_l exp (ﬂ| logt|) do = (£| logt|) / TP e T dr
n n
0 0

and note that the final integral tends to I'(—ap) as t | 0. Hence

12|

11,0 ~ / (F7(0)"(1 + | log £]) dt

0

which gives the equivalence needed. It is now comparatively easy to show
that || - ||p,e is equivalent to (4.16).

Remark 4. The advantages of the norms (4.16), (4.17) and (4.19) over (4.7)
and (4.8) are quite plain. They enable assertions which hold for L,(f2),
such as mapping properties of integral operators or pseudodifferential oper-
ators, to be carried over immediately to L,(log L), (), as long as accurate
information about any constants involved is available.

4.3. Embeddings

Let —00 < 85 < 81 < 00,0 < p; < 00 and 0 < py < oo. We recall
that (cf. [53], [62], [63], [66]), when © is a bounded domain in R™ with C'*°
boundary,

(4.21)

id: Hy! () — H,;2(Q) is continuous if, and only if, s; — I% > 59 — p%’
and
(4.22) id: H;! () — H,2(Q) is compact if, and only if, s; _p% > 59— p%

There is no embedding if s1 —n/p; < s3 —n/ps; and in the limiting situation

(4.23) 51— = = s — —,
b1 P2
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the embedding id is continuous but not compact.Taking so = 0 we see that

(4.24) id: Hy () — Ly, (),

with

(4.25) s> 0, 5_12_27 1<p <p2 < o0,
y4i P2

is continuous but not compact. We use this to form the L, counterpart of
the embedding

(4.26) H?(Q) — Loo(log L)1, ()
discussed in 4.1. The counterpart of the embedding
H}/?P(Q) — Log(log L) (), a>1/p,

is given by

(4.27) id: H, () — Ly, (log L)4 ()

with a < 0 and with conditions (4.25) holding. It turns out that this limiting
embedding is compact and so we seek to determine the behaviour of its
entropy numbers. With the strategy employed by Triebel in his work on

embeddings in exponential Orlicz spaces in mind, we first look for accurate
estimates in non-limiting situations. These are provided by the following

Proposition [34]. Let Q2 be a bounded domain in R™ with C* boundary
and suppose that 1 < p < oo and s > 0. Then given any ¢ > 0, there
is a constant ¢. > 0 such that for all ¢ > 0 with p° > 1 (recall that

1/p7 =1/p+a/n),
(4.28)  ep(id: H3.(Q) — Lypr () < cco™F/m=eg=s/m (g € N).
The proof is a ‘battle against the constants’, employing the same gen-

eral techniques as in [31], [32] and [64], plus an additional interpolation
argument; we refer to [34] for the details.

Now we can consider the limiting embedding
(4.29) id: Hp.(Q) — Ly(log L).(2), a<0

where 1 < p < 0o and s > 0. Of course, this is just a rewritten version of
(4.26). If a = 0, id is continuous but not compact; if a < 0, id is continuous,
by (4.10). Let e; be the &*" entropy number of id.
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Theorem. ([34]) Let Q be a bounded domain in R™ with C*> boundary
and suppose that

(4.30) l1<p<oo, >0, a<0.

Then the embedding (4.29) is compact.
(i) In addition, suppose that a < —2s/n. Then

(4.31) er < ks

(ii) Suppose that —2s/n < a < —s/n and ¢ > 0. Then there are positive
numbers ¢ and ¢, such that

(4.32) ck™s/" < e < c.kite (k € N).

(iii) Suppose that —s/n < a < 0 and € > 0. Then there are positive numbers
c and ¢, such that

(4.33) ck® < e < c.kTte (k € N).

This theorem may be considered as the counterpart of Theorem 3.2.3 of
Triebel [64]; see (4.2), (4.4), (4.5). Its proof follows a strategy similar to
that of Triebel’s theorem.

4.4. The spaces H;(logH),

Roughly speaking, these spaces are lifted versions of L,(log L), (2) which
are natural counterparts in an ‘Hj-situation’ of the spaces Lo (log L) ()
in an ‘Loo-situation’. Throughout this section @ will again stand for
a bounded domain in R™ with C'"*° boundary. Let 1 < p < oo and let
1/p° = 1/p+a/n, 0; =277, A\; = =277, as before. The phrases ‘small
e > 0" and ‘large J € Nare assumed to have the same meaning as that
given just before Theorem 4.2. To exhibit further connections with the
L,(log L), () spaces we introduce the space

(4.34) H3(Q) = {f € H(R"): supp f C Q}.

Definition 1. Let 1 < p < oo and s € R.

(i) Let a < 0. Then H;(log H).(f) is the set of all (complex) distributions
f € D'(2) such that

(4.35) (Z 29°P|| | Hzes () )1 < oo
i=J
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for large J € N. It is normed by the expression in (4.35).

(ii) Let @ > 0. Then H(log H),((2) is the set of all (complex) distributions
g € D'(9) which can be represented as

(4.36) g= Z gi, 9; € H;Aj (Q) for large J € N,
j=J
with
) ) 1/
(4.37) (S 2wyt @)]7) 7 < oo
j=J

It is normed by the infimum of all expressions in (4.37) over all admissible
representations (4.36).

(iii) Let a € R, a # 0. Then H;(log H),(Q) is defined as in (i) and (i) with
H instead of H.

Note that in view of the monotonicity properties of the spaces H(Q),
the norm (4.35) can be replaced by the (equivalent) norm

€

(433) ([ lnm @)™

0
for small € > 0. This corresponds to (4.16). Note also that
HY(log H),(®) = L,(log L) (%).
Put
(4.39) Anf=(-A+id)™f (m eN),
where A is the Laplace operator. Then A,, p and A, v, defined by

Am,Df = Amf7
(4.40)

S

dom A, p = {feHgm(Q). 87|39 :0f0rj:0,...,m—1}

and

Am7Nf = Amfv
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(4.41)
gitm

— 2m .
dOl’I’lAmJ\[ = {f € Hp (Q) W|39

:0forj:0,...,m—1,}
are the Dirichlet and Neumann realisations, respectively of A,,. Following
the arguments given in [61, 4.9.2], we have for the fractional powers A7 |,
and A7, v,

~ 1
(4.42) dom A}, p = Hg””(ﬂ), dom A7, \ = Hlf"”(Q) for0 <7< 3
and with appropriate interpretations we have, up to isomorphisms,
(4.43) AT NHSPPT(Q) = H3(Q), 0<s<s+2mr<m
and
(4.44)

58 mT —FS 1
A:mDHp+2 (Q)=H,(), -m<s<s+2mr<m, 0<7< 3

where H, () = H(Q) if 5 > 0 and H,,(Q) = H5(Q) if x < 0. In this sense
AT, v and AT 5, now even with |7] <1/2, provide isomorphic maps in the
way indicated. Further details will be found in [61, 4.9.2].

The connections mentioned above are those given in the following theo-
rem:

Theorem 1 ([34]). Let Q be a bounded domain in R™ with C*> boundary
and let 1 <p< oo, a€R.

(i) Let 0 < 7 < i. Then

(4.45) AL NLp(log L) (2) = Hg"”(log H),(Q),
(4.46) AT Ly(log L), (Q) = H2™7 (log H)u (9),
and

(4.47) AT pLy(log L)y () = H ™ (log H), (92).

(ii) For all s € R, C§°(R2) is dense in ﬁ; (log H) 4 ().



ENTROPY AND APPROXIMATION NUMBERS 61

(iii) If s > 0, then in the sense of the dual pairing between C§°(Q2) and
D'(Q),

(4.48) [Hy(log H)o ()] = H,;*(log H) o ().

(iv) If s € No, then
(4.49) Hpy(logH)u(Q) ={f € D'(Q): D*f € L,(log L).(Q) if |a| < s},

with the equivalent norm

(4.50) > I fIL,(log L)a () -

laf<s

Remark 1. The equivalent norm (4.50) and the practice of omitting the word
‘fractional’ from the phrase ‘fractional Sobolev spaces H” lead us to call the
spaces H(log H).(2) logarithmic Sobolev spaces despite the competition
offered by logarithmic Sobolev inequalities.

Remark 2. By (i) of the theorem, the embeddings in Remark 2 in Section

4.2 can be extended. Let 1 < p < oo and s € R. Then if ¢ > 0 and

0 <n<p—1wehave

(4.51)
HS

p+n

() C H:(log H).(Q) C H(Q) C H3(log H)-.() € H_, ()

together with similar embeddings with H instead of H.

We can now extend the results of 4.3 to the setting of logarithmic Sobolev
spaces.

Proposition 1 ([34]). Let

n n
(4.52) —o0<sy<s; <00, 1<p<ps<oo, 81—1)—:52—17—,
1 2

and suppose that a;, as € R. Then
(4.53) id: H,!(log H)q, () — H,2(log H)a, ()
is continuous if, and only if, as < a1; it is compact if, and only if as < a;.

For the proof we refer to [34].
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Corollary 1. Suppose that (4.52) holds, let a € R be such that
az < —2(sy — s2) and let ey be the k" entropy number of

(4.54) id: H;ll(ﬂ) — H;f (log H),,(Q).
Then
(4.55) e < k—(s1ms2)/n,

Proof. We use the liftings of the Theorem. Since (2 has the extension prop-
erty for all the spaces in question (cf. [63, 5.1.3] and its obvious generalisa-

tion to these spaces) it does not matter whether we use the H or H spaces.
Thus (4.55) follows from lifting and Theorem 4.3(i). O

Corollary 2. Suppose that (4.52) holds, let a1 € R satisfy 0 < a1 — 2(sy
— 55) and let e;, be the k" entropy number of

(4.56) id: Hy(log H)a, () — H;2(9).
Then
(4.57) ey < k=(==2)/m,

Proof. The idea is to use Theorem 1 of [13] which implies that if
T € L(X,Y) is compact and X is uniformly convex, then e, (T) < k=
(A > 0) implies that ey (T*) < k= also. Now if 1 < p < 0o and a < 0,
then fNI;(log H),() is uniformly convex (see [18] for related statements).
We apply Theorem 1 of [13] to (4.53) with a; =0, s =0 and H instead of
H. Then by (4.48) and lifting we obtain the desired result (4.57). O

So far we have restricted consideration of the spaces H(log H),(Q2) to
the situation in which 1 < p < co. We now remove this limitation.

Definition 2. Let 0 < p < o0, a € R, s € R. Then H;(log H),() is
defined just as in Definition 1.

If 0 < p <1 there is no direct connection with L,(log L), (), no dual-
ity and no immediate isomorphism properties such as those in Theorem 1.
Despite this the spaces, especially when a < 0, are useful. We give some
partial extensions of Proposition 4.3 and Theorem 4.3.
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Proposition 2 ([34]). Suppose that

n n
(4.58) —o0<sy<s; <00, 0<p<pr<oo, 81—])—:52—])—.
1 2

Then given any ¢ > 0, there is a constant c¢. > 0 such that for all ¢ > 0,
(4.59)
ek(id: H;ilf (Q) — H;;, (Q)) < 050—2(31—32)/n—5 k—(sl—sz)/n (k c N)
2
The proof is essentially the same as that of Proposition 4.3.

Theorem 2 ([34]). (i) Let

n n
(4.60) —o0< sy <8 <00, 0<p<pr<oo, 81—])—:52—])—,
1 2

2
(461) aq S 0, ar < a; — —(51 — 82).
n
Then
(4.62) e (id: HE (log H)a, (Q) — HE2(log H)ay (Q)) x k(172207

(ii) Suppose that

n n
(4.63) —oc0<sy<s; <00, 1<p<p<oo, 81—])—:52—])—,
1 2

2
(4.64) a1 >0, ay<a;— ﬁ(sl — 832).

Then (4.62) holds.

For the proof we refer to [34]. However, note that the restriction p; > 1
arises from duality arguments used in the proof; presumably this restriction
can be removed.
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5. APPLICATIONS TO EIGENVALUE PROBLEMS

Our object here is to apply the results described in the earlier sections,
and particularly those related to entropy numbers of embeddings, to study
the distribution of eigenvalues of degenerate elliptic (pseudo-) differential
operators. The operators studied typically have the structure

B =0,Cby,

where by and by are singular functions belonging to some function space such
as Hy, and C' may be the inverse of a regular elliptic differential operator
or a fractional power of it, or an (exotic) pseudodifferential operator. Much
work has been done on the symmetric case in which b; = b = b and C is
symmetric with respect to, say, the Lo inner product; in this case, provided
that b and C are compatible with the techniques used, excellent results
have been obtained about the distribution of eigenvalues, now counted with
respect to their geometric multiplicity. The work of Birman and Solomyak
[8]-[12], Rosenbljum [50, 51], Solomyak [57] and Tashkian [60] is especially
noteworthy in this connection. These results extend the classical theory of
the distribution of eigenvalues of self-adjoint elliptic differential operators
with smooth coefficients. Moreover, mapping properties of operators of type
b(X)a(D), including the distribution of eigenvalues, have been thoroughly
examined in a Hilbert space setting, mostly Lo(R™) : see Birman, Karadhzov
and Solomyak [6], Cwikel [21], Lieb [46] and Simon [54], together with the
references contained in these works. In these specific situations the deep
Hilbert space techniques employed by these authors often give better results
than those provided by the simple arguments to be given here; on the other
hand, these arguments are not confined to Hilbert spaces or symmetric
operators. We thus present our method largely (but not exclusively — see
5.3) for more general non-symmetric operators in Banach or quasi-Banach
spaces.

5.1. Regular elliptic differential operators

Throughout this section {2 will be a bounded domain in R* with C'*
boundary. Our object is to collect various mapping properties which origi-
nated in the work of Agmon [2] and Agmon, Douglis and Nirenberg [3], so
that they may be used in conjunction with our work on entropy numbers.
For details of these properties we refer to [51] and [52].

Let A be a properly elliptic operator,
(5.1) Af = Z ao(r)D*f,  where each a, € C>(Q),

lal<2m
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with boundary operators

(5.2) B;f= Z bjo(x)Df,  where each b; o € C*(09),
lee| <

withj=1,...,mand 0 < {; <--- < ¥, <2m — 1, which form a normal
system satisfying the complementarity condition. Under these conditions
{A;By,...,B,} is called a regular elliptic system: see [62, 4.1.2] for details.
We assume that

Af=0 in Q,
(5.3) .
B;f=0 ondforj=1,...,m
has only the trivial C* solution. Let
1
(5.4) 0<p< oo, sZn(——l) :
P +
Then A maps
(5.5) {f € H;"™(Q): B;f =00n dQ for j =1,...,m}

isomorphically onto H (2).

If we denote by As, the operator A with domain of definition (5.5),
then (5.3) ensures that 0 is not in the spectrum o(A4; ;) of A; ,, and thus
o (As,p) consists of isolated eigenvalues of finite algebraic multiplicity. When
1 < p < oo all this is contained in Agmon [2]; Triebel [62] gives a partial
extension to p < 1 and the full proof is provided by Franke and Runst [40].

Fractional powers will be needed later on. We consider the ground level
s =0and 1 < p < oo; write A, = Agp. The basic theory of fractional
powers is given in Triebel [61, 1.15] and its application to A, is covered by
[61, 4.9.1]: the fractional powers A7 can be constructed for every x € R (cf.
[61, 1.15]). If =1 < k < 0, then A7 is compact in L,(f2); and indeed it is
not hard to show (cf. [33]) that in this case,

(5.6) ex(Af) < k2meim,
We shall also need the inclusion
(5.7) dom(A)) ¢ HZMM(Q), |k <1,

where with the exception of those x such that 2m|k| — 1/p = ¢; for some
j € {1,...,m}, dom(AL!) is even a closed subspace of H2"!"/(Q). See
[33, 2.5] for further discussion of this point.
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5.2. Eigenvalue distributions

We shall consider the fractional powers A7, where A, = A, as in 5.1,
and shall write A™ for A7 as it will be clear frorn the context between which
spaces A® acts. Our goal is to study

(5.8) Bf=0A""b01f, 0< k<1,

where by and b belong to certain spaces L., (log L), (2) and L., (log L) ., ()
or to Hy:(log H),, () and H,:(log H)a,(f2), respectively. Initially we shall
confine discussion to the ground level s =0, 1 < p < co. In the theorem to
be given below B will be a compact operator in a certain L,(£): we denote
by ur the eigenvalues of B, ordered by decreasing modulus and repeated
according to algebraic multiplicity. The object is to estimate ||

Theorem 1 ([34]). Let Q be a bounded domain in R™ with C* boundary,
let

(5.9) r1,72 € (1, 00], 0<k<1, m €N
with

1 1 2
(5.10) 1> — +— ="

r1 T2 n

and let ay, az € R be such that
(5.11) — <

Suppose that
(5.12) by € L, (log L), (Q) and by € L,,(log L), ().

Then the map B given by (5.8) is compact in L,(?) and there exists ¢ > 0
such that
(5.13)

el < c||b1|Ly, (1og L)y ()| [|b2]Lr, (log L)a, ()| &2/ (k € N).

Sketch of proof. First suppose that as = 0, ro = 0o. Then by € L (Q);
assume without loss of generality that b = 1. We use the decomposition

B =by0idoA " 0ob
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with (see Fig. 2)

2mk

v

1/p /g 1 1/p

Fig. 2

bi: Ly — Ly(log L)ay, 1/q=1/p+1/r1,
(5.14) A~ Ly(log L)q, — H2™"(log H),,,
id: H?™*(log H)a, — Ly.

Here, and subsequently in the proof, we omit the symbol ‘2" from the
spaces. The first embedding follows immediately from Theorem 4.2 (iii)
and Holder’s inequality; the second is covered by (5.7) and Definition 4.4.
The last embedding is compact: by Corollary 4.4/2, if we observe that

4
(5.15) 2mK — = = —2, ap > ﬂ,
q p n
it follows that
(5.16) ep(id) < k—2me/n,

Use of Carl’s inequality (2.4) now gives (5.13).



68 D.E. EDMUNDS

Now suppose that a; = 0, 1 = 00, so that b € Lo (Q); again without
loss of generality we assume that by = 1. This time we use the decomposition

B =byoidoA™",
with
A" L, — Hgm“,
(5.17) id: H)™ — Ly(log L) _q,, 1/t =1/p —1/r3,
by: Ly(log L) _o, — L.

The first mapping is covered by (5.7), and the last mapping essentially comes
from Hoélder’s inequality, extended to the spaces L, (log L), : see Theorem
4.2. To handle id we apply Theorem 4.3. Again (5.13) folows.

Next, let a; > 0 and ay > 0. Choose k1, kg such that

dmrk dmk
(5.18) ar > nl, ay > n2, K1+ Ko = K,

use the decomposition
(5.19) B = (bgA7") 0 (A7"1by)

plus the first two stages of the proof and the multiplicative properties of
entropy numbers and obtain

(5.20) ex(B) < ck=2meln

from which (5.13) follows.

Finally, we have to deal with the cases a; < 0, az > 0or a; >0, az <0.
Then a;(—a2) > 0, and we use the decomposition

by: L, — L,(logL),,, 1/q=1/p+1/r,

A= Ly(log L)a, — H;™"(log H),,,

id: Hy™*(log H)a, — Li(log L) —a,, 1/t=1/p—1/ry,
by: Li(logL)_y, — L.

(5.21)

This time we use Theorem 2 of Section 4.4, coupled with the observation
that 2mr/n —1/q = —1/t, to show that

(5.22) ep(id) < ck=2me/n,
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and the rest follows much as before. O

Remark 1. Tt is plain from this proof that all we need of the fractional power
A7" is that it should have certain mapping properties; the rest is taken care
of by the entropy number estimates for id and the mapping properties of by
and by. Then A~ could be replaced by any operator with the right mapping
behaviour: in particular, it can be replaced by a pseudodifferential operator
in the Hérmander class S| 277 () (see [63] for details of this class) with
0 < 6 < 1. This idea is pursued in [34]; it is especially remarkable that even
the so-called exotic case § =1 is included. In [34] there is also an extension
of the theorem to allow, say b, to belong to a space of type H (log H).(92).

To give some impression of the scope of the theorem an example may be
hmmnLaﬂ:{yewum<1p}0<r<mmMAe&pm

(5.23) b(x) = |=|~"/"|log ||| .

It is easy to see that b € L.(log L),(Q) if, and only if,

1

Theorem 2 ([34]). Let Q be as above, let

ri,r2 € (1,00), 0<k<1, meN
with
1 1 2
(5.25) 1> — 4 — ="
r1 T2 n

and let A1, Ay € R be such that

11 1 1 1 4
(5.26) —<-<— and A1+A2>T—+—+ﬁ.
1

T, p T Ty n

Suppose that
bi(@) = ol loglal (5 =1,2)

and let A be a regular elliptic differential operator of order 2m. Then the
map B defined by
B =0bA""



70 D.E. EDMUNDS

is compact in L,(€) and there is a constant ¢ such that

a] < ck2m5 (k€ ),

Proof. The proof is immediate from Theorem 1 and the observation (5.24)
above. 0O

Remark 2. If by(x) # 0 and bo(x) # 0, a.e. and k = 1, then B is invertible
in L,(Q) and, at least formally, D = B!, D = b, ' Ab,' is a degenerate
elliptic differential operator, considered as an unbounded operator in L,(12).
Let {Ar} be the sequence of its eigenvalues, counted according to algebraic
multiplicity and ordered by increasing modulus. Then A\, = ,u;l and so

Al > ef|ba| Ly, (log L)y ()| [b2]Lr (log L)a ()| K2/

For elliptic operators of order 2m and with smooth coefficients it is well
known that the k" eigenvalue behaves like a multiple of 2"/ so that we
have the expected behaviour. If p = 2 and D is symmetric, with by = by = b,
then mild additional conditions are enough to ensure lower bounds of the
same form: thus if 1/b € C? in some subdomain of €, then by Courant’s
principle on the monotonicity of eigenvalues with respect to domain varia-
tions, |Ax| < ¢ k27m/™,

Remark 3. Note in particular that A; might be negative; of course, this
must be compensated by Ay so that (5.26) holds. For other examples see
[33] and [34]: [34] deals with a case in which

- 0
B=0pA" b1, —
2 ]2:; L]axjv

where by belongs to a space of the form H} (log H), () and the b; ; to spaces
L.(log L).(%).

5.3. The negative spectrum

Here we propose to estimate the number of negative eigenvalues which
certain differential operators may have. The key idea is to use the Birman—
Schwinger principle, which we now recall.

Let A be a positive self-adjoint operator acting in a Hilbert space H, let
V be a closable operator acting in H, let K: H — H be a compact linear
operator such that Ku = VA~ 1V*y for all w in dom(VA~1V*), and suppose
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that dom(A4) N dom(V*V) is dense in H. The Birman—Schwinger principle
(cf. [52, Theorem 5.3]) states that under these conditions, A — V*V has
a self-adjoint extension H, with spectrum o(H), and that

#{o(H) N (=00, 0]} < #{o(K) N [1, [|K][]}-

In view of Carl’s inequality (2.4) this can be immediately reformulated as

Theorem 1. Under the above assumptions,
#{o(H) N (=00,0]} < #{k € N: V2¢,(K) > 1}.

We shall now obtain upper estimates of the number of non-positive eigen-
values of the operator H, (acting in Ly(2)), where
(5.27) H,.f=Gf —aV,

and G = gA®g, g(z) >0 ae. in ,0< k<1, V>0ae in Q a >0 and
A is a regular elliptic, positive self-adjoint operator of order 2m. As before,
it is assumed that 2 is a bounded domain in R™ with C'*° boundary.

Theorem 2. Let 2 < r < oo and rmk = n, and suppose that

(5.28) V297 ¢ L,(log L), () with ra > 2.
Then
(5.29) #{o(Ho) N (—00,0]} < ca/?||V/2g7H L, (log L)o Q)"

for some ¢ > 0 which is independent of V', g and a.

Proof. We apply Theorem 1 of Section 5.2, with a; =ay =a and ry =79 =
T, to
Kaf — avl/Qg—lA—ng—lvl/Qf.

Naturally ey (K,) = aeg(K;). Then by Theorem 1 of Section 5.2 and the
Birman-Schwinger principle we simply have to count the k£ € N such that

1< cal|[VY2g7Y L, (log L)o ()] k727,
and (5.29) follows. O

Other results of this nature will be found in [33].

By way of generalisation of Theorem 1 we mention the following result,
contained in [34]: it is designed to illustrate how the H?(log H),(Q2) spaces
may be used.
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Theorem 3. Let Q be a bounded domain in R™ with C* boundary, let
r1, 12 € (1,00), m € N, with

1 1 2m
1>—+—=—,
r1 T2 n
suppose that
1 1 1 dm
—<-<1-—— and a>—,
T2 P 1 n

that s > 0 and that
by € H7. () and by € H (log H)q (),
and let A be a regular elliptic differential operator of order 2m. Then
B =0bA"h
is compact in H,.(Q) and its eigenvalues py, satisfy

el < cl|oa| ()] (|2l (log H)a ()| k727" (m € N).

The idea of the proof is to use the decomposition
B=byoidoA ! oby,

where

1 1 1
bi: Hpo — Hj. with — = — + —,
g P N
-1, s s+2m
ATt Hpo — HJ™,
id: H3:P?™ — Hy.(log H) g4, with a —e > 4m/n,
by: Hi(log H) oo — Hp..

For details we refer to [34]: here we mention only that the first embedding
is a consequence of the Holder inequality (3.8).
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