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Superlinear equations, potential theory
and weighted norm inequalities

IGoRr E. VERBITSKY

0 Introduction

We give a survey of some recent results on the solvability of certain super-
linear differential and integral equations with minimal restrictions on the
regularity of the coefficients and data, and related weighted norm inequal-
ities. Our approach is based on harmonic analysis and functional analysis
methods. We define function spaces intrinsically connected with the nonlin-
ear problems, and use discrete models for operators involved. Our charac-
terizations are not only sufficient but also necessary. A crucial role is played
by the corresponding weighted norm inequalities, with a careful analysis of
the embedding constants.

Note that we avoid using more sophisticated techniques of weighted
norm inequalities and nonlinear potential theory which are not applicable
directly to the solvability problems studied in this paper. However, many
notions and ideas developed in that framework are used here, sometimes
in a modified form. Moreover, our methods related to nonlinear equations
lead naturally to new characterizations and simpler proofs for some clas-
sical multidimensional integral inequalities which involve Riesz potentials,
Green’s potentials, and other integral operators.

In Section 1 we discuss joint work with N. J. Kalton [KV] on the existence
of positive solutions for superlinear integral equations of the type

w="T(u?) + f, u >0, (0.1)

where 1 < ¢ < 0o, f > 0, and T is a linear integral operator with positive
kernel K (z,y),

Tf(z) = /Q K(r.y) f@) dv(y), o€,
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on a measure space ({2,v). The main tool in our study of (0.1) is its con-
nection with weighted norm inequalities of the type

||T*h||L7’(dw) < C ||h||L7’(du)7

for all h € L?(dv), where T* is a formal adjoint operator, 1/p+1/¢ =1, and
dw = f9dv. Most of our results can be proved for arbitrary inhomogeneous
terms f > 0, measures v, and integral operators 7" under the assumption
that p(z,y) = 1/K(z,y) is equivalent to a quasi-metric on 2.

We consider a number of examples which can be reduced to (0.1) starting
from the following one-dimensional equation of Riccati type on the half-

line Ry :
y'(@) = v(@)y* (@) + w(z), y(x) 20, y(0)=0, (0-2)

with arbitrary nonnegative coefficients v and data w. Many different charac-
terizations of the solvability for this equation are known, as well as its con-
nection to the Schrodinger equation and Hardy’s inequality with weights.
(See e.g. [Har], [To], [Mu], [KuT], [G], [Im].

However, our primary motivation is to develop methods applicable to
multidimensional problems and higher order differential operators, including
the so-called g-Schrédinger equation [KV]

—Au=vul+w, u>0, (0.3)
or the multidimensional Riccati equation [HMV]
—Au=v|Vul! +w, (0.4)

where v and w are arbitrary nonnegative measurable functions (or mea-
sures). (See also [L], [AP], [BCal, [Ba], [BaP] for related results and alter-
native methods.)

More general differential equations with uniformly elliptic second order
operators in place of the Laplacian, as well as higher order equations and
equations with nonlocal operators can be attacked using a similar approach.
In particular, we give a criterion for the solvability of the following integral
equation with Riesz potentials I, = (—A)~%/2, 0 < a < n:

u(z) = /R _[ul? dv(y) + f(z), ze€R". (0.5)

n |z —y[re

This completes some earlier results of [VW1].
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In Sec. 2 we give a detailed proof of our main results on the solvability of
equation (0.1) for the integral operator T' on (R", v) whose kernel is defined
by

K(r,y) =Y cqxol(®) xo(y). (0.6)
QeD

Here cg is an arbitrary fixed sequence of nonnegative numbers, and D is
the family of all dyadic cubes on R™. This dyadic model makes it possible
to demonstrate in a clear way the main ideas of a more general construction
presented in [KV], where the geometry associated with the quasi-metric
p = 1/K was extensively exploited. (Note that for the kernel defined by
(0.6) the corresponding quasi-metric balls are dyadic cubes.)

We observe that dyadic operators of this type have been used previously
in the literature. In particular, some of our arguments resemble the original
proof of Th. Wolff’s inequality, which plays an important role in potential
theory. (See [HW], [AH], and also Sec. 4 of the present paper.) Similar dyadic
models were also applied to a number of linear problems, e.g., in the the-
ory of Triebel-Lizorkin spaces [FrJ], [V2], weighted norm inequalities [FSt],
[S2], [V1], [VW2], Schrédinger equations and Toeplitz operators [Ro], Haar
multipliers [NTV], etc. They are easier to investigate, and serve as a good
approximation for more difficult problems of harmonic analysis, potential
theory, and PDEs. Moreover, some concrete kernels which appear in appli-
cations can be reduced directly to (0.6). For instance, letting cq = |Q[*/"~!
we can characterize the solvability of the corresponding equation with Riesz
potentials (0.5).

In Sec. 3 we are concerned with the solvability of the multidimensional
Riccati equation

—Au = |Vu|? + w,

where ¢ > 1, and w is a nonnegative measurable function (or measure)
on (2. This equation is of a special interest because of its connection to the
Schrodinger equation Au 4+ wu = 0 in the case ¢ = 2. We also give criteria
of solvability for more general semilinear equations of the type —Au =
f(z,u, Vu) +w where f(x,u, Vu) < a|Vu|? +b|u|? (g1 > 1, ¢2 > 1). This
work is joint with K. Hansson and V. Maz’ya [HMV].

In Sec. 4 we discuss characterizations of the embedding of the Sobolev
space WP into L4(w), for an arbitrary measure w, in the difficult “upper
triangle case” ¢ < p. These results are joint with C. Cascante and J. Ortega
[COV].
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1 Superlinear equations and weighted potential
theory

Let (£2,v) be a measure space with o-finite measure v and let L°(v) be the
space of (equivalence classes of) Borel functions on §2. By L} () we denote
the cone of nonnegative functions in L°(v). In this section we are concerned
with superlinear inhomogeneous equations of the type

u="T(u?)+f, wueLl(v), (1.1)

where 1 < ¢ < o0, f € LY (v), and T is a linear integral operator on L°(v)
defined by

Tf(z) = /Q K(ry) f@)dv(y), z€ 2, (1.2)

where K(z,y) is a positive kernel function on 2 x 2. (More general theory
for arbitrary positive operators 1" which preserve Lgr(y) is developed in
[KV].) Let us denote by S = S, x the set of all f > 0 such that (1.1) has
a solution u € LY (v). We also define the space Z = Z, x which consists of
all f € L°(v) such that the equation

w=T@?) +elfl, uwe L), (1.3)

has a solution for some ¢ > 0, i.e., ¢|f| € S. Under certain mild restrictions
on K it can be shown that Z is a Banach space with norm defined by

Ifllz =inf{A>0: A\7'|f] € S}. (1.4)

Thus S consists of f > 0 lying in the unit ball of Z.

Tt is convenient to introduce a nonlinear operator A associated with (1.1)
defined by Af = T'(f?) so that (1.1) may be rewritten as u = Au+ f. Note
the following obvious properties of A:

AN = NAF, TAf + )] < (AH)Y9 + (Ag)H/e.

A crucial role in the study of the solvability problem for (1.1) is played by
the fact that Z turns out to be invariant under A.

A predual space to Z can be identified with the Banach space Z' of all
g € LY (v) such that

1 h?
ol =0~ { [ g 2ol <o
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where 1/p+1/g =1, and T* is a formal adjoint operator with kernel K (y, x).

In other words, the following dual reformulation of the solvability prob-
lem for equation (1.1) holds, which is essentially due to Baras and Pierre
[BaP] (a shorter proof along with some modifications can be found in [KV]).

Theorem 1. Let 1 < ¢ < oo and let f € L (v). Then (1.1) has a solution
if and only if

1 g?
fgdv < / dv, g>0.
/g pgP—t Jo (Trg)r—t

However, in this paper we are interested in more explicit criteria for the
solvability of (1.1). To this end we introduce the corresponding weighted
norm inequalities of the type

||T*h||LP(dw) < C ||h||Lp(du)7 he Lp(dy)v (15)

where 1/p + 1/¢ = 1. More precisely, the existence of a solution to (1.1)
can be expressed in terms of the best constants C,, in the weighted norm
inequalities

||T*h||L7’(fnqdu) <G, ||h||Lp(du)a h e Lp(dy)’ (16)

for the iterations f, = A"f, n = 0,1,2,.... Explicit estimates of these
constants, based on the techniques discussed in the next section, lead to the
following main result which holds for a wide class of “quasi-metric” kernels
K(z,y) ([KV]).

We say that K > 0 is a quasi-metric kernel if K is symmetric, i.e.,
K(xz,y) = K(y, ), and there is a constant x > 1 such that for all z,y,z € 2
it follows

1 1 1
K(z,y) =K K@) Kyl (1.7)

Under this assumption it is natural to introduce the quasi-metric p(z,y) =
1/K (z,y). Note however that we do not assume that K (z,z) = oo and so
p(x,z) > 0 is possible. We can then also define the ball of radius 7 > 0, i.e.,

B.(x) ={y: p(z,y) <r}

but note that this set can be empty. A large class of examples is created by
choosing a metric d on {2 and letting K (z,y) = d(z,y)~* for some a > 0;
this kernel defines a generalized operator of fractional integration.
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Theorem 2. Let 1 < q¢ < oo and let f € LY (v). Suppose that T is an
integral operator with positive kernel K.

(1) Equation (1.1) has a solution if T f%(x) < oo dv-a.e. and
T(Tf)(x) < CTfz) dv-a.e. (1.8)

with C = ¢~ 9p?1—9),
(2) Conversely, suppose that (1.1) has a solution and that K is a quasi-

metric kernel with quasi-metric constant k. Then (1.8) holds with a constant
C = C(q, k) which depends only on q and k.

Remark 1. Inequality (1.8) can be rewritten as
Af<CAf <o dv-ae., (1.8")

where the constant C' = ¢~ 9p?1~9 is sharp. The sufficiency of this condition
is not difficult to verify using simple iterations:

un+1:-/4un+fv n:071727"'7

starting from ug = 0. It follows by induction that if (1.8") holds with
C = q~9p?1=9  then

Up < Upy1, and f+Af <u, < f+p? Af. (19)
Hence there exists a solution u(x) = lim,,_. u,(x) such that
f(@) + Af(z) <ulz) < f +p Af (2). (1.10)

The same fact can also be derived from a well-known fixed-point theorem
for lattices which goes back to Garret Birkhoff (see [Bi], [KrZ]),

Remark 2. A simpler condition
Af <Cf< oo dv-ae., (1.8")

with C = ¢ !p'~? is obviously sufficient, but generally not necessary for
the solvability of (1.1) even for nice kernels K. However, it turns out to be
necessary if the right-hand side f of (1.1) is “smooth enough” as indicated
in the discussion below.

In the following theorems we concentrate on operators with quasi-metric
kernels K. A number of important equivalent reformulations of (1.8) in
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geometric terms (via the quasi-metric p(z,y) = 1/K(x,y)), as well as in
terms of the corresponding capacitary and weighted norm inequalities, are
listed below. Recall that we denote by B,(z) the ball of radius r centered
at x for the quasi-metric p. Since the kernel K (z,y) is now assumed to be
symmetric, we no more distinguish between T" and T*.

Theorem 3. Let 1 < ¢ < 0o and let f € L(}r(y). Let dw = f%dv. Suppose
that T is an integral operator with quasi-metric kernel K. Then the following
statements are equivalent.

(1) f € Z, i.e., for some € > 0 there exists a solution u of the equation
u="Tu?+¢f.
(2) The inequality

T(Tf)(x) <CTfYz) <oo dv-a.e.

holds, where C is a constant which is independent of x.
(3) Both the “infinitesimal inequality”

a B’I‘ y 1/‘1 o] Br w 1/10
sup esssup (/ ﬂdr) (/ %dr) < 00 (1.11)
a>0 zef? 0 T a r

and the weighted norm inequality

IT9llLr ey < Clgllr@y, g€ LP(v), (1.12)
hold.

The weighted norm inequality (1.12) in statement (3) can be replaced by the
corresponding weak-type inequality

IT'g]

Lo (dw) < CllgllLe(av), (1.13)

or by a testing condition of Sawyer type

/B[/B K(z,y) dw(y)]qdu(x) < C|B|., (1.14)

where B = B,.(x) is an arbitrary quasi-metric ball.

Remark 3. We call (1.11) the infinitesimal inequality because of the
method of the proof sketched in the next section. It boils down to
L (v)-estimates of (A" f)'/9" as n — oo derived from LP-estimates of the
type (1.12) with iterated weights dwy, = (A" )9 dv.
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Remark 4. Note that any one of the inequalities (1.11), (1.12), (1.13), or
(1.14) is generally stronger than the usual two weight Muckenhoupt condi-
tion which in this setting can be stated as

(1B (@)]) " (1B (2)|)7 < O, (1.15)

where the constant C is independent of z € (2 and r > 0. However, gen-
erally neither of the inequalities (1.11) and (1.12) implies the other one.
It can be shown using the results of [SWZ] that, for quasi-metric kernels,
(1.13)<(1.14), but our proof of Theorem 3 is independent of this fact.

Remark 5. Theorem 3 holds true for kernels which are not necessarily
symmetric. It is enough to assume that (1/K(x,y)) < p(z,y), where p is
symmetric and satisfies the quasi-metric inequality p(z,y) < k[p(z,z) +
p(y, z)]. (See also [VW2].)

The following version of Theorem 3 is important in applications to dif-
ferential equations, which in many cases are reduced to integral equations
whose right-hand side f has a special form. Usually f coincides with the
Green potential of the data of the original differential equation and is al-
ready “smooth enough”. To address this situation, we now assume that dw
is a given measure on (2, and that f = Kw, where Kw is the potential of w
defined by

Kcu(alc):/le’(x,y)dw(y)7 x € (2.

In this case we can simplify condition (1.8), which involves second iterations
A2 f = T(Tf9)4, by using only first iterations Af = T f4.

Theorem 4. Let 1 < q < o0, and let v, w be arbitrary o-finite measures
on (2. Suppose that T is an integral operator with quasi-metric kernel K
and f = Kw. Then the following statements are equivalent.

(1) feZ.

(2) T(f)(z) <C f(x) < oo dv-a.e.

(3) Both the “infinitesimal inequality” (1.11) and the weighted norm in-
equality (1.12) hold.

As in Theorem 3, the weighted norm inequality (1.12) in statement (3)
can be replaced by the corresponding weak-type inequality (1.13), or by the
testing condition (1.14).
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We now discuss connections with capacitary inequalities which charac-
terize the problems studied above in geometric terms. Let w be a o-finite
measure on {2. It is easy to see that the weak-type inequality (1.13) is
equivalent to the capacitary condition

|El. < C Cap (E), (1.16)

for all Borel sets E' C (2; here Cap (E) is defined by

Cap(E) = inf{/ g'dv: ge Lt (v), Tg> XE}~ (1.17)
7

This class of measures and its relation to embedding theorems for Sobolev
spaces and spectral properties of the Schrédinger operator were studied in
the pioneering work of V. Maz’ya in the early 1960’s and 1970’s (see [M1],
[M2], [M3], [AH], and the literature cited there).

In the case of Riesz potentials T' = I, on R* and dv = dx it is known
([M3], [AH], [VW1]) that conditions (1.12)—(1.14) and (1.16) are equiva-
lent to one another, and are strictly stronger than (1.11) and (1.15), which
coincide with Frostman’s condition

|B-(z)|, < C 7P

for all Euclidean balls B,.(z) of radius r. (Note that Cap (B,(z)) =
C(n,p,a)r™ *P in this case.)

These facts are generalized to integral operators with quasi-metric ker-
nels and any measure v under the following sharp restriction [KV] (see also
Theorem 9 below). Suppose that for some constant C' and every x € {2 and

a > 0 we have
“|B,(2)|, _1 [T B ()]s
[ ¢ [* By o
O T

1
a rlt+q

Roughly speaking this condition implies that the behavior of the kernel at
infinity dominates the behavior locally, which eliminates the need to use the
infinitesimal inequality.

Theorem 5. Let 1 < ¢ < 00, and let v, w be o-finite measures on (2. Let
K be a quasi-metric kernel on 2 such that (1.18) holds. Then the following
statements are equivalent.

(1) w satisfies the weighted norm inequality (1.12).

(2) w satisfies the capacitary condition (1.16) for all Borel sets E, or, equiv-
alently, the weak-type inequality (1.13) holds.
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(3) w satisfies the testing condition (1.14).
4) f=Kwe Z.
(5) There is a constant C so that T(f)? < C f.

Remark 6. The quantity on the right-hand side of (1.18) also appears in
the following two-sided estimate for the capacity of a ball B = B,(x):

B (z)|, -p/q
Cap (B) < (/ |Tl(7+q)|dr> ,

which is established in [KV] for a wide class of kernels K and arbitrary
underlying measure v. For Riesz potentials and v € A, this estimate is due
to D. Adams (see [AH]).

Remark 7. Hypothesis (1.18) of Theorem 5 can be replaced by the as-
sumption that for some C' and every z € {2, a > 0 both of the following
conditions hold:

r2 r2

2a a
/ 7|Br(x)|udt < C/ 7|Bt(x)|udr (1.19)
0 0
and

sup 7|BT @)l dr<C 7|B,«(x)|,, dr. (1.20)
z) JO 2 0

2
yEBa( T r

Conditions (1.19) and (1.20) essentially are assumptions that measure v is
close to being invariant for the kernel K.

We next outline connections of the general theory sketched above and
some classes of superlinear differential equations. We start our discussion
with the following first order ordinary differential equation:

y'(z) =v(x)y?(z) +w(z), 0<x<a, y(0)=0, (1.21)

where y, v and w are nonnegative locally integrable functions in (0,a),
0 <a < o0,and 1 < g < oo. This equation is equivalent to the nonlinear
integral equation

y(z) = /O VI dv(t) + fz),  O<z<a, (1.22)
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where f(z) = [ dw(t). Here dv(t) = v(t)dt and dw = w(t)dt. We can
rewrite (1.22) in the form y = T'(y?) + f, where

79(0) = | () du(t)

is a weighted Hardy’s operator. The kernel of this integral operator is not
symmetric, and the formal adjoint 7 is defined by

T*h(z) = / " hi) dv (),

The following theorem characterizing the solvability of (1.21) is essentially
known (cf. [Hi], [Har], [To], [G], and the literature cited there). A simple
proof along the lines presented above can be found in [Im].

Theorem 6. Let 1 < ¢ < oo, and let v, w be nonnegative locally integrable
functions on (0,a). Let f(z) = [ w(t)dt. Then the following statements
are equivalent.

(1) For some e > O there is a nonnegative solution (in a weak sense) of the
equation

y'(z) = v(z)yi(z) + ew(x), 0<z<a, y(0)=0.

(2) There is a constant C' independent of 0 < x < a such that the inequality
T t q x
/ (/ w(T) dT> v(t)dt < C / w(t) dt < oo
0 0 0
holds.

(3) The weighted norm inequality for T*,

J
holds, where 1/p+1/q =1, and C is independent of h € LP(v).
(4) There is a constant C independent of 0 < x < a such that

([ w0 dt>”" ([ o dty“’ <C<oo

p

/a h(t)v(t) dt

w(t)dt < C /0 ()| o(t) dt,
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It is easy to see that Theorem 6 remains true with obvious modifications
in the case where both v and w are replaced by measures v and w on (0, a).

We now discuss more difficult multidimensional problems. Our goal is
to characterize the problem of the existence of positive solutions for the
superlinear Dirichlet problem

(1.23)

—Au=v(z)u?+w(x), u>0 on {2
u=0 on df2,

on a regular domain 2 C R for ¢ > 1; here we assume that v,w € L _(£2)
are arbitrary nonnegative functions. We denote by G = G A, the Green

function of the Laplacian A on {2, and by Gu the Green potential
Gule) = [ Gla)ut)dy, e g
Q

The solvability of (1.23) is understood in the sense that u > 0 satisfies the
corresponding nonlinear integral equation

u=G(wu?)+Gw a.e.on . (1.24)

(More general problems with uniformly elliptic differential operators L in
place of the Laplacian, nonhomogeneous boundary conditions, and measures
v and w as coefficients and data, are considered in [KV].) It follows from
Remark 2 that (1.24) is solvable if

Gv(Gw)?] < C Guw,

where C = ¢~ 1p!—9,

To show that this condition with another constant C' is also necessary,
we have to do some additional work, since the general results stated above
are not applicable directly to (1.24). The problem is that the Green function
G(x,y) fails to satisfy the quasi-metric assumption

Lo, 1
Gle,y) = [Gl,2) Gy, 2)

even for the simplest domains {2, e.g. the Euclidean ball or the half-space.
(Note that there is an error in the proof of this inequality in [Bas], Theorem
3.6.) A weaker version, the so-called “3G-inequality” [ChZh]

G(z,y) G(y,2)

< _ 2—n _ 2—n
Gl2) SC(le =yl ™" +ly —=77"),
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is not sharp enough at the boundary of {2 for our purposes.

However, the situation can be fixed by means of a modified kernel
(introduced in a different form by Linda Naim [Na] in the theory related to
Martin’s kernels) which is defined by

G(z,y)
o(x)o(y)’
where §(z) = d(z,042) is the distance to the boundary. For bounded

CY! domains in R®, n > 3, it follows that the Naim kernel K (z,y) does
satisfy the quasi-metric inequality

K(z,y) = (1.25)

1 1 1
<
Eay =" |E@2 K2

which is stronger than the 3G-inequality mentioned above. This quasi-metric
property can be derived from the following two-sided estimate of G(z,y):

~ 6(x) 8(y)
GO = e~y + 6 + 5

(1.26)

The preceding estimate follows from the known results of [Wi] and [Zh]. (We
have recently learned that the quasi-metric inequality for K (z,y) stated
above was in a different but equivalent form found earlier in [Se]. Details
and additional references can be found in [KV].)

To pass from the Green kernel G to its modified version K, we use the
transformation @ = 6 ~'u, and set F = §~'Gw, dv(y) = 6*~?v(y) dy. Then
the original integral equation (1.24) is obviously restated in the equivalent
form

i =T(a% + F, (1.27)

where

Thiy) = /Q K (2,9) h(y) du(y).

and K (z,y) is the Naim kernel defined by (1.25). Note that the inhomoge-
neous term F has a special form

F(x)zé(x)_le(x):/QK(x,y)dM
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where dw = §(y) w(y) dy. Then Theorem 5 (see also Remark 2) gives neces-
sary and sufficient conditions for the solvability of (1.27):

T(F) < CF, (1.28)

with C = ¢~ 1p'~7 in the sufficiency part and C' = C(k, q) for the necessity,
where k is the quasi-metric constant of K. It remains to notice that when
(1.28) is translated back from K to G by using (1.25) and the relations
u =0, Gw = 6F, dv(y) = 69 v(y) dy, it gives the same condition

Gv(Gw)?] < C Gu. (1.29)

In other words, (1.29) is invariant under this transformation from G to the
quasi-metric kernel K.

Since estimate (1.26) is true for the Green function G g of any uni-
formly elliptic operator L with Holder-continuous coefficients ([Wi], [Zh]),
it follows that the corresponding kernel

I(L,Q(xa y) =

is also quasi-metric, and hence our theory carries over to a more general

equation

—Lu=v(z)u! +w(z), v >0 on {2,

@) @) - (1.30)
=0 on df2,

It would be of interest to determine for what other classes of operators
L the kernel K1 o(x,y), or its modification which involves an appropriate
function in place of §(z) (cf. [Na]), satisfies the quasi-metric inequality.
We sum up the preceding discussion as follows.

Theorem 7. Suppose that K o satisfies the quasi-metric condition. Then
(1.30) is solvable if and only if (1.29) holds, with the usual gap in the sharp
constants C.

Another proof of the necessity of (1.29) in the case of the Laplacian
L = A with a constant C = p — 1 was found later by Brézis and Cabre
[BCal. It is more direct and does not use weighted norm inequalities. On
the other hand, it does not involve any geometric interpretations of (1.29),
and is not applicable to nonlocal operators.
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Theorem 7 remains true if both v and w are replaced by locally finite
measures v and w on (2. Then (1.29) should be rewritten as

G[(Gw)ldr] < C Guw. (1.31)

For v = 1, ie., dv = dzx, and w compactly supported in 2, a different
characterization of the solvability of (1.30) was found earlier by D. Adams
and Pierre [AP] in the following capacitary form:

|E|, < CCapa,(E)

for all compact sets E C {2. Here Caps ,(E) is a capacity associated with
the Sobolev space W2P,

It is not obvious how to remove the restriction that w is compactly
supported and obtain a capacitary characterization which is valid up to the
boundary. We do this by using the following weighted capacity defined by

Cap (E) = inf {/Q g*6(x)' 7P dx . Gg(x) > 6(x) xe(x), g > 0}

for any E C {2.

Theorem 8. Let w be an arbitrary positive measure on a bounded domain
0 with CY' boundary. Then the Dirichlet problem

—Lu=uv'"+w, uw>0 on {2,
u=0 on 912,

has a solution if and only if (with a gap in the best constants) there is
a constant C' so that

/Eé(ac) dw(x) < CCap (E) (1.32)

for all compact sets E C 2. Moreover, (1.32) is equivalent to the pointwise
condition G[(Gw)?] < C Gw.

In the case where w is compactly supported (1.32) reduces to the
Adams-Pierre theorem since the capacity defined above is then equivalent
to Caps ,(E).

A similar Dirichlet problem for the multidimensional Riccati’s equation

—Au =v(2) |Vul! + w(x), v >0 on §2,
w=0 on 912,
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with |Vu| in place of u is more complicated. Some partial results are ob-
tained under the assumption that v is in some Muckenhoupt class. The case
where v = 1, which is of interest because of its connection to the Schrodinger
equation [HMV], is treated in Sec. 3.

We complete this section by giving a characterization of the solvability
problem for the nonlocal equation involving Riesz potentials on R™ which
was mentioned in the introduction:

u(zx) :/]R Mdu(y) + f(x), dv-ae. (1.33)

n o —y[nme

Here 0 < a<mn,u >0, f >0, and v is an arbitrary locally finite measure
on R™. In the case a = 2 this problem is closely related to (1.23) with
2 = R", n > 3. Note that the Riesz kernel obviously satisfies the quasi-
metric assumption (with k =1ifn —a <1 and k = k(ay,n) if n — a > 1).

Using the notation
d
Lov(z) = / v(y)
R

we rewrite (1.33) in a more concise form

u=I,(uldv)+ f, dv-ae. (1.34)
We also consider a similar equation

u=I,(uldv)+cf, dv-ae. (1.35)

for small € > 0. For any F C R"*, we define the corresponding capacity by

Cap (E) = int {/ g dv: La(gdv)(z) > xe(a), g > o},

where as usual 1/p+ 1/g = 1. Then the following theorem is an immediate
consequence of Theorems 2, 3, and 5.

Theorem 9. Let1 < g < oo and let 0 < a < n. For a locally finite measure
von R and f € LY (v), we set dw = f?dv. Then the following statements
are true.

(1) f € Z, i.e., (1.35) has a solution for some ¢ > 0 if and only if the
inequality

Iy [(Iow)?dv] < CIow < dv-a.e. (1.36)
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holds. Moreover, if (1.36) holds with C' = pi(*=9¢=9 then (1.34) has a so-
lution w such that f + I,(f?dv) <u < f+ p? I, (f?dv).
(2) f € Z if and only if both the weighted norm inequality

||Ia(hdl/)||Lp(w) <C ||h||Lp(,,)7 h € LP(v), (1.37)

and the infinitesimal inequality

1Bi(2)], 1" / |Be(@)] "7
1.
IE]}SE,I’)F>O{/O tn— atl dt r tn— oc+1 dt < ( 38)

hold, where B,(z) is a Fuclidean ball of radius r centered at x.

(3) f € Z if and only if both the infinitesimal inequality (1.38) and the
testing inequality

/B[Ia(xB dw)|*dv < C|B|,, (1.39)

hold, where B = B,(x) is a Fuclidean ball, and C' is independent of B.
(4) If v satisfies the estimate

0

tn a+1 ("7« a)q+1

T

then (1.36)<(1.37)<(1.39). Moreover, (1.40) is necessary in order that
(1.36)<(1.37).

(5) Under the assumption (1.40) each of the conditions (1.36), (1.37), and
(1.39) is equivalent to the capacitary condition |E|, < C Cap(E) for all
compact sets E C R™.

2 Discrete models and weighted norm inequalities

Let D be the family of all dyadic cubes on R", and let {cg}gep be a fixed
sequence of nonnegative numbers. We consider the kernel

T y) = Z €cQ XQ(Z') XQ(y)7 T,y € ]an (21)
QED

Note that, for = # v,
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where Q(z,y) is the minimal dyadic cube containing both x and y. To avoid
obvious complications, we assume that K(z,y) > 0, i.e., for any dyadic
cube P there exists ) O P such that c¢g > 0.

Also, just for convenience, we will impose the following additional as-
sumptions on the sequence {cg}:

(i) For any dyadic cube P,

ZCQ<OO;

Q2P

in other words, K(z,y) < oo if x # y.
(ii) For any z € R",

ZCQ:OO,

z€EQ

ie K(z,y) =0 ifx =y.

Under these assumptions the function p(z,y) defined by p(z,y) =
1/K(z,y) is a metric on R™. Moreover, it is easy to see that p(z,y) is
an ultra-metric, i.e., p(x,y) satisfies the inequality

p(z,y) < max[p(z, 2), p(y, 2)]- (2.3)

Kernels of this type will be called ultra-metric. The corresponding geometry
plays an important role in the sequel. In particular, it is easy to see that any
ball in this metric is a dyadic cube. For applications to nonlinear equations,
it is important that (2.3) makes it possible to estimate sharp constants C,,
in the corresponding weighted norm inequalities (1.6).

Let v be a locally finite measure on R™. The corresponding integral
operator with kernel K (z,y) is defined by

T f0) =Tflo) = corals /Q fdv. (2.4)

Theorem 10. Let 1 < g < oo. Let f € L% (v) and let dw = f9dv. Suppose
that T is defined by (2.4). Then the following statements are equivalent.

(1) f € Z, i.e., the equation
u=T(u?) +cf (2.5)

has a solution u € LY (v) for some & > 0.
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(2) There exists a constant C > 0 such that

T[T(f)]%z) <CT(f)(z) < o0 dv-a.e. (2.6)

(3) Both the infinitesimal inequality

1/q 1/p
sup ess sup{ Z cQ |Q|VXQ($)] { Z cQ |Q|w] < 00, (2.7)
PeD z€P Qcp QoPr
and the testing inequality
q
[ 2 celaore] av < cip. 2.

Ploce
hold for all dyadic cubes P.
(4) Both the infinitesimal inequality (2.7) and the weighted norm inequality
IThlliey < C bl e L), (2.9)
hold.

Remarks. 1. The testing inequality (2.8) is equivalent to the weak-type
inequality

|Th| Loy < CllRl|rw), h € LP(v).

The corresponding strong-type inequality (2.9) is characterized by a pair of
testing conditions, namely by (2.8) and its dual,

/ { Z CQ|Q|VXQ:|de <C|p|,. (2.10)

Ploce

These facts (cf. [VW2], [NTV]) are not used in the proof of Theorem 10
below.

2. Each of the inequalities (2.6)—(2.9) is generally stronger than the following
condition of Muckenhoupt type:

sup ¢ |Q[Y11Q|Y* < . (2.11)
QED

Proof of Theorem 10. We show that (2)=(1)=(4)=-(3)=(2). Note that the
implication (4)=-(3) is obvious since the weighted norm inequality (2.9)
implies the testing inequality (2.8) by duality. The proof of the remaining
implications is subdivided into the following six steps. O
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Step 1. (2)=(1).

The sufficiency of the pointwise condition (2.6) for the solvability of (2.5)
is a consequence of Theorem 2 above. Indeed, suppose that (2.6) holds with
e =C/ ((gp?=")?). Then by letting

Upt1 =T (u}) +cf, wo =0,

where u,(z) < u,y1(x), and arguing by induction, we arrive at a solution
w(z) = lim,_ o un(x) of (2.5) such that

ef +e1T(fY) <u<ef+ple?T(f9).

(See Remark 2 after Theorem 2 above.)

Step 2. (Decomposition into “upper” and “lower” parts.)
To each dyadic cube P € D, we associate the “upper” and “lower” parts
of the kernel K (z,y) defined respectively by

Up(z,y) = Y coxe(@) xo(y),

QCP
and
Ve(z,y) = Y coxo(®)xe(y), =,y €R".
Q2P
Obviously,

Uph(z) < Th(z), and Vph(z) < Th(z).

Proposition 1. Let T be defined by (2.4) and let P be a fized dyadic cube
in R™. Suppose h € LY (v) and Th < oo dv-a.e. Then, for every x € P,

Th(z) = Uph(x) + Veh(z) — cp /Phdu. (2.12)
Here

Uph(z) = / Up(z,y) h(y) dv(y),



Superlinear equations, potential theory 243

and
Voh(z) = / Ve(a,y) hly) du(y)

are respectively the “upper” and “lower” part of Th, and cp fP hdv is the
“diagonal term”.

The proof of Proposition 1 is obvious.
It is also convenient to define the “upper” and “lower” potentials of
a measure u by setting

Urn(a) = [ Ur(e.)duts) = - callno(@

QcCP
and
Veu(z) = / Ve(z,y) du(y) = Y c0 1@l va(@).
R Q2P

Using the notation introduced above, we can rewrite the infinitesimal con-
dition (2.7) in the form:

< o0. (2.13)

|wev@) s Vew() /s o

sup
PeD
Similarly, the testing inequality (2.8) can be restated as

/P[Upw(x)]q dv < C|P|a, (2.14)

for all dyadic cubes P.

Remark 1. The main advantage of using Up and Vp is that Up is a “self-
similar” restriction of T to the cube P, while Vp is constant on P: For
x € P,

Veu(z) = > colQluxe@) = Y cqlQl,. (2.15)
Q2P Q2P
Step 3. (Integration by parts inequality.)

Proposition 2. Let T be an operator defined by (2.4) and let 1 < p < oo.
Let h € LY (v). Then

[Th(@) < pTTh (ThY?~"(a). (2.16)
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Proof of Proposition 2. We will use the following elementary inequality:

(i ak> < pZak (Z aj>p_17 (2.17)

k=1 J=k

where 1 < p < 00, and 0 < a; < co. By (2.17),

[Th(x P—{ZCQ/ (ac)]p

QeD
< ¢ h(y) dv(y ¢ h(y) dv(y (z) B
sze;) Q/ y) xq(x L%:Q P/ y) xp(z
=1 Y ca [ b)) val) Vohte)
QeD

Now by (2.15), for  and y € Q, it follows that Voh(z) = Voh(y) < Th(y).
Hence

[Th(x)]” <p Y co / Th(y)}'~! h(y)dv(y) xo(x) = pT[h (Th)"~")(x).
QeD

The proof of Proposition 2 is complete. O

Step 4. (1)=(2.9).
To prove the necessity of the weighted norm inequality (2.9), we will
need the following proposition.

Proposition 3. Let T be an operator defined by (2.4) and let T(u?) < u
for some uw € LY. (v). Then the weighted norm inequality

(Th)Puldv < p? | WP dv (2.18)
/ /

holds for every h € LE (v).
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Proof of Proposition 3. Suppose h € L (v). By using Proposition 2, Fu-
bini’s theorem and Holder’s inequality, we get

/ (Th)? u dv < p / T[h (Th)" 1 u? dv
:p/h(Th)PflTuq dv

< IRl [ @y @uyray } v

1/q
< plllerco | [@nyatan |

[y du]l/p < pllh

provided the left-hand side of the preceding inequality is finite. The last
restriction is easy to remove by a standard argument, assuming first that
{cg} is a finitely supported sequence (see details in [VW2]). O

Hence

Lr(v),

Corollary. Let T be an operator defined by (2.4) and suppose that
1 < g < oo. If the equation u = T (u?) + f has a solution, and dw = f?dv,
then

IT'h|

ro(w) S Pll|Le ) (2.19)

for every h € L% (v).

The corollary is immediate from Proposition 3 since u > T'(u?)
and u > f. To complete the proof of Step 4, note that if the equation
u=T(u?) +¢f is solvable for some ¢ > 0, then by the Corollary the in-
equality

P
—o=t e

T h||Lr(w) <
holds.

Step 5. (1)=(2.7).
The proof of the necessity of the infinitesimal inequality (2.7) is based
on the following proposition.

Proposition 4. Let T be an operator defined by (2.4) and let 1 < g < oc.
Suppose that there ezists uw € LY (v) such that T(u?) < u. Set dw = u?dw.
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Then, for every dyadic cube P and x € P, the infinitesimal inequality holds:
[Upv(a)]V/? [Vpw(2)]1<C <00 dv-a.e. (2.20)

where C' is a constant which depends only on q. Here Up and Vp are the
“upper” and “lower” potentials defined above.

Proof of Proposition 4. Fix a dyadic cube P and x € P. As in Sec. 1, it will
be convenient to use the notation Au = T'(u?), so that A(Au) = A? Au for
A > 0. We also set

Apu=Up(u?) and Bpu=Vp(u?).
As was mentioned above, Ap is a “self-similar” restriction of A supported
on the cube P, and Bp is constant on P. (See (2.15).)

Tterating the inequality u > Au, we get
u(z) > Au(r) > ... > A"u(z) > A" Mu(x) > ... .
Since Apu(x) < Au(x), and Bpu(x) = const on P, we have, for x € P,
u(z) > A" u(z) > AB[Bpu)(z) > Ap1(z) [Bpu(z)]?" . (2.21)

Here

Ap1(x) =Upl[Up...(Upl)?...]%x)

is an iterated “upper part” of T applied to h = 1, and

Upl(z) = Upr(a) = 3 ¢ |Ql xo(@).
QCP

Since Ap is supported on P, it follows that (2.21) actually holds dv-a.e. on
R™.

We now estimate A%1(z) from below using Proposition 2 repeatedly
with 1+¢q, 14+q+¢%,...,1+q+¢*+ --+¢" ! in place of p. By induction,
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we get:

Apl(x) =Upl(x);

Ab1(z) = Up(Upl)i(x) > %M[Upm)]lﬂ;
Ap1(@) = Up(AB (@) > s VTP L @)1
> T A
1

A 1(2) = Up(Ap1)' (2)

T At )

x [Upl(z)]Het+d" "

Combining these estimates and (2.21), we obtain

n

ww) > [[a+a++-+¢)°
j=1

x [Upl(z)rete’ - +a" 7 [Vp(ud)(2)]7",  dv-aee.

n—j—1

We then raise both sides of the preceding estimate to the power 1/¢™:

—j—1

w@" > T +g+ @+ +¢)
j=1

x [UpL ()]0 07t [Vp (u) ()
Letting n — oo, we get

—j—1

1> [[0+a+ @+ +d) 7 [Upl@)]7T [Ve(u)(@)]  dr-ae.

j=1

Since the infinite product above converges for every ¢ > 1, and Upl = Upv,
Ve (u?) = Vpw for dw = u? dv, this estimate yields the infinitesimal inequal-
ity (2.20). The proof of Proposition 4 is complete. O

To show that (1)=(2.7), it remains to notice that if the equation
uw=T(u?)+e¢f has a solution, then v > T(u?), and v > ef. Hence
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fldv <e™? | ufdv for every Q € D, and by Proposition 4 it follows
Q Q
that the infinitesimal inequality (2.7) (with dw = f?dv) holds.

Step 6. (3)=(2)

To show that (2.7)&(2.8)=(2.6), we follow the argument used in [VW2]
in the case of Riesz potentials. Let dw = f?dv. The pointwise condition
(2.6) can be rewritten in the form

S coe(a) [ [Tul)lduly) < € Tu(a), (2.22)
PeD P

where

Tw(@) = Y ¢p|Pluxp(@).

PeD

Using the decomposition of Tw into its “upper” and “lower” parts (Step 2),
we have, for y € P,

Tw(y) = Upw(y) + Vpw(y).

By the testing inequality (2.8),

/P Upw(y)] dv(y) < C|Pla,
and hence

> coxe(@) [ U] dvly) < CTu(a).
PED P
It remains to prove
> con(a) [ Vew)]dvly) < CTul). (223)
PED P
Since, for y € P,
Vp(y) = const = Z cQ |Q|w,
Q2P
the preceding inequality is equivalent to

> cp|Plyxp(2) { PR |Q|w} < CTw(z). (2.24)

PeD Q2P
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From estimate (2.17), as in Step 3, we get
q g—1
[ T M <0 Y colQl [ S en |R|w] |
Q2P Q2P RDQ

Using this inequality and changing the order of summation, we see that the
left-hand side of (2.24) is bounded from above by

0 Y col@lxe@{ | T erPloeto)] [ 3 enlrl] }

QeD PcQ R2Q

Since the expression in the curly brackets is uniformly bounded by the in-
finitesimal inequality, this yields estimate (2.24), which completes the proof
of Step 6. Thus the proof of Theorem 10 is complete.

3 Criteria of solvability
for multidimensional Riccati’s equations

Here we present our joint work with Kurt Hansson and Vladimir Maz’ya
[HMV] on the solvability problem for the multidimensional Riccati equation

—Au=|Vu|?+w on {2, (3.1)

where ¢ > 1, and w is an arbitrary nonnegative measurable function (or
measure) on a domain 2 C R™. All solutions are understood in the usual
weak sense; i.e., u is a solution of (3.1) if u € W,29(£2) and

loc

/QVu-ngdx:/Q|Vu|q¢dx+/g¢dw (3.2)

for all test functions ¢ € C§°(£2). We also consider more general super-
linear equations of the type —Lu = f(x,u, Vu) + w where f(z,u,Vu) <
a(x) |[Vu|? +b(x) |u|? (1 < ¢ < 00,1 < g2 < o0), a and b are bounded
positive functions, and L is a uniformly elliptic operator.

In the case 2 = R"™, where our results are more complete, we estab-
lish explicit necessary and sufficient conditions for the existence of global
solutions, together with sharp pointwise estimates of solutions and their gra-
dients. For bounded regular domains {2 in R™, similar results are obtained
for the Dirichlet problem

—Au = |Vu|?+w on £,
(3.3)

w=0 ondfN
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in the case ¢ > 2. The case ¢ = 2 is intimately connected, via the substitu-
tion v = e*, with the classical problem of the existence of positive solutions
for the Schrodinger equation

{—Av:wu v>0 on {2,

v=¢ on df2, (34)

where ¢ = 1. This problem has been studied in the literature, but mostly for
regular enough potentials and bounded solutions. See [ChZh] where (3.4)
is studied in detail for w in Kato’s class. Some preliminary results on the
solvability of (3.4) for an arbitrary nonnegative potential w and boundary
data ¢ > 0 have been obtained very recently (joint work with Michael
Frazier).

We start with the following criterion for the existence of global solutions
for (3.1) on R™. Recall that the Riesz potential I, of order a (0 < a < n)
on R™ is defined by

Taf@) = ctn.e) [ L

S0 (3.5)
B |7 =t

where f € L] (R") and Jiapz1 12127 | (@)] da < oo. Similarly, for a locally

loc

finite measure v, the Riesz potential of v is defined by

Iyv(z) = c(n, ) / dv(t)

Rn | T — t|n7a

dt.

Note that I,v = 400 unless f|z|>1 |z|*~"™ dv(z) < o0.

Theorem 11. Let 1 < ¢ < 00, and let w be a locally finite measure on
{2 = R". Then there exist positive constants Cy and Co which depend only
on q and n such that the following statements hold.

(1) If (3.1) has a solution u € W24, then Lw < 0o a.e. and

loc
L[(Lw)Y)(z) < CLw(z) ae. (3.6)

with C < Cy1(gq,n).

(2) Conversely, if w < o0 a.e., and (3.6) holds with C < Cs(q,n), then
(3.1) has a solution u € Wlf)’f such that

|[Vu(z)] < C Lw(x) a.e. (3.7)

(3) If hw < o a.e., and (3.6) holds with C < Ca(q,n), then there is
a solution w such that

Lw(z) <wu(x) < C(g,n) Lw(z). (3.8)
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Remarks. 1. It follows from Theorem 9 that the pointwise condition (3.6)
is equivalent to the capacitary inequality

|E|w S C Cap l,p(E)a

for every compact E C R", where 1/p+ 1/¢q = 1, and the Riesz capacity
Capa,p (0 < a < n) is defined by

Cap a,p(E) = inf{”f”%? cIof 2 xE, fE€ Li(Rn)} (3.9)

If a = k is an integer, then this capacity is equivalent to the following
capacity associated with the homogeneous Sobolev space L*? (see [M3]):

Capp(E) = inf{||Vku||I£p u>xg, u€CT(RY)}. (3.9

2. It follows from the previous remark that ¢ = n/(n—1) is a critical
exponent for the solvability of (3.1) on R*: If 1 < ¢ < n/(n —1), then
Capy »(E) =0 for all E C R* (see [AH], Proposition 2.6.1); i.e., (3.1) has
no global solutions on R™ provided w # 0.

3.1f 1 < ¢ < 2, then condition [rw < oo a.e. is necessary in order that (3.1)
be solvable in a weak sense, and hence estimate (3.8) holds. This assertion
fails for ¢ > 2 (see examples in [HMV]).

Proof of Theorem 11. To prove statement (1), we introduce a natural space
of solutions of equation (3.1) as the class of u € Wli’cq with finite seminorm

V|t da\ V1
[l|ull| = sup{ (%) : Cap1,(E) >0, E compact}. (3.10)
Lp

O

Proposition 5. Let 1 < ¢ < o0 and let 1/p+1/q = 1. Let w be a locally
finite measure on 2 = R*. If (3.1) has a solution u € W27 then

/|h|p |[Vul?dz < C / |Vh|P dx (3.11)
and
/|h|pdw <C /|Vh|pdac (3.12)

for every h € C§°, where C' s a constant which depends only on p.
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In particular, it follows from Proposition 5 and Remark 1 that all weak
solutions u satisfy the inequality |||ul|| < C(gq,n).

Proof of Proposition 5. Without loss of generality we may assume that the
test functions h in both (3.11) and (3.12) are nonnegative (see [M3]). Let u
be a solution to (3.1). Then setting ¢ = h? in (3.2), we get

/—A(hp) udr = /|Vu|q h? dz +/h7’ dw. (3.13)
Rewriting the left-hand side of the preceding equation as
/Vu -V(h?)dz =p /(Vu -Vh)h?~t da,
we have
p/(Vu~Vh) hP dz = /|Vu|thdac+/hpdw. (3.14)

By Hoélder’s inequality

1/q
/hp dw <p (/ |Vu|?hP dac) [IVh]|

On the other hand, from (3.14) we get

Lo (3.15)

/|Vu|th dr <p /(Vu -Vh)h?~tdz

1/q
< p|IVh||Le </|Vu|th dx) .

Since the right-hand side of the preceding inequality is finite, we obtain
[ vt de < VI, (3.16)
which proves (3.11). Combining (3.15) and (3.16) we get (3.12). The proof

of Proposition 5 is complete. O

By the standard properties of the Riesz transforms [St], (3.12) is equiv-
alent to the following imbedding theorem for Iy,

[ 11h]

LP (w) < C||h||ze, heLP,
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which by Theorem 9 is characterized by the pointwise condition (3.6). This
completes the proof of statement 1 of the theorem.

To avoid some complications at infinity, we will sketch the proof of state-
ment (2) of Theorem 11 only for w such that Ihw < oo a.e., i.e., under the
additional restriction flwl>1 |z]*~™ dw < oco. If this condition is violated,

then a solution u to (3.1) can still be constructed provided (3.6) holds, but
in this case u possibly changes sign and has some growth at infinity (see the
general case and examples in [HMV]).

Since by our assumption lhw < oo a.e., it follows that (3.1) is solv-
able if there is a (nonnegative) solution to the following integro-differential
equation:

u=L(|Vu|?) + hw, (3.17)

where Ibw = (—A) !w is the Newtonian potential of w. Now we construct
a solution of (3.17) under the assumption (3.6). We set ug = low and

Uk41 :IQ(|VU]C|q)+IQ(U, k=0,1,2,.... (318)

Proposition 6. Suppose that uy, are defined by (3.18). There exists a con-
stant 0 < C' < 1 which depends only on q and n such that if

L[(Lw))(z) < CLw(z) < o0, (3.19)
then the following inequalities hold:
|[Vug(z)| < a Lw(z), (3.20)
and
|Vagy1(2) — Vg ()] < bk Lw(z) (3.21)
where the constants a, b, and ¢ depend only on q and n.

Proof of Proposition 6. We first prove (3.20), which is obvious if £ = 0. We
show by induction that

[V (2)| < a, hw(). (3.22)
It follows from (3.19) that

Vi (@)] = VL Vur(@)|*] + VEw(@)| < Cn) [L[Vux ()] + Lw(a)].
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By (3.22) and (3.19),
I |Vug(2)|* < Llag (Lhw)]? =af [I(Liw)? <a] CLw.
Combining these estimates, we get
[Vugsr(z)| < agpgr Lw(z), (3.23)
where
a1 = C(n) (af C +1).

It is easily seen that for C = C(n,q) small enough it follows that
a = limy_, o a < co. This proves (3.20) with a constant a which depends
only on n, q.

We next prove by induction that (3.21) holds. Note that w; — ug =
I |Vugp|?, and hence

|[Vuy — Vug| < C(n) I1|Vue(z)|? < C(n)a? I ([ w)4.

Then
|Vuy — Vug| < bo L, (3.24)
where by = C'(n)a? C and C is the constant from (3.19).
Similarly,
g1 — up = L[ |[Vug|? — [Vug-1]?]
and hence

Vs = Vur| < C(n) I [ [Vug]* = [V |7]].

Using the inequality |77 — 57| < q|r — s| max(r,s)?" ! with r = |Vuy| and
s = |Vug_1]| together with (3.20) we have

| [Vur? — [Vur_1|Y < qa|Vur — Vugr_1| (Lw)? . (3.25)
From this we obtain
|Vaper — Vug| < C(n)galy [|[Vur — Vur_q| (Lw)?]. (3.26)
Suppose

|Vuk — Vuk_1| < by Lw.
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Then by (3.26)
Vg1 — Vug| < C(n,q) by I (Liw).
Using (3.19), we see by induction
[Vugyr — Vug| < by hw,
where by+1 < C(n,q) Cby and C is a constant in (3.19). Thus
br1 < [C(n,q) C 1 bo,

where by = C'(n)a? C. Choosing C in (3.19) so that ¢ = C(n,q)C < 1, we
complete the proof of Proposition 6. O

Proposition 7. Suppose that uy are defined by (3.18). Then

[urg1(x) — ug(z)] < cC* Lw(x), (3.27)
where the constants ¢ > 0 and 0 < C < 1 depend only on ¢ and n.
Proof of Proposition 7. Applying (3.25) and Proposition 6, we obtain

w1 (2) =g ()| = | B[[Vup|? = [Vup—1]7]] < C L] | Vag|* = [Vug—1 ||
< CI [|[Vug — Vug_1| (Hhw)? ] < cCF Lw(z).

The proof of Proposition 7 is complete. O

We now complete the proof of statements (2) and (3) of Theorem 11.
Let

00
U + Z uk+1 — Uk (l’)],
k=0

where ug = Iow and uy, are defined by (3.18). By Proposition 7,
w41 (2) — wr(2)] < e C* Buo(a),
where 0 < C' < 1. Hence u(z) = limy— o ug(x) and
lu(z)| < C Lw(z) ae. (3.28)
Moreover, by Proposition 6,

|Vugir(z) — Vug(z)] < bC* Lw(x)
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and hence
[Vu(z)| < C Lw(z). (3.29)

By Theorem 9 it follows that w satisfies the inequality |E|., < C' Cap1,(E),
and a similar estimate is true for dw;(z) = (Iw)? da:

/ ([w)?dx < CCapp(E),
E

for any compact set E (see also [MV]). In particular, it follows from (3.29)
that u € W,>%, and

loc

|Vu|?da\ 1/
i = sup{ (42 Capy) > 0 < ctam),
;P

Let ¢ € C§° be an arbitrary test function. Since

k— oo

Vu(z) = lim Vug(x) = Vug(z) + Z Vg1 (z) — Vug ()]
k=0

a.e., we have

/V¢~Vukdx—>/v¢~Vudx, /¢|Vuk|qu—>/¢|Vu|qdac

as k — oo by the dominated convergence theorem. By (3.18)

/ws-wk+1 dx:/¢|Vuk|qu+/¢dw

Letting k& — oo in the preceding inequality, we obtain

/V¢-Vudx:/¢|Vu|qu+/¢>dw.

Thus u € W17 is a (weak) solution to (3.1), and the estimates (3.7) and

loc

(3.8) hold. The proof of Theorem 11 is complete.

The following corollary gives new pointwise estimates for positive solu-
tions of the Schrodinger equation

—Av = wv, v >0, (3.30)

which, as was mentioned above, is equivalent to (3.1) with ¢ = 2 and
u = logwv.
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Corollary. Suppose that w is a locally finite positive measure on R™.

(1) If (3.30) has a nonnegative (weak) solution v, then I1w < 0o a.e. and
Il[(Ilw)q](x) S Cl Ilw(x), (331)

where C1 depends only on n.

(2) Conwversely, there exists a constant Co depending only on n such that
if (3.31) holds with Cy in place of Cy, then there is a positive solution v
to (3.30).

Moreover, the following estimates hold:

|[Vliegv(z)| < CLw(x), (3.32)

/ |Vlogwv(z)|? dz < C Cap;2(E) (3.33)
E

for all compact sets E. If in addition Iohw < oo a.e., then
Lw(z) <log v < C Lw(x), (3.34)
for some C > 0, where all constants depend only on n.

Results similar to Theorem 11 hold for more general superlinear inho-
mogeneous equations of the type

—Lu = f(x,u, Vu), (3.35)

where f(z,u, Vu) < a(z) |Vu|? +b(z) |u]|?? +w(z), L is a uniformly elliptic
second order operator, and ¢, g2 > 1.

As above, we are interested in sharp solvability results for an arbitrary
nonnegative inhomogeneous term w # 0. For simplicity, we consider the
solvability problem on R™ for the equation

—Au =a|Vu|® +b|u|? + w, (3.36)

with constant coefficients ¢ > 0, b > 0, and arbitrary measure w. The
solvability of this equation is understood in a weak sense, i.e., there exists
we Wh™n L such that

loc

/Vu~V¢dx: /a|Vu|‘“ ¢dx+/b|u|q2¢dx+/¢dw, (3.37)
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for all ¢ € C§°. One can actually show that, if b # 0, there exists a nonneg-
ative solution u € W,-% N L | or equivalently

c loc?
w=ILa|Vu|")+ L(bu®) + Lhw+c ae., (3.38)
where u > 0, ¢ > 0 and I, = I? is the Newtonian potential.

Theorem 12. Let 1 < ¢; < oo and 1/p; + 1/q; = 1, i = 1,2. Let w
be a locally finite measure on R™. Then there exist positive constants Cj,
j=1,...,6, which depend only on q; and n such that the following state-
ments hold.

(1) If equation (3.36) with constant coefficients a,b > 0 has a solution

u € I/Vli’cql NLE., then
&
L[(Lw)")(z) < wa)(x) <o ae., (3.39)
and
Cy
L[(Lw)®](z) < Tlgw(x) <o a.e (3.40)

(2) Conversely, if the inequalities (3.39) and (3.40) hold with the constants
C3 and Cy in place of Cy and Cy, then (3.36) has a solution u € Wlf)’fl NLE.
such that the following inequalities hold:

[Vu(z)| < Cs [Lw(x), Lw(r) <u(z)<Cslw(r) ae. (3.41)

Remarks. 1. It can be shown that any solution « € W, N L{2_ of (3.36)

loc

(with constant coefficients a and b) satisfies the estimates
[ (@IVal - bjuf) de + |EL < 0! Clar) capr i (E),
E
/ (@|Vul® + blu|®) de + |El < b7 Cgz,n) caps.p, (E),
E

for all compact sets E; here capa,,(-) is the capacity of order o = 1,2.
In particular, a nontrivial global solution to (3.36) may exist only if
nf(n—1)<q <ooand n/(n—2) < g < 0.

2. It follows from the known relations between Riesz capacities (see [AH],
Theorem 5.5.1) that, for p; = 2 po, the inequality

capi,p, (E) <cC capz p, (E)
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holds with a constant C' independent of compact sets E C R"; in this case
the second term on the right hand side of (3.36) is “dominated” by the
first one. In all other cases the contributions of the nonlinearities involving
|[Vu|? and |u|? are generally not comparable.

In the case of a bounded regular domain {2, we only state the following
theorem [HMV]. For any compact set E C {2, set

Cap p,o(E) = inf {||hl[}y1.0) 1 b > xE, h € CG7(2)}

Theorem 13. Let 1 < ¢ < oo and 1/p+1/q = 1. Let 2 be a bounded C
domain in R™. Let w be a locally finite positive measure on {2. Then there
exist positive constants Cy and Cy which depend only on q, n, and {2 such
that the following statements hold.

(1) If (3.1) has a solution u € W,

loc

1(92), then the inequality
|E].. < C Capp,q(E), (3.42)

holds for all compact sets E C 2 with a constant C < Cy(gq,n).

(2) If 2 < g < o and (3.42) holds with C < Cs(q,n, $2), then (3.1) has
a solution u with zero boundary values.

(3) The solution uw whose existence is claimed in (2) satisfies the inequality
[Vu(z)| < CLw(z) ae. on 12, (3.43)

with a constant which depends only on q, n, and {2.

4 Wolfl’s potentials and trace inequalities

We consider the trace inequality

1o fllza@w) < ClfllLr(da), f e LP(RY), (4.1)

for 1 < p< o and 1 < ¢ < oo, where w is an arbitrary measure on R”,
and I, f(x) = (=A)"*/2f = ¢(a,n) |2|* ™ f is the Riesz potential of order
0 < a < n. Note that in this section we change our notation and assume
that p and ¢ are generally unrelated to each other; a conjugate exponent to
p will be denoted by p’, so that 1/p+1/p’ = 1.

If @ = k is an integer, then (4.1) is equivalent to a generalized Sobolev

inequality
{/w |u(x)|qdw(x)}1/q <C {/n V()P dx}l/p7 (@1
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for v € C§°(R™). Similar inequalities are of interest for Bessel potentials
Jof = (1= A)"%/2f and in particular for (inhomogeneous) Sobolev spaces
WP with the norm

lullwer = 1V ull 2o + [Jul| s

on the right-hand side of (4.1"). As was mentioned above, a systematic study
of these inequalities and their applications was started by V. Maz’ya more
than 30 years ago (see [M3]).

The classical case ¢ > p > 1 of this problem is now well understood
([AH], [M3], [S3]). In the easier case ¢ > p, an elegant theorem of D. Adams
says that (4.1) holds if and only if the following Frostman condition is valid:

|B,(z)|, < Crin—apa/p

for all balls B,.(z) of radius r. In the diagonal case p = ¢ a complete char-
acterization of the class of measures w such that (4.1) holds can be given in
terms of Riesz capacities defined by

Capa,pw):mf{ [ oran:gern@) fagsz} (42)

for a Borel set E C R™. Then (4.1) holds for p = ¢ (Maz’ya, D. Adams,
Dahlberg) if and only if

|E|, < CCapqop(E)

with a constant C which is independent of E. (Another proof of of this
fact which is valid for more general convolution operators was obtained by
Hansson [H].) An equivalent testing condition

/ L (x5 dw))” dz < C|Bl..
B

where C is independent of B = B,(x), was found by Sawyer along with
its two weight generalization [S3] (see also a new proof in [NTV]). Simpler
proofs of these results, as well as similar estimates for Green’s potentials
and Poisson integrals (Carleson measure theorems) can be given using the
ideas discussed above. (Cf. Theorems 5 and 9 above.)

The “upper triangle case” ¢ < p is considered to be more difficult and
less studied. The following capacitary characterization of (4.1) is due to
Maz’ya and Netrusov [MNe]. (An earlier version of this result can be found
in [M3].) For a measure w on R™ define the function ¢ by

o(t) =inf {Cap o ,(F): |Flo, >t} (4.3)
if 0 <t <w(R") and ¢(t) = +oc if t > w(R™).
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Theorem 14. Let 0 < ¢ < p < o0 and p > 1. Let w be a locally finite
measure on R". Then (4.1) holds if and only if

I 56] e L (14)

There is a non-capacitary characterization [V1] of the inequality (4.1)
in the “upper triangle case”, but it is very cumbersome. However, for the
fractional maximal operator M, (0 < a < n) defined by

1
My f(x) = EI;ISW/BT@) | f(t)] dt,

the corresponding weighted norm inequality

IMafllza@w) < Cllfllerae), — f € LP(R™)
for 0 < ¢ < p, p> 1, can be characterized by the following condition [V1]:

Moy w = sup M e LI~ (dw). (4.5)
r>0 TP
In this section we present a new non-capacitary characterization of the
embedding (4.1), which is analogous to (4.5) in a sense, established jointly
with Carme Cascante and Joaquin Ortega [COV]. It is given in terms of
Wolff potentials [HW] defined by

oot = [ [BEE]

where p' = p/(p—1). For fixed a and p, we will also use a brief notation
Wuw in place of W, p w.

Wolff’s potentials were studied by Adams and Meyers, and Hedberg and
Wolff (see [HW], [AH]), and were used in the proof of Wolft’s inequality,
which is equivalent to our characterization of (4.1) in the case ¢ = 1 (see
the discussion below). They play an important role in potential and PDE
theory, and have been used extensively in the recent study of the p-Laplacian
and more general quasilinear equations [KiMa], [MaZi].

Theorem 15. Let1 < g < p < 0. Let w be a locally finite measure on R™.
Then (4.1) holds if and only if

Wapw € LIP~D/ (=) (4y)). (4.6)
Moreover, the embedding constant C in (4.1) is equivalent to the quantity

[ Wep w|[1/7]

Lar—1) ) (dw)”
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Analogous embedding theorems for Hardy-Sobolev functions in the unit
ball of C*, where the complex geometry comes into play, are studied in
[COV].

Remarks. 1. Theorem 15 remains true in the case 0 < ¢ < 1, which re-
quires a different proof; it will be given elsewhere, along with more general
inequalities with two weights, and other related results.

2. In the case ¢ = 1 it follows by duality that (4.1) holds if and only if the
energy &(w) is finite, where £(w) = &, ,(w) is defined by

E(w) = L],

Lo (4.7)
Moreover, it is easily seen that &(w) =< C’Pl, where C' is the embedding

constant in (4.1) with ¢ = 1. In other words, Theorem 15 in the case ¢ = 1
is equivalent to Th. Wolft’s inequality (see [AH], [HW]):

Cy E(w) < Ww(z) dw(z) < Cz E(w), (4.8)
Bn

where the constants of equivalence depend only on p, «, and n.

3. If a > n/p, then Ww = 400 and E(w) = +oo for all measures w (see
[AH]). From this it follows that (4.1) holds only if w = 0 in this case, so one
may assume without loss of generality that 0 < a < n/p.

4. An analogue of Theorem 15 for Bessel potentials J, (0 < a < +00) is
stated in a similar way with a modified potential

— "M1B (@), 17 d
Ww(x):/ [7| (o)l ] dr.
0 r r
in place of Ww.

5. There is a weak-type analogue of Theorem 15 for the inequality

|1 £a f]

in terms of the weak integrability of W [COV]: W, , w € LIP=1/(P=0):(qu).

ra=(w) < Cfllze(de)

In the proof of Theorem 15 sketched below it will be more convenient to
work with a dyadic version of W also introduced in [HW]. It is defined by

Wios(a) = 3 [%} Yo(@).
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where D = {Q} is the family of all dyadic cubes @ in R™, and {(Q) is the
side length of Q. Note that (4.8) holds true for Wew as well.
We will also need a “shifted” version of Ww defined for all ¢t € R® by

Wita() = 3 L—Eﬂﬂ—}ﬂ_1Xqu (49)

QEDt Z(Q)TL*C(P
where @ now denotes a shifted dyadic cube in the lattice Dy = D+t =

{Q" +t} g ep. We prove the following version of Theorem 15 which involves
the “dyadic potentials” defined above.

Theorem 16. Let 1 < ¢ < p < 400, a > 0, and let w be a positive Borel
measure on R™. Then the following statements are equivalent.

(1) Inequality (4.1) holds for all f € LP(dx).

(2) de(x)q(p—l)/(p—q) dw(z) < +00.
R'rl

(3) sup/ Wd,tw(x)q(p—l)/(p—q) dw(z) < 400.
teRn Jpn

(4) Condition (4.6) holds.

Proof. We first prove (4)=(1). By duality (4.1) is equivalent to the inequal-
ity

9(y) v
Lo(gd)|| 1o gy = /</ Yy, ) dx} < Cllgll ot
Matg dllow oy = { [ ([ 20 oty ol

for all g € L7 (dw). Without loss of generality we may assume that g > 0.
Now by Wolft’s inequality (4.8)

v <C [ Wigdw)(x) g(x) dw(z).

||Ia(g dw)| Lp’(dx) -

Hence it is enough to show that

W(g dw)(x) g(x) dw(x) < C ||g][”

p
D ) (4.10)

R™

for all g € LY (dw), g > 0. Note that obviously

TTL*O(p r -

oo dw\” r ,
MMMMFA Gﬂﬂ—) T Mog(a)? ' Wo(a),
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where

1
Mago) =swp e [ gl det)
¢ >0 |Br(2)]w B.(z)
is the centered maximal function of ¢ with respect to w.
Hence the above estimate, together with Holder’s inequality with expo-
nents r =¢'/(p' = 1), 7' =r/(r — 1), gives

W(gdw)(@) g(x) dw(z) < | Mug(a)? " g(a)Wew(x) dw(x)

RrRn RrRn

< ([ Mo au) v

< ([ ety dw<x>)w.

It is known that M,, is bounded in L9 (dw) (see [Fe]), and this fact together
with Holder’s inequality with exponent A = ¢'/7" > 1 (since ¢ < p) gives
that the above is bounded by

, - 1/(r'X)
Cll oy ([ oo™ aut))

Since A = ¢q(p—1)/(p — q), it follows that (4.9) holds. The proof of
(4)=(1) is complete.

The same argument with W in place of W proves (2)=-(1). We only
have to apply Wolff’s inequality in the form

Malg ol gy <€ [ W d)(@) 9(w) dis(a),

and also use the dyadic maximal operator

Mig(z) = / l9()] dwo(y
QGD zeQ 19|

in place of the centered version M,; it is known that M¢ is bounded in
L7 (dw), r > 1 (see e.g. [S2]).

We now prove (1)=-(2). This could be shown by using the estimates
established in [V2] in the framework of discrete Littlewood-Paley spaces.
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An alternative direct proof of this crucial step may be sketched as follows.
By duality (4.1) is equivalent to

||Ia(g dw)”ip’ (dz) S ¢ ||g||]zq’(dw)7

for all g € LY (dw). Let dv = gdw, g > 0. Then by (4.8) with W< in place
of Ww we have

g Al gy 2 € [ W9 d)(w) g )

Jo 9(@) du(@)\”
:CEQ: W) Q.

Hence
S o@) dw(z)\" .
%: (W Q] < CIIgIIqu(dw)~
Let

”
cQ = (7@'3'“;/”) Q. (4.11)

Then the preceding inequality may be rewritten in the form

Jo 9(z) dw(z)\"” ,
EQ:CQ <Q|T) <C ||g||§q’(dw)'

Let

amzwwWszGw]'éwwwwym,

2€Q |Qlw

where ¢ € Lz%(w), ¢ > 0. Then obviously

Jo o) do@)\" _ Jp o) de(a)
Q. ST
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and
||g||IL7q’ (dw) <cC ||¢||L4’/1”(dw)'

Combining these estimates, we get

dw ()
C < C a' /! (dw) s
2: Q |Q| H¢”L /7" (dw)

for any ¢ € L7 /7 (dw). By duality this gives

C 1 I
Z |QQ|? Yq € L° /(a P)(dw),
Q w

which is equivalent to [, Wew(z)1P=1)/(P=9) du(z) < +00. We have proved
(1)&(2).
Applying the same argument as above with D, in place of D, we obtain

Whte(2)2P=D/ =9 gy (z) < C < +o0
Rn
with a constant C' independent of t € R", i.e. (1)< (3).

It remains to show (3)=-(4). To handle the case of a possibly non-
doubling w we use the well-known idea of C. Fefferman and E.M. Stein
[FSt] (see also [S2]) based on the averaging of D; over the shifts of the
dyadic lattice D. For R > 0, set

W (z) = / ’

We derive (4) from (3) using the estimate

w(BTm)r"l dr

rn—oap

Whu(z) < CR™" Whio(z) dt. (4.12)
lt|<cR
where the constants C' and ¢ depend only on n.
Assuming that (4.12) holds, and applying Holder’s inequality with ex-

-1
ponent M > 1 together with Fubini’s theorem, we have
p—q

WRw(x)q(p—l)/(p—q) dw(z)

R™

<CR~ / / Wht(2) (=D =) gu(z) dt < C < o0,
[t|<cR n
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where C is independent of R. The proof of (4) is then completed by letting
R — +00 and using the monotone convergence theorem.

To prove (4.12), we need to modify the argument of Lemma 2 in [S2] as
follows. The maximal functions M f are replaced here by the corresponding
potentials Wdw, with w playing the role of |f|dw. Then the doubling prop-
erty of w used in [S2] is irrelevant; we just make use of the trivial doubling

property of Lebesgue measure. (See details in [COV].) O
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