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A LA RECHERCHE DU SPECTRE PERDU:

AN INVITATION TO NONLINEAR SPECTRAL THEORY

Jürgen Appell

Abstract. We give a survey on spectra for various classes of nonlinear op-
erators, with a particular emphasis on a comparison of their advantages and

drawbacks. Here the most useful spectra are the asymptotic spectrum by
M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by
W. Feng (1997), and the local spectrum (called “phantom”) by P. San-
tucci and M. Väth (2000). In the last part we discuss these spectra for

homogeneous operators (of any degree), and derive a discreteness result and
a nonlinear Fredholm alternative for such operators. This may be applied
to an eigenvalue problem for the p-Laplace operator which arises in various

fields of applied mathematics, mechanics, and physics.

1. Linear spectral theory

The notion of spectrum is particularly important for linear operators but
spectral ideas have also been used in the study of nonlinear operator equa-
tions. This has led to the development of various theories of spectrum for
nonlinear operators which attempt to preserve the useful properties of the
linear case, on the one hand, but to apply to a possibly large variety of
nonlinear problems, on the other hand.

The purpose of these lectures is to discuss three particularly important
spectra for nonlinear operators, viz. the “asymptotic” Furi-Martelli-Vignoli
spectrum, the “global” Feng spectrum, and the “local” Väth phantom.
Moreover, we show that these spectra coincide for certain classes of op-
erators, and indicate how this may be used to prove some kind of “nonlinear
Fredholm alternative” with applications to eigenvalue problems for the

1991 Mathematics Subject Classification. Primary: 47J10. Secondary: 47J05, 47J25,
47A10, 47H09, 47H10, 35J60.

Key words and phrases. Nonlinear spectrum, nonlinear eigenvalue problem, homoge-
neous operator, coincidence theorem, discreteness theorem, nonlinear Fredholm alterna-
tive, p-Laplace operator.

1



2 JÜRGEN APPELL

p-Laplace operator. The main emphasis, however, will be put on illumi-
nating examples, rather than abstract theorems.

To put things in the right framework, let us first recall some properties of
the “linear” spectrum. Given a Banach space X over K = R or K = C and
an operator L ∈ L(X), the algebra of all bounded linear operators on X,
the resolvent set of L is defined by

ρ(L) = {λ ∈ K : (λI − L)−1 ∈ L(X)}, (1)

and the spectrum of L by

σ(L) = K \ ρ(L). (2)

This spectrum has some remarkable properties which we collect for further
reference:
• σ(L) is bounded, closed, and (in case K = C) nonempty,
• σ(L) is at most countable (and so has empty interior) for L compact,
• σ(L) is even finite in case X = Kn (pure eigenvalue spectrum),
• σ(L) is bounded by r(L) = lim

n→∞
n
√
‖Ln‖ (Gel’fand’s formula),

• σ(p(L)) = p(σ(L)) for any polynomial p (spectral mapping theorem),
• the map ρ(L) ∋ λ 7→ (λI − L)−1 ∈ L(X) is analytic,
• the multivalued map L(X) ∋ L 7→ σ(L) ∈ 2K is upper semicontinuous.

In view of the last property, we remark that the multivalued map
L(X) ∋ L 7→ σ(L) ∈ 2K is in general not lower semicontinuous. This means
that, roughly speaking, the spectrum cannot blow up, but it may very well
shrink down when the operator changes continuously. Since this seems not
to be well known, we present a simple example.Example 1. Let X = l1(Z, C) be the Banach space of all summable com-
plex sequences indexed with the integers, and let

{. . . , e−3, e−2, e−1, e0, e1, e2, e3, . . . }

denote the usual canonical basis in X. For ε ∈ R, define Lε ∈ L(X) by
Lεek = ek−1 for k 6= 0 and Lεe0 = εe−1. Then σ(L0) = {z ∈ C : |z| ≤ 1}
but σ(Lε) = {z ∈ C : |z| = 1} for ε 6= 0, and so the spectrum of Lε

“collapses” when leaving the value ε = 0.
In the next section we discuss three spectra for various classes of nonlinear

operators which are modelled on the linear definition (2), and show that these
spectra do not have “good” properties.
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2. Three nonlinear spectra: the “naive” approach

If one wants to build a spectral theory in the nonlinear case, one is led to
some “natural” requirements. So, given a continuous nonlinear operator
F : X → X, let us try to define a spectrum σ(F ) for F such that
• σ(F ) is the familiar spectrum for F bounded linear,
• σ(F ) has the usual properties (compact, nonempty etc.),
• σ(F ) contains the point spectrum σp(F ) (eigenvalues) of F ,
• σ(F ) has applications (e.g., existence, uniqueness, bifurcation problems).

We remark that the point spectrum of F in the third requirement is defined
precisely as in the linear case, i.e.

σp(F ) = {λ ∈ K : F (u) = λu for some u 6= 0}. (3)

Some “naive” definitions in this spirit have been given in the last 30 years.
The philosophy is simply to replace the algebra L(X) in (1) by other classes
of continuous (nonlinear) operators. For the set C(X) of all continuous
operators F : X → X this leads to the Rhodius resolvent set

ρR(F ) = {λ ∈ K : λI − F homeomorphism} (4)

and the Rhodius spectrum [23]

σR(F ) = K \ ρR(F ). (5)

Thus, a scalar λ belongs to σR(F ) if λI−F is not a bijection, or (λI − F )−1

exists but is discontinuous. However, the following very simple scalar exam-
ples show that the spectrum (5) does not have the familiar properties.Example 2. In X = R, let F (u) = un. Then σR(F ) = R if n is even and
σR(F ) = (0,∞) if n is odd. So the Rhodius spectrum may be unbounded or
not closed.Example 3. In X = R, let F (u) =

√
|u|. Then σR(F ) = R. Moreover,

the point spectrum of F is here σp(F ) = R \ {0}, since every straight line
f(u) = λu hits the graph of F for λ 6= 0 in some non-zero point u. This
shows that, in contrast to the linear case, the point spectrum (3) is “too big”
to contain any reasonable information on F .Example 4. In X= R, take F (u)= 0 for u≤ 1, F (u)= u− 1 for 1< u < 2,
and F (u) = 1 for u ≥ 2. Then σR(F ) = [0, 1], but σR(F 2) = {0}, since
F (F (u)) ≡ 0. This shows that neither a Gel’fand type formula nor a spectral
mapping theorem for polynomials can hold for the Rhodius spectrum (5).



4 JÜRGEN APPELLExample 5. Let F : C → C be defined by F (z) = min {1, |z|} ez. Then
F is onto, but for all ε > 0 there exists some map G : C → C such that
|G(z)| ≤ ε, but F + G is not onto. (To see this consider, e.g., G(z) =
max {ε(1− |z|), 0}.) So surjectivity is an unstable property.Example 6. Let F : C2 → C2 be defined by F (z, w) = (w, iz). Then
λI − F is a homeomorphism for each λ ∈ C; in fact, the inverse

(λI − F )−1(z, w) =
(

λz + w

i + |λ|2 ,
λw + iz

i− |λ|2
)

(6)

is a continuous bijection for any λ ∈ C. So σR(F ) = ∅ in this example.
(Observe, however, that F 2(z, w) = (−iz, iw) is linear with σR(F 2) =
σ(F 2) = {±i}!)

The maps discussed in Examples 2, 3 and 5 have essentially “nonlinear
growth”. So one might guess that a more reasonable spectral theory could
be obtained by restricting the class of operators to those which are “closer
to being linear”. One possible choice is that of Lipschitz continuous maps
F : X → X, i.e., those whose minimal Lipschitz constant

[F ]Lip = sup
u6=v

‖F (u)− F (v)‖
‖u− v‖ (7)

is finite. Let us call a map F : X → X a lipeomorphism if F is bijective and
both [F ]Lip < ∞ and [F−1]Lip < ∞. In analogy to (4) and (5) we put

ρK(F ) = {λ ∈ K : λI − F lipeomorphism}
and

σK(F ) = K \ ρK(F ), (8)

and call these sets the Kachurovskij resolvent set and the Kachurovskij spec-
trum, respectively (see [17]). The authors of [18] have studied this spectrum,
being obviously unaware of the paper [17]; in particular, they obtained the
following result.

Theorem 1. The Kachurovskij spectrum (8) is always compact; moreover,
the inclusion

σK(F ) ⊆ {λ ∈ K : |λ| ≤ [F ]Lip} (9)

holds.

The proof of Theorem 1 simply follows from the fact that, by the Banach
contraction mapping principle, the operator u 7→ (F (u) + v)/λ has a unique
fixed point for each v ∈ X and |λ| > [F ]Lip, and that [(λI − F )−1]Lip ≤
1/(|λ| − [F ]Lip) for such λ. Since [L]Lip = ‖L‖ for L ∈ L(X), the inclusion
(9) generalizes the classical estimate of the spectrum of a bounded linear
operator through its norm.
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In [18] the authors also show that σK(F ) 6= ∅ in the one-dimensional
case X = C, and pose the question whether or not this is also true in
higher dimensions. Example 6 gives a negative answer to this question,
since the inverse operator (6) is in fact a lipeomorhism for any λ ∈ C, and
so σK(F ) = ∅. However, one may easily show (see [2]) that 0 ∈ σK(F ) if
X is infinite dimensional and F is in addition compact. This is of course
analogous to the linear case.

There is another class of maps which gives an interesting spectrum, viz.
that of continuously differentiable operators. Recall that F : X → X has
a Fréchet derivative F ′(x0) ∈ L(X) at x0 ∈ X if

F (x0 + h)− F (x0)− F ′(x0)h = o(h) as h → 0.

As usual, by C1(X) we denote the linear space of all continuously differ-
entiable operators F : X → X. In this case we are led to the Neuberger
resolvent set

ρN (F ) = {λ ∈ K : λI − F diffeomorphism}

and the Neuberger spectrum ([21]),

σN (F ) = K \ ρN (F ), (10)

respectively. For instance, for F in Example 2 we get σN (F ) = R if n
is even, but σN (F ) = [0,∞) if n is odd (because for n = 3, 5, 7, . . . the
mapping u 7→ un is a homeomorphism, but not a diffeomorphism). So also
the Neuberger spectrum may be unbounded. Simple examples show that
it need not be closed either. On the other hand, the following remarkable
property of σN (F ) was proved in [21].

Theorem 2. The Neuberger spectrum (10) is always nonempty in the case
K = C.

Theorem 2 does not contradict Example 6 because the operator F (z, w) =
(w, iz) is not differentiable at any point.

Since Fréchet differentiability is related to linear approximation, one could
expect that there is some link between the Neuberger spectrum of an opera-
tor F ∈ C1(X), on the one hand, and the (classical) spectra of its derivatives
F ′(x), on the other hand. This is in fact true. We recall a representation
formula for the Neuberger spectrum from [2] whose proof relies on the clas-
sical Banach-Mazur lemma which states that a continuous map is a global
homeomorphism if and only if it is a local homeomorphism and proper (i.e.,
the preimage of any compact set is compact).
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Theorem 3. For F ∈ C1(X), the representation

σN (F ) = π(F ) ∪
⋃

x∈X

σ(F ′(x))

holds, where π(F ) denotes the set of all λ ∈ K such that λI−F is not proper,
and σ(F ′(x)) is the usual spectrum of the bounded linear operator F ′(x).

Of course, Theorem 3 implies Theorem 2, since σ(F ′(x)) 6= ∅ for all x ∈ X
if K = C. We illustrate Theorem 3 by a simple example for a mildly nonlinear
integral operator which is also taken from [2].Example 7. Let X = C[0, 1] be the space of all real continuous functions
on [0, 1], and let F : X → X be the Hammerstein integral operator defined
by

Fx(t) =
∫ 1

0

tαsβ sin x(s) ds (α, β ≥ 0).

The operator may be written as composition F = KN of the nonlinear Ne-
mytskij operator Nx(t) = sin x(t) and the linear Fredholm integral operator

Ky(t) =
∫ 1

0

tαsβy(s) ds.

From classical differentiability criteria of Nemytskij operators it follows that
the Fréchet derivative F ′(x) = KN ′(x) of F at x ∈ X is given by

F ′(x)h(t) =
∫ 1

0

tαsβ cos x(s)h(s) ds (h ∈ X),

i.e., it is a linear integral operator with degenerate kernel function kx(t, s) =
tαsβ cos x(s). A direct calculation shows that this operator has precisely one
eigenvalue

λ = λx =
∫ 1

0

kx(t, t) dt ∈
[
− 1

1 + α + β
,

1
1 + α + β

]
. (11)

Conversely, it is easy to see that every λ from the interval on the right-
hand side of (11) is an eigenvalue of F ′(x) for suitable x ∈ X. Moreover,
being a compact operator, F cannot be proper. On the other hand, λI − F
is proper for λ 6= 0, and so π(F ) = {0}. From Theorem 3 we conclude that

σN (F ) =
[
− 1

1 + α + β
,

1
1 + α + β

]

in this example. We point out that a direct calculation of the Neuberger
spectrum in this case would have been more complicated.
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For the sake of completeness, we collect the three spectra discussed so far,
as well as the point spectrum (3) for the operators from Examples 2–6 in
a table.

Operator F σR(F ) σK(F ) σN (F ) σp(F )

Example 2 R
/

(0,∞) R
/

[0,∞) R \ {0}
/

(0,∞)

Example 3 R R \ {0}
Example 4 [0, 1] [0, 1] [0, 1

2 ]

Example 5 C C
Example 6 ∅ ∅ ∅

Our examples show that the definitions (5), (8) and (10) are in a certain
sense too “naive” to be really useful for building a reasonable nonlinear
spectral theory. For instance, we have seen that no spectrum defined in this
way satisfies the four requirements given at the beginning of this section.
(It is easy to see, however, that they all contain the point spectrum (3) and
reduce to the familiar spectrum for linear operators.) A detailed discussion
of the advantages and drawbacks of these and other spectra may be found
in the survey article [1]. One might therefore try to define nonlinear spectra
by a completely different method, and so we will do in the next section.

3. Three nonlinear spectra: a different approach

An alternative approach to define “reasonable” spectra consists in decom-
posing the spectrum into several subspectra. Recall that a classical (not
necessarily disjoint) decomposition of the spectrum σ(L) in the linear case
is
• λI − L is not onto (the “defect spectrum” σδ(L)),
• λI − L is not 1–1 (the “point spectrum” σp(L)),
• λI − L is not proper (the “compression spectrum” σco(L)).

Unfortunately, there is no canonical analogue to this in the nonlinear case.
However, one may “imitate” these properties in different ways. To this end
we have to recall some definitions. The (Kuratowski) measure of noncom-
pactness α(M) of a bounded set M ⊂ X is defined as infimum of all δ > 0
such that M may be covered by finitely many sets of diameter not greater
than δ. So we have α(M) = 0 if and only if M has compact closure (which
motivates the name). Now, given a nonlinear operator F between two Ba-
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nach spaces X and Y , the two conditions

α(F (M)) ≤ kα(M) (M ⊂ X bounded) (12)

and
α(F (M)) ≥ ℓα(M) (M ⊂ X bounded) (13)

are crucial. The smallest constant k in (12) will be denoted by [F ]A, and the
largest constant ℓ in (13) by [F ]a in what follows. So [F ]A = 0 if and only
if F is compact, and [F ]a > 0 implies that F is proper on closed bounded
sets. Moreover, one always has the estimate [F ]A ≤ [F ]Lip, with [F ]Lip given
by (7); in particular, [L]A ≤ ‖L‖ for L ∈ L(X,Y ).

For F : X → Y we call the two characteristics

[F ]Q = lim sup
‖u‖→∞

‖F (u)‖
‖u‖ (14)

and

[F ]q = lim inf
‖u‖→∞

‖F (u)‖
‖u‖ (15)

the upper and lower quasinorm of F , respectively. Following M. Furi,
M. Martelli and A. Vignoli [14] we call a continuous operator F : X → Y
stably solvable if, for any compact operator G : X → Y satisfying [G]Q = 0,
the coincidence equation

F (u) = G(u) (16)

has a solution u ∈ X. Taking G(u) ≡ v for fixed v ∈ Y , one readily sees
that stable solvability implies surjectivity. The converse is not true: the map
F (u) = u/

√
1 + |u| is a homeomorphism in X = R, but not stably solvable

(consider G(u) = F (u) + 1). On the other hand, one may show (see [14])
that for L ∈ L(X,Y ) the stable solvability is equivalent to the surjectivity
of L.

Before introducing the first “non-standard” spectrum, we make a general
remark. The examples in the preceding section show that the definition (3)
of the point spectrum is not suitable for nonlinear operators F . As a matter
of fact, there is absolutely no reason to compare a nonlinear operator F
with the identity I because this is too much modelled on the linear case.
Instead, it is a useful device to replace the identity by some other “well-
behaved” nonlinear operator J which takes into account the analytical and
topological properties of the given operator F . So from now on, we shall
define spectra for pairs of operators (F, J) between two Banach spaces X
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and Y , although the original definitions have been given only in case X = Y
and J = I.

The Furi-Martelli-Vignoli spectrum of F, J : X → Y (see [15]) is defined
as the union

σFMV (F, J) = σss(F, J) ∪ σq(F, J) ∪ σa(F, J) (17)

of the three subspectra

σss(F, J) = {λ ∈ K : λJ − F is not stably solvable},
σq(F, J) = {λ ∈ K : [λJ − F ]q = 0} (18)

and

σa(F, J) = {λ ∈ K : [λJ − F ]a = 0}.

By what we have observed before, for L ∈ L(X) we get the relations

σss(L, I) = σδ(L), σq(L, I) ⊇ σp(L), σa(L, I) ⊆ σco(L).

We collect some important properties of the spectrum (17) in the following
theorem (cf. [15]) which is similar to Theorem 1.

Theorem 4. Suppose that J : X → Y is stably solvable with [J ]Q < ∞.
Then the Furi-Martelli-Vignoli spectrum (17) is closed and upper semicon-
tinuous. Moreover,

σFMV (F, J) ⊆
{

λ ∈ K : |λ| ≤ max
{

[F ]A
[J ]a

,
[F ]Q
[J ]q

}}
, (19)

and so σFMV (F, J) is compact if [F ]A < ∞, [F ]Q < ∞, [J ]a > 0 and
[J ]q > 0. Finally, σFMV (L, I) coincides with the familiar spectrum (2) for
L ∈ L(X).

We remark that Theorem 4 was proved for X = Y and J = I in [15]. In
this case we have [I]Q = [I]q = [I]a = 1, and so σFMV (F, I) is compact if
just [F ]A < ∞ and [F ]Q < ∞.

So we see that the Furi-Martelli-Vignoli spectrum (17) has many good
properties in common with the usual linear spectrum. However, it has the
series flaw of not containing the point spectrum (3). In fact, for the map F
from Example 3 we already know that σp(F ) = R \ {0}. On the other hand,
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from (19) and the trivial relations [F ]A = [F ]Q = 0 we get σFMV (F, I) =
{0}. Thus, in this example the spectrum and the point spectrum are even
disjoint, and this is of course in sharp contrast to what we want.

A scrutiny of the situation shows that this unpleasant phenomenon is due
to the “bad” definition of the point spectrum (3) which is simply inadequate
for the Furi-Martelli-Vignoli spectrum. Indeed, the definition (3) is “global”,
while the definition (17) is “asymptotic”. Consequently, one has to replace
the inappropriate definition (3) by the asymptotic point spectrum (18) which,
by (17), is always a part of the spectrum σFMV (F ). For instance, for the
map F from Example 3 we have σq(F, I) = {0} because [λI − F ]q = |λ|.

Let us show a more interesting example how to calculate the Furi-Martelli-
Vignoli spectrum in an infinite dimensional space.Example 8. Let X be an infinite dimensional real Banach space, and let
F : X → X be defined by

F (u) = ‖u‖u.

It is not hard to see that F is a proper homeomorphism with the inverse

F−1(v) =
v√
‖v‖

.

We claim that σFMV (F, I) = [0,∞). First of all, the eigenvalue equation
F (u) = λu has a nontrivial solution u with λ = ‖u‖ if and only if λ > 0,
and so σp(F, I) = (0,∞). On the other hand, it is easy to see that F has no
asymptotic eigenvalue at all, i.e. σq(F, I) = ∅.

Taking as M the closed ball B1/n = {u ∈ X : ‖u‖ ≤ 1/n} in (13) shows
that [F ]a = 0. Likewise, the fact that λI − F maps, for λ > 0, the sphere
{u ∈ X : ‖u‖ = λ} into {0} implies that [λI − F ]a = 0 for such λ. Now fix
λ < 0 and consider the function f : (0,∞) → R defined by

f(t) =
√

λ2 + 4t + λ

2t
(0 < t < ∞).

L’Hospital’s rule shows that f admits a continuous extension to 0 by putting
f(0) = 1/|λ|. A straightforward computation shows that

(λI − F )−1(v) = f(‖v‖)v

for every v ∈ X; for λ = 0 this coincides of course with the formula for F−1

above. It is not hard to see that f is bounded on [0,∞), say |f(t)| ≤ M0.
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Moreover, the derivative of f has the property that t|f ′(t)| remains bounded
as t → 0 or t →∞. For u, v ∈ X, ‖u‖ ≤ ‖v‖, we have

∥∥f(‖u‖)u− f(‖v‖)v
∥∥ =

∥∥[f(‖u‖)− f(‖v‖)]u + f(‖v‖)(u− v)
∥∥

≤
∣∣f ′(τ)(‖u‖ − ‖v‖)

∣∣ ‖u‖+ M0‖u− v‖,

where ‖u‖≤ τ ≤‖v‖. Since the map t 7→ t|f ′(t)| is bounded, say t|f ′(t)|≤M1,
we conclude that

‖(λI − F )−1(u)− (λI − F )−1(v)‖ ≤ (M0 + M1)‖u− v‖.

Interchanging the role of u and v, we get the same estimates when ‖v‖ ≤ ‖u‖,
and so we have proved that (λI−F )−1 is Lipschitz continuous on X for λ < 0.
Consequently, [λI − F ]a = [(λI − F )−1]−1

A ≥ [(λI − F )−1]−1
Lip > 0, and so

σa(F, I) = [0,∞).
It remains to calculate the subspectrum σss(F, I). Suppose that G :X→X

is compact with the quasinorm [G]Q = 0; in particular, the last condition
implies that G maps a closed ball BR for sufficiently large R > 0 into itself.
Since ‖(λI − F )(u)‖ ≥ ‖u‖, for any λ, hence ‖(λI − F )−1(v)‖ ≤ ‖v‖, the
(compact!)operator (λI − F )−1G also maps the ball BR into itself, and so
has a fixed point û ∈ BR, by Schauder’s fixed point theorem. But then
λû−F (û) = G(û) which shows that λI −F is stably solvable. We conclude
that σss(F, I) = ∅, and so σFMV (F, I) = [0,∞) as claimed.

The drawback of the spectrum σFMV (F, I) not to contain the eigenvalues
of F in the sense of (3) has motivated W. Feng [11] to define another spec-
trum σF (F, J) (for J = I) which is quite similar to the spectrum σFMV (F, J)
but contains the classical point spectrum

σp(F, J) = {λ ∈ K : F (u) = λJ(u) for some u 6= 0}.

To describe this spectrum, again some definitions are in order. First,
we have to replace the “asymptotic” characteristics (14) and (15) by the
“global” characteristics

[F ]B = sup
u6=0

‖F (u)‖
‖u‖

and

[F ]b = inf
u6=0

‖F (u)‖
‖u‖ .

It is clear that [F ]b ≤ [F ]q ≤ [F ]Q ≤ [F ]B , and so σb(F, J) ⊇ σq(F, J), where

σb(F, J) = {λ ∈ K : [λJ − F ]b = 0}.
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In what follows, we denote by O(X) the family of all open, bounded,
connected subsets Ω of a Banach space X with 0 ∈ Ω; as a model example
one may think of the open ball Ω = Bo

r for r > 0. Given Ω ∈ O(X),
a continuous map F : Ω → Y is called epi (see [16]) if, first,

F (u) 6= 0 (u ∈ ∂Ω) (20)

and, second, the coincidence equation (16) has a solution u ∈ Ω for every
compact operator G : Ω → Y satisfying G(u) ≡ 0 on ∂Ω. Thus, epi operators
have a similar meaning on small balls as stably solvable operators on large
spheres. It is not hard to see that, if an operator F : X → Y is stably
solvable on X with [F ]b > 0, then F is epi on every Ω ∈ O(X). In fact, the
condition [F ]b > 0 implies that F (u) 6= 0 for u 6= 0. Moreover, if G : Ω → Y
is compact and satisfies G(u) ≡ 0 on ∂Ω, we may extend G by continuity
to the whole space X putting G(u) ≡ 0 outside Ω. Then trivially [G]Q = 0,
and so the equation (16) has a solution û ∈ X, by assumption. Clearly, we
must have û ∈ Ω since F (u) 6= 0 = G(u) outside Ω, and so we see that F is
epi on Ω.

Now, the Feng spectrum of F, J : X → Y (see [11]) is defined as the union

σF (F, J) = σe(F, J) ∪ σb(F, J) ∪ σa(F, J), (21)

where

σe(F, J) = {λ ∈ K : λJ − F is not epi on some Ω ∈ O(X)}.

Our previous discussion shows that the inclusion σFMV (F, J) ⊆ σF (F, J) is
true. Moreover, we have the following result which is parallel to Theorem 4.

Theorem 5. Suppose that J : X → Y is epi on every Ω ∈ O(X) with
[J ]B < ∞. Then the Feng spectrum (21) is closed and upper semicontinuous.
Moreover, the inclusion

σF (F, J) ⊆
{

λ ∈ K : |λ| ≤ max
{

[F ]A
[J ]a

,
[F ]B
[J ]b

}}

holds, and so σF (F, J) is compact if [F ]A < ∞, [F ]B < ∞, [J ]a > 0, and
[J ]b > 0. Finally, σFMV (L, I) coincides with the familiar spectrum (2) for
L ∈ L(X).

Again, Theorem 5 essentially simplifies for X = Y and J = I. In this case
we have [I]B = [I]b = [I]a = 1, and so σF (F, I) is compact if just [F ]A < ∞
and [F ]B < ∞.
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Consider, for example, the map F from Example 3 (and J = I). We
have seen that σFMV (F, I) = {0} in this case. On the other hand, from the
relation σp(F, I) = R \ {0} and the closedness of the Feng spectrum in case
J = I we deduce that σF (F, J) = R. This shows that the Feng spectrum
takes into account the global behaviour of F , while the Furi-Martelli-Vignoli
spectrum reflects only the asymptotic properties of F .

On the other hand, for the operator F from Example 8 (and J = I) the
Feng spectrum and the Furi-Martelli-Vignoli spectrum are the same. To
see this, fix λ < 0 and Ω ∈ O(X), and let G : Ω → X be compact with
G(u) ≡ 0 on ∂Ω. The operator (λI − F )−1G : Ω → (λI − F )−1G(Ω) is
then a compact homeomorphism which vanishes on the boundary ∂Ω, and
so has a fixed point in Ω. We conclude that λI − F is epi for λ < 0, and so
σF (F, I) = [0,∞).

M. Väth ([24]–[26]) proposed yet another approach which goes as follows.
Let Ω ∈ O(X) and let F : Ω → Y be continuous with

inf {‖F (u)‖ : u ∈ ∂Ω} > 0. (22)

Then F is called strictly epi if there exists some k > 0 such that, for any
operator G : Ω → Y satisfying G(u) ≡ 0 on ∂Ω and [G]A ≤ k, the coincidence
equation (16) has a solution in Ω. Thus, strictly epi maps are stronger
than epi maps in two ways: first, condition (20) is replaced by the stronger
condition (22), and, instead of compact perturbations G in (16), one allows
also “slightly noncompact” right-hand sides.

The Väth phantom of F, J : X → Y (cf. [24]) is defined by

φ(F, J) =
⋂

Ω∈O(X)

φ(F, J ; Ω), (23)

where

φ(F, J ; Ω) = {λ ∈ K : λJ − F is not strictly epi on Ω}
∪ {λ ∈ K : F (u) = λJ(u) for some u ∈ ∂Ω}.

There is also an analogue of Theorems 4 and 5 for the phantom (23): If J
is strictly epi on some Ω ∈ O(X), then φ(F, J) is closed and upper semicon-
tinuous (with respect to a suitable topology), and even compact if

[F |Ω]A < ∞, [J |Ω]a > 0, sup
u∈∂Ω

‖F (u)‖ < ∞, inf
u∈∂Ω

‖J(u)‖ > 0.
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In case J = I these conditions are automatically satisfied on each Ω ∈ O(X).
We remark that φ(L, I) also coincides with the usual spectrum (2) in the
linear case.

As for the other spectra, we still have to introduce an appropriate notion
of the point spectrum associated to the phantom (23). Let us call λ ∈ K
a connected eigenvalue of the pair (F, J) if the solution set of the generalized
eigenvalue equation

F (u) = λJ(u) (24)

contains an unbounded connected subset C with 0 ∈ C. We write φp(F, J)
for the set of all connected eigenvalues and call this set the point phantom of
(F, J). Of course, for L ∈ L(X) and J = I we simply have φp(L, I) = σp(L),
since the eigenvectors of λ ∈ σp(L) form a linear space.

The following table gives a comparison of the three spectra introduced
above.

Author Spectrum Point spectrum Character

Furi-Martelli- FMV-spectrum asymptotic eigenvalues asymptotic
Vignoli (1978) σFMV (F, J) σq(F, J) (‖u‖ → ∞)

Feng Feng spectrum classical eigenvalues global
(1997) σF (F, J) σp(F, J) (u ∈ X)

Väth phantom connected eigenvalues local
(2000) φ(F, J) φp(F, J) (u ∈ Ω)

To close this section, we give some relations between all the spectra and
point spectra, and calculate them for the operators F from Examples 3
and 8 (with J = I). First of all, we remark that the Väth phantom φ(F, J) is
always contained in the Furi-Martelli-Vignoli spectrum σFMV (F, J). In fact,
for λ 6∈ σFMV (F, J) we have, in particular, [λJ − F ]q > 0, and this implies
that ‖λJ(u) − F (u)‖ ≥ [λJ − F ]q ‖u‖ for ‖u‖ ≥ R with R > 0 sufficiently
large. Extending then G : BR → Y with G(u) ≡ 0 to be zero outside BR

and arguing as before, one sees that the equation λJ(u)− F (u) = G(u) has
a solution in the interior of BR.

So for general operators F, J : X → Y we get the following relations.
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φ(F, J) ⊆ σFMV (F, J) ⊆ σF (F, J)

∪ ∪ ∪

φp(F, J) ⊆ σq(F, J) σp(F, J)

F , J nonlinear

In the linear case L ∈ L(X) (and J = I) this table simplifies. Here all
the spectra in the first row coincide with the usual spectrum σ(L), and both
the point spectrum σp(L, I) and point phantom φp(L, I) coincide with the
usual point spectrum σp(L).

φ(L, I) = σFMV (L, I) = σF (L, I)

∪ ∪ ∪

φp(L, I) ⊆ σq(L, I) ⊇ σp(L, I)

L linear

We still have to calculate the phantom and point phantom for the maps F
from Examples 3 and 8. Since F is not strictly epi for F as in Example 3, we
have 0 ∈ φ(F, I). From the inclusion φ(F, I) ⊆ σFMV (F, I) it follows that
φ(F, I) = {0}. Moreover, it is trivial that F has no connected eigenvalues,
and so φp(F, I) = ∅. So for Example 3 we get the following table which also
shows, by the way, that there is no relation between σp(F, J) and σq(F, J).

{0} = {0} ⊂ R

∪ ∪

∅ ⊂ {0} R \ {0}

F (u) =
√
|u| in X = R

Now consider F : X → X from Example 8. From φp(F, I) ⊆ σq(F, I) = ∅
it follows that F has no connected eigenvalues (which may also be verified
directly). We claim that φ(F, I) = {0}. Indeed, for λ 6= 0 and Ω = {u ∈ X :
‖u‖ < |λ|/2} the restriction (λI − F )|Ω : Ω → X is open and injective with
0 ∈ (λI−F )(Ω) and [(λI−F )|Ω]a > 0. This implies that λI−F is strictly epi
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on Ω, and so λ 6∈ φ(F, I). On the other hand, M. Furi quite recently proved
in [13] that the operator F is epi but not strictly epi, and so 0 ∈ φ(F, I).

Thus we may summarize our discussion for the operator F from Example 8
in the following table.

{0} ⊂ [0,∞) = [0,∞)

∪ ∪ ∪

∅ = ∅ (0,∞)

F (u) = ‖u‖u for dim X = ∞

4. Special classes of operators

As one could expect, more can be said about these spectra if one restricts
the class of operators in consideration. We restrict ourselves to the case of
τ -homogeneous operators F and J , i.e.

F (tu) = tτF (u), J(tu) = tτJ(u) (t > 0, u ∈ X). (25)

The following two theorems have been proved in [3].

Theorem 6 (coincidence theorem). Let X and Y be infinite dimensional
Banach spaces, and suppose that F, J : X → Y satisfy (25) for some τ > 0.
Then

σFMV (F, J) = σF (F, J) = φ(F, J), σq(F, J) ⊇ σp(F, J) = φp(F, J).

Theorem 7 (discreteness theorem). Let X and Y be infinite dimen-
sional Banach spaces, and suppose that F, J : X → Y are odd, [F ]A = 0
(i.e., F is compact), and [J ]a > 0. Then

σFMV (F, J) \ {0} ⊆ σq(F, J) σF (F, J) \ {0} ⊆ σp(F, J),

and
φ(F, J) \ {0} ⊆ φp(F, J).

Theorem 7 shows that, if F is compact and odd and J is “regular” and
odd, then each non-zero spectral value is actually an eigenvalue (in a sense
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to be made precise). For F compact and linear and J = I this is a classical
fact.

To illustrate how these theorems apply to nonlinear problems, we consider
the eigenvalue problem for the p-Laplacian which consists in finding solutions
u 6≡ 0 of

{ −div(|∇u|p−2∇u)(x) = µ|u(x)|p−2u(x) in G,

u(x) ≡ 0 on ∂G,
(26)

where G ⊂ Rn is a bounded domain. Although this problem makes sense
for 1 < p < ∞, we restrict ourselves to the case 2 ≤ p < ∞. The problem
(26) may be reformulated as equivalent operator equation in weak form

Fp(u) = λJp(u), (27)

where λ = 1/µ, and Fp, Jp : W 1,p
0 (G) → W−1,p′(G) (p′ = p/(p − 1)) are

defined by Fp(u) = |u|p−2u and

〈Jp(u), v〉 = −
∫

G

(|∇u(x)|p−2∇u(x),∇v(x)) dx (u, v ∈ W 1,p
0 (G)), (28)

respectively. Equation (27) is of the form (24) and has been studied by many
authors, e.g. by P. Drábek et al. in [4]–[10]. Interestingly, the eigenvalue
theory for the problem (26) has many features in common with the classical
linear eigenvalue problem −∆u(x) = µu(x), which is a special case of (26)
for p = 2. For instance, the first eigenvalue µ1 of (26) is always positive and
simple and may be “calculated” as the Rayleigh quotient

µ1 = inf
u∈W

1,p
0 (G)

u6=0

∫
G
|∇u(x)|p dx∫

G
|u(x)|p dx

. (29)

Moreover, the corresponding eigenfunction u1 ∈ W 1,p
0 (G) is positive on G

and simple (in the sense that any other eigenfunction is a scalar multiple
of u1). This function has the same “variational characterization” as in the
linear case p = 2: It minimizes the functional Ψp : W 1,p

0 (G) → R defined by

Ψp(u) =
1
p

∫

G

|∇u(x)|p dx,

subject to the constraint

1
p

∫

G

|u(x)|p−2u(x) dx = 1.
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Finally, we point out that there is a famous so-called nonlinear Fredholm
alternative (see [12], [20], [22]) which implies that the operator Jp − µFp =
µ(λJp − Fp) is onto for µ < µ1, while it is not onto for µ = µ1.

However, the coincidence and discreteness theorems given above allow us
a more precise statement. The following is just a reformulation of Theorems
6 and 7.

Theorem 8 (nonlinear Fredholm alternative). Suppose that J : X → Y
is an odd τ -homogeneous homeomorphism with [J ]a > 0, and F : X → Y
is odd, τ -homogeneous and compact. Let λ 6= 0. Then the following four
assertions are equivalent.
(a) The eigenvalue problem (24) has only the trivial solution u = 0.
(b) The operator λJ−F is stably solvable, [λJ−F ]a > 0 and [λJ−F ]q > 0.
(c) The operator λJ − F is epi on each Ω ∈ O(X), [λJ − F ]a > 0 and

[λJ − F ]b > 0.
(d) The operator λJ − F is strictly epi on some Ω ∈ O(X) and

inf {‖λJ(u)− F (u)‖ : u ∈ ∂Ω} > 0.

We claim that the operators Fp and Jp satisfy the hypotheses of Theorem 8
in the spaces X = W 1,p

0 (G) and Y = X∗ = W−1,p′(G). In fact, since Jp :
X → Y is continuous, strictly monotone, coercive (it is here that we use the
restriction p ≥ 2!), odd, and (p− 1)-homogeneous, it is an isomorphism, by
Minty’s celebrated theorem (see [19]). Moreover, the coercivity also implies
that [Jp]a > 0. Finally, the operator Fp : X → Y is continuous, compact (by
Krasnosel’skij’s theorem and the compactness of the imbedding X ⊂ Lp(G)),
odd, and also (p − 1)-homogeneous. So Theorem 8 implies that, whenever
µ is not a classical eigenvalue of (26), the operator Jp−µFp is not only onto
but even stably solvable and epi. This makes possible to obtain existence,
uniqueness, and stability results for nonlinear perturbations of (26).

We do not want to describe this in detail but rather pose two open prob-
lems which seem to be of interest for applications of the p-Laplacian.Problem 1. In order to apply Minty’s theorem and to guarantee that
[Jp]a > 0, we must know that the operator Jp given by (28) is coercive. We
have been able to prove this only for p ≥ 2, and so the case 1 < p < 2 (which
is particularly important in view of applications) remains open.Problem 2. The term “discreteness” in Theorem 7 does not mean that
the point spectrum σp(F, J) for compact F consists only of a sequence
of eigenvalues (as in the linear case). In fact, in [24] the authors give
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an example of a 1-homogeneous compact operator in X = C such that
φp(F, I) = σp(F, I) = [0, 1]. Of course, one may generate a sequence of
eigenvalues by iterating the variational formula (29) but it is not known if
there are other eigenvalues which cannot be obtained in this way.
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[20] J. Nečas: Sur l’alternative de Fredholm pour les opérateurs non linéaires avec
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