
DML 2008

Jozef Mišutka; Leo Galamboš
Extending Full Text Search Engine for Mathematical Content

In: Petr Sojka (ed.): Towards Digital Mathematics Library. Birmingham, United Kingdom, July
27th, 2008. Masaryk University, Brno, 2008. pp. 55--67.

Persistent URL: http://dml.cz/dmlcz/702546

Terms of use:
© Masaryk University, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702546
http://project.dml.cz

i
i

“dml08” — 2008/7/18 — 12:44 — page 55 — #65 i
i

i
i

i
i

Extending Full Text Search Engine
for Mathematical Content

Jozef Mišutka and Leo Galamboš

Charles University in Prague,
Ke Karlovu 3, 121 16 Prague, Czech Republic

E-mail: jmisutka@gmail.com

Abstract. The WWW became the main resource of mathematical knowl-
edge. Currently available full text search engines can be used on these
documents but they are deficient in almost all cases. By applying ax-
ioms, equal transformations, and by using different notation each formula
can be expressed in numerous ways. Most of these documents do not
contain semantic information; therefore, precise mathematical interpre-
tation is impossible. On the other hand, semantic information can help
to give more precise information. In this work we address these issues
and present a new technique how to search for mathematical formulae
in real-world mathematical documents, but still offering an extensible
level of mathematical awareness. It exploits the advantages of full text
search engine and stores each formula not only once but in several gener-
alised representations. Because it is designed as an extension, any full text
search engine can adopt it. Based on the proposed theory we developed
EgoMath — new mathematical search engine. Experiments with EgoMath
over two document sets, containing semantic information, showed that
this technique can be used to build a fully-fledged mathematical search
engine.

Key words: mathematical discourse, language processing, mathematical searching, full
text search engine, indexing

1 Introduction

There are several ways how to create and publish semantically annotated
mathematical content. However, these documents are still a minority of the
mathematical content on the WWW. Among the commonly used document
formats to exchange mathematics (LATEX, MathML, PDF, PS, Word) only MathML
contains support for semantics.

The success of full text search engines has shown that despite missing
semantic information satisfactory search results can be produced. Although,
currently available full text search engines can be used on documents containing
mathematical content too they are clearly deficient in almost all cases.

We present a technique how to index and search for mathematical content
on the WWW using full text search engine. Every full text search engine can

Petr Sojka (editor): DML 2008, Towards Digital Mathematics Library, pp. 55–67.
© Masaryk University, 2008 ISBN 978-80-210-4658-0

i
i

“dml08” — 2008/7/18 — 12:44 — page 56 — #66 i
i

i
i

i
i

56 Jozef Mišutka, Leo Galamboš

easily adopt it because it is designed as an extension. It is primarily intended
for real-world scientific documents which do not implicitly contain semantic
information. It still offers an extensible level of mathematical awareness
supporting also similarity search. We developed a new mathematical search
engine — EgoMath — based on Egothor v2 full text search engine [1] using the
technique described in this paper.

The rest of the paper is organised as follows. Section 2 briefly describes the
state-of-art of mathematical searching. Section 3 gives the general overview
of the design. In Section 4 and Section 5 the proposed technique is described
in detail. Section 6 includes experimental results using EgoMath. It shows
how performance is effected when changing properties of the search engines.
Conclusion and future directions are discussed in Section 7.

2 Related Work

As described in [2] and [3] there are two main approaches in mathematical
searching. MathDex [4,5], LeActiveMath [6] use the first mainly “syntactic”
approach and MBase [7], Helm [8] search engine and MathWebSearch [3]
use the second “semantic” approach. There are few search engines which
use neither the formula syntax nor semantics but still can be considered as
mathematical aware [9]. The closest work to our paper is [5] and [6]. However,
they both only take use of syntax and can not handle mathematics.

3 Design

We think that simple textual search either in meta-data or in raw text is very
important. The proof is the Whelp search engine [9] which relies on meta-data
to describe mathematical formulae. The information retrieval techniques used
for this type of searching do not need to be connected with mathematics. That
is why we did not want to rely on one specific full text search engine and
designed our mathematical search engine as an extension to an arbitrary full
text search engine. The architecture is shown in Figure 1. Both affected parts —
indexing and searching — are described in detail in the following sections.

4 Indexing Mathematical Formulae

Full text indexing can be thought of as a description of an arbitrary input by
textual words — tokens. Identity function can be used when the input consists of
simple words. However, mathematical formulae are highly structured without a
general canonical form because of equal transformations, different notations etc.
We use linearisation, transformation rules, generalisation rules and ordering algorithm
described below to simplify the complex and highly symbolic mathematical
structures into linear structures with well defined symbols.

i
i

“dml08” — 2008/7/18 — 12:44 — page 57 — #67 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 57

Fig. 1. Architecture of an arbitrary full text search engine

4.1 Parsing Mathematical Formulae

We analysed several formats suitable for mathematical indexing (MathML,
LATEX, TEX, XML, PDF, PS, HTML, Word, OpenMath, OMDoc) capable either of
describing the visual presentation of mathematics or describing the semantic
meaning. Because the search engine is designed for WWW, one of the basic
requirements is to index PDF document format which does not directly support
description of formula semantics. Even when the source code of the documents
(e.g. TEX, LATEX) is available not all symbols can be parsed unambiguously [10].
Since the majority of input documents does not contain enough semantic
information they must be expressed in one of the presentation formats. MathML
was chosen as the primary supported format because it can encode both
mathematical visualisation (Presentation MathML) and semantics (Content

i
i

“dml08” — 2008/7/18 — 12:44 — page 58 — #68 i
i

i
i

i
i

58 Jozef Mišutka, Leo Galamboš

MathML). In the following text we mainly focus on parsing Presentation
MathML.

Mathematical text is highly structured and symbolic, hence can be easily
recognised from common text. Identification of mathematical formulae is
minimised to identification of mathematical markup language. This is the
task of document analyser. Mathematical documents are sent to the converter.
The conversion to supported form must be tolerant because the meaning of
symbols is context dependent and there is usually little semantic information to
use. Mathematical formulae a b resp. a(b + c) are very likely to be the shorter
form of a ∗b resp. a ∗ (b+ c) but on the other hand Π can be either the constant
or a function representing permutation. A multiple characters to one character
mapping has been introduced because many characters look similar or have
the same meaning. This phase has shown that is very prone to incorrect symbol
recognition which led to incorrect formulae.

Full text search engine must use a recognition technique which analyses
input and parses it to words, sentences etc. Mathematical search engine must
use an analogous technique and is called formula recogniser. Every document
containing mathematical notation is converted to Presentation or Content
MathML. Then, the MathML document is delegated to the mathematical
extension. Afterwards, it is parsed into a tree-like structure supporting
mathematical operations.

There is an important difference between parsing Content and Presentation
MathML. Content MathML contains information whether an element is a
number, a constant, a variable or any other type but the Presentation MathML
does not. To remedy this important deficiency several simple heuristics are
applied together with a paradigm described below. When the correct meaning can
not be deduced the solution is to choose one solely meaning and operate with the symbol
identically in both the indexing and searching phase. We can improve this technique
by indexing formulae in Content MathML also as they would not contain any
semantic information. Each ambiguous symbol is converted to its normal form
with predefined semantic meaning, for example π, Π, Pi, pi to function π.

This technique can notably increase recall but decrease precision. The user
can refine his search by using simple textual query or by applying similar
techniques used by full text search engines e.g. ranking algorithm.

4.2 Storing Mathematical Formulae

Full text indexer works only with single linear words whereas mathematical
formulae can be structured into more levels. To adapt the structured notation for
sequential indexer linearisation must be performed [11]. Storing mathematical
formulae using postfix notation has two main advantages: 1) no need to
use parentheses, 2) it enables one special type of similarity searching except
similarity searching provided by the generalisation rules. Consider the following
example: formula (a + b) − (c + d) is converted to ab + cd + −, let’s assume
that formula tokens are ab+ and cd+. The resulting index database contains
three words in this order: ab+, cd+, −. This representation allows to search

i
i

“dml08” — 2008/7/18 — 12:44 — page 59 — #69 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 59

for the subformulae (ab+, cd+) without knowing the mathematical operation
between them.

Augmentation algorithm

Mathematical formulae can be expressed in numerous equivalent ways but full
text search engines can search only for documents containing specified words.
The most important problems include: 1) no commonly used mathematical
format nor unitary notation (1/x = 1

x = (x)−1, π = Π = Pi), 2) symbol meaning
dependent on context, 3) no canonical form (1+1+a = a+2, sin2x = 1−cos2x),
4) structured text (e

x+1
x−1), 5) many mathematical structures with different axioms.

To fully exploit the full text search engine and reduce the main disadvan-
tages, an indexed formula is not represented only by one word (or ordered
sequences of words) but by several words (or ordered sequences of words).
Generally speaking, the input is not stored only once but is augmented and stored
in various different synonyms — it is the opposite of stemming1. We call this
technique augmentation. The first representation is the ordered input formula.
Next representation is created by applying transformation and generalisation
rules together with an ordering algorithm on the last representation.

Some assumptions are made on the underlying mathematical model which
is simplified in each step of the algorithm. A representation from later iteration
would match more formulae because it is generalised. Augmentation does
not solve the unique canonical form problem completely, but it can reduce
the probability that two equivalent formulae do not match. Storing all of the
possible representations is clearly impossible because unique canonical form of
mathematical formulae does not exist.

Many scientific fields use formulae (physics, mathematics, computer science,
medicine, chemistry, etc.) to describe various processes. Many formulae are
sound and valid only in specific mathematical structures. In the simplest design,
instead of distinguishing between them, all structures are generalised into single
one in which these basic and most common axioms hold: 1) commutativity,
2) associativity, and 3) distributivity.

From the mathematical perspective, the indexing stage uses a function Q to
create different representations. The domain is the space of all mathematical
formulae (F) and the range is FN := F1 × F2×, . . . ,×FN. The function Q

produces N formulae f1, f2, . . . , fN for one input formula. The number N is
a predefined constant dependent on the generalisation and transformation
rules. The function Q is defined as Q : F → FN, Q(f) = [f1, . . . , fN] and must
satisfy one requirement about its domain FN: ∀i, fi+1 is a generalisation (or
identity) of fi. This algorithm is called generalisation algorithm. There can be
more than one function Q with different specialisations because the number
of formulae in one document is usually negligible comparing to the number

1 Stemming is the process where inflected or derived words are reduced to their root
form.

i
i

“dml08” — 2008/7/18 — 12:44 — page 60 — #70 i
i

i
i

i
i

60 Jozef Mišutka, Leo Galamboš

of textual words. This list is an example of transformation and generalisation
rules:

1. Partial evaluation: 7 + a + 5
(converted to)−−−−−−−−−−→ 12 + a

2. Approximate numerical constants: 5.82 .
= 6

3. Remove brackets using distributivity: a ∗ (b + c) → a ∗ b + a ∗ c

4. Multiply tokens: a+b
2 ∗ Π → Πa+Πb

2
5. Assign each numerator its own denominator: Πa+Πb

2 → Πa
2 + Πb

2
6. Replace constants with const symbol:

74 + a2 + b2 → const + aconst + bconst

7. Replace unknown constants, variables with id symbol:
a2 − b2 + 2bc → id2

1 − id2
1 + 2id1id2

or → id2
1 − id2

2 + 2id1id2 . . .

Another problem which must be addressed is that mathematically equivalent
formulae with the same but permuted operators or operands would be
considered as different when compared letter by letter. Ordering algorithmi
guarantees that two mathematically equal formulae with the same but permuted
operands have the same canonical representation and that two similar (but
not equal) formulae have a similar (but not equal) unique representations.
This can be guaranteed because of the simplifications and assumptions made
on the underlying mathematical apparatus. The indexer usually recognises
several document sections e.g. title, body, meta-data. To prevent the ambiguous
searching, resulting from collisions between mathematical tokens and simple
textual tokens mathematical section is introduced. A search for a proof of a
formula could result in searching for word “proof” in the text section and the
formula in the mathematical section. When the search engine supports the
proximity operator it can be even specified that the word “proof” and the text
representation of formula must be at a distance of maximum N tokens.

One of the most important but less obvious problems is the question of
what exactly the atomic information (grain) in a mathematical search engine
is. In a simple full text search engine the smallest information we can search
for is a word. The grain of a formula should be its reasonably big fragment —
subformula. Formula tokenizer is the part of the system which decides what the
atomic information is. When tokens are small the probability of two being equal
is higher and as a consequence the index database is smaller. Generalisation
rules, like substituting variables for one id or more id1, id2, . . . , idn symbols,
can be applied either on the whole formula at once or subsequently on all
formula grains. All variables must be substituted for one id symbol when
applying the rule on the whole formula. Otherwise, it could break searching
for subformulae. Let’s assume that formula a + b has two grains a and b. After
applying the generalisation rule on the whole formula, we get id1 + id2. The
same algorithm used on the indexed formula is applied on the search formula.
Thus, when searching for b we will end up with searching for id1, but we
should be searching for id2. If we apply the rule on each grain separately, we
get id1 + id1 and search for b will be successful. This is also demonstrated in

i
i

“dml08” — 2008/7/18 — 12:44 — page 61 — #71 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 61

the list of example rules above. The tokenizer which was used to create the first
representation in 7) divided the input into three grains a2, b2, 2bc; therefore, it
marked both first ids with index 1 and the result is id2

1 − id2
1 + 2id1id2. In the

second representation the grain is the whole expression and ids can be indexed
incrementally.

Using different formula tokenizer has a great impact on the performance.
The evaluation of different formula tokenizers can be found in Section 6.

4.3 Ranking Function

Each word in a document has a weight which indicates the relevance to the
document. It is a common practise that words in titles are ranked higher than
words in body of a document because they are considered more important.
If two formulae in different documents match a query (.

=) but both match
with a different representation of the formula (fi

.
= fj but i 6= j, let i < j)

then document containing fi should rank higher. Let R be a ranking function
which computes word rankings then requirement for the ranking of the formula
words can be written: R(f1) > R(f2) > ... > R(fN). The ranking algorithm of
mathematical formulae is based on the similarity search which uses formula
distance to rank each formula. It is clear that the first representation should be
ranked highest and that later representation is less similar than the previous
one. Currently, the formula distance is hard coded based on the number of the
representation.

5 Searching

Searching phase is the only user interactive phase of a search engine. User enters
a query which is executed and the results are displayed. This includes several
steps: 1) query parsing, 2) mapping query operators to supported internal
constructs, 3) finding all words/phrases from the query, 4) evaluating the logic
of the query and collecting suitable documents, 5) sorting them according to
their rank, 6) displaying the result list. The mathematical extension is part of 1),
2) and 6).

User input is separated into simple textual query and mathematical query.
Afterwards, the mathematical query is processed by the same algorithm used
in the indexing phase. The algorithm produces N representations which are
appended to the simple textual query, using the AND boolean operator. The
result are N sequentially executed search queries. Later query have higher
probability of a hit because the mathematical representation is more generalised
than the previous one.

The search page and the displaying of results in commonly used full text
search engines are similar (Google, Live Search, Yahoo). We extend this interface
by adding one or more additional input fields for mathematical formulae. The
text query must be present in the text section of the document and the formula
in the mathematical section. If there is a match in one step of the algorithm it

i
i

“dml08” — 2008/7/18 — 12:44 — page 62 — #72 i
i

i
i

i
i

62 Jozef Mišutka, Leo Galamboš

is more relevant than that the results obtained by using representations from
following steps. The queries are performed till the first match of K different
documents are found. Different similarities of different representations can be
used to limit a search and achieve finer precision.

5.1 Mathematical Query Language

The most important goal is to have the query language as simple and user-
friendly as possible but with no limits to the expressivity. Many users searching
for mathematics have already made contact with science papers. We can assume
that more users are familiar with LATEX than with any other mathematical
document format. Therefore, we propose using LATEX language extended with
tags supporting semantic information. According to a simple survey in [2]
the preferred way of inputing mathematical queries is LATEX too. The query
language can be supported by a graphical user interface.

5.2 Displaying Results

There are many ways how to display results. Displaying parts of the text
where word/phrase was found is a common practice which helps users to
decide which document is relevant without the need to open it. There is no
effective technique which extracts interesting parts from found documents
without big storage overhead or without undergoing the same process as in
the indexing phase which is very time consuming. Another problem is that
the found formula representation can be different from the original formula
and there is no connection between the original formula and the representation
except the position in the document. The searching phase of a mathematical
search engine must display at least a small abstract of the text extracted from
the document together with the original form of found formulae.

6 Experimental Evaluation

EgoMath is the mathematical extension of Egothor v2 full text search engine. It
contains the indexing and searching techniques described in this paper.

Statistics regarding precision and recall are not included since there is no
accepted evaluation metric designed specifically for mathematical searching. We
think that these results are very little informative. Several recall and precision
statistics of EgoMath can be found in [11].

EgoMath uses several simplifications: 1) equations are considered as two
separate formulae with equal operator between them, 2) constraints and
variables of known operators are not considered (

∫∞
0 x2dx →

∫
x2), 3) matrix

is converted to a set of formulae. These simplifications are not based on any
known limitations.

Every formula is stored in five representations. It uses a superset of rules
described in Section 4.2. First two representations have relatively high rank

i
i

“dml08” — 2008/7/18 — 12:44 — page 63 — #73 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 63

because they are very similar to the original formula. Only basic mathematical
operations are applied together with the ordering algorithm. The remaining
three representations are created by applying more complex transformations
rules. The main intention was to reduce the number of possible representations
mapping very common variations to a single one e.g. constants are not
important in many parts of mathematics so they are substituted by one symbol.
The precise definitions can be found in [11].

6.1 Document Sets

Two different document sets downloaded in July 2007 were used for our
experiments: 1) Connections2 (referred to as CNX in the remainder) with 421
scientific documents (32,306 indexed formulae) totalling 99 MB, 2) part of
the arXiv3 (referred to as ARXIV in the remainder) with 1915 mathematical
documents (852,388 indexed formulae) totalling 252 MB. These document sets
were chosen carefully because documents in CNX contain both Presentation
and Content MathML and because the document set is currently indexed by
MathWebSearch and MathDex. ARXIV contains both MathML elements but
as was already mentioned above, the Content MathML can be ambiguous as it
was created automatically by LATEXML [12,13].

Mathematical Formula Granularity

One of the important observations made is that granularity of formulae has an
considerable impact on index database size, speed and mainly on applicability.
This section provides comparison of different formula tokenizers responsible
for different formula granularity.

We have included 6 different tokenizers. The common used, com, accepts
subformula with small depth difference and entity count, coms accepts only
really simple ones, all accepts all formulae, alls accepts all nodes with neither
index nor exponent, num accepts only numbers, and const accepts only
constants.

The number of all representations is the same for all tokenizers because the
number does not depend on the algorithm of producing tokens: 1) ARXIV —
4,261,940, 2) CNX — 161,530. The difference between the maximum and
minimum number of different representations is very small: 1) ARXIV — max
2,121,729 with all, min 2,120,319 with num and const, 2) CNX — max 78,630 with
all, min 78,518 with num and const.

Average characteristics are shown in Figure 2. It is interesting that the two
different document sets have similar characteristics. The first graph shows that
in both document sets the biggest word count is approximately 8 times the
size of the smallest one. Second graph shows the average number of words per
representation. Tokenizers producing many words have two disadvantages: 1) it

2 http://cnx.org/
3 http://arxiv.org/

i
i

“dml08” — 2008/7/18 — 12:44 — page 64 — #74 i
i

i
i

i
i

64 Jozef Mišutka, Leo Galamboš

all alls com coms num const

CNX

Words per Document

C
ou

nt

0

300

1000

1800

3000

all alls com coms num const

Words per Representation

0

1

2

3

4

5

6

7

8

9

all alls com coms num const

Numbers per Representation

1.00

1.05

1.10

1.15

all alls com coms num const

ARXIV

Words per Document

C
ou

nt

0

2000

5000

9000

13000

18000

all alls com coms num const

Words per Representation

0

1

2

3

4

5

6

7

8

9

all alls com coms num const

Numbers per Representation

0.85

0.90

0.95

1.00

Fig. 2. Average characteristics of document sets

is difficult to reasonably define similar subformulae, and 2) higher word count
in one formula can theoretically cause performance problems. The last graph
shows the number of numerical constants per one formula representation. It can
be seen that there are little formulae with more than one numerical constant.

Index database size

The index database size in this experiment includes the whole index directory
including inverted index, indexed meta-data, term occurrences, indexed normal
text, index-sequential file for improving performance etc.

Figure 3 shows the comparison of index database sizes when different
formula tokenizers used. all and alls produced the largest databases because
they accept all resp. almost all formulae making the words representing a
formula very long. Longer words have lower probability that the database
already contains them. Tokenizers num and const accept only formulae with
one entity. The probability that two identical words are produced by these
tokenizers is higher. As expected, the index database size of com is bigger than

i
i

“dml08” — 2008/7/18 — 12:44 — page 65 — #75 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 65

Fig. 3. Index database size using different formula tokenizers

num and const. Tokenizer coms produced unexpectedly smallest database. The
reason for this behaviour is that the index database includes inverted index and
word occurrences. There are also other files but either they are very small or
have similar size for all tokenizers. The size of the inverted index is the smallest
using num tokenizer and the size of word occurrences is the smallest using
all. The medium size of all files is produced exactly by coms making the index
database the smallest.

PDF support

Applicability has been one of the most important goals of our work. Great
emphasis was put on the ability to index PDF format as it is the most used
scientific document format. The application [14] can produce MathML from
PDF documents. The evaluation showed two small issues: 1) speed, 2) accuracy.
A conversion takes tens of seconds and would be impossible to use on a larger
dynamic collection of documents. However, we think that this disadvantage is
not significant because mathematical documents are changed very seldom.
It is assumed that the speed of indexing surpasses the number of new
documents. Another problem was accuracy. It is interesting that the newer
version outperformed the older one in the number of recognised characters but
on the other hand the newer version sometimes converts single character to a
set of characters (e.g. M was converted to IVI).

7 Conclusion and Future Works

The key contribution of this paper is a description of how to extend an arbitrary
full text search engine to a fully-fledged mathematical search engine. Based on

i
i

“dml08” — 2008/7/18 — 12:44 — page 66 — #76 i
i

i
i

i
i

66 Jozef Mišutka, Leo Galamboš

the principles described in this paper we created EgoMath. On one hand, from
the full text search engine it inherits the advantages which has already proven as
very important in searching, but it also inherits the static index database which
does not directly support dynamic indexing and searching for mathematical
formulae. By exploiting the current state-of-art of full text searching together
with the new described paradigm, searching in real-world scientific documents
is possible with an extensible level of mathematical awareness supporting also
similarity searching. It is different from all other “semantic” techniques because
it does not try to find a user query formula by concretising it. On the contrary,
at first it tries to find an exact match. If not successful, the user query formula
is generalised and the search is repeated.

Evaluation showed that fine granularity does not only influence the usability
from the user point of view but also the speed and size of the index database.
The differences can be significant and must be taken into consideration. There
are few details which are still missing in EgoMath. One of the most important
parts for a user — result displaying — has to be improved according to this
paper. There are several features worth of further research which can greatly
increase the applicability of EgoMath e.g. searching in meta-data, searching in
references, displaying authors. The main focus is now put on the user interface
for making EgoMath publicly available. Next step in indexing is to include
Wikipedia4 in our index database.

This work shows that there are many possibilities how to address the
problem of mathematical searching opening several questions for future
research. How useful is this method? Another question is tightly connected
with the first one. How can we evaluate existing mathematical search engines?
One of the challenges of this research field is how to measure the applicability.
We think that at this moment, only an exhaustive cross comparison of available
search engine can produce useful information. We are planning to perform such
comparison in the future. It would be also interesting to find out whether the
proposed technique could be easily used on other structured data (e.g. chemical
formulae). And finally, how can be advanced search operators like proximity
operator used to improve the similarity searching.

Acknowledgement

The work was supported by the project 1ET100300419 of the Program
Information Society (of the Thematic Program II of the National Research
Program of the Czech Republic) “Intelligent Models, Algorithms, Methods and
Tools for the Semantic Web Realisation”.

References

1. Egothor v2 search engine, http://www.egothor.org.

4 http://www.wikipedia.org/

i
i

“dml08” — 2008/7/18 — 12:44 — page 67 — #77 i
i

i
i

i
i

Extending Full Text Search Engine for Mathematical Content 67

2. Zhao, J., Kan, M., Theng, Y. L.: Math Information Retrieval: User Requirements and
Prototype Implementation. To appear in JCDL ’08, Pennsylvania (2008).

3. Kohlhase, M., S̨ucan, I. A.: A search engine for mathematical formulae. Proceedings
of Artificial Intelligence and Symbolic Computation, AISC ’06, LNAI 4120, Springer
Verlag, Germany (2006).

4. Miller, B., Youssef, A.: Technical aspects of the digital library of mathematical
functions. Annals of Mathematics and Artificial Intelligence, 121–136 (2003).

5. Miner, R., Munavalli, R.: An approach to mathematical search through query
formulation and data normalization. In Towards Mechanized Mathematical
Assistants, MKM 2007, 342–355 (2007).

6. Libbrecht, P., Melis, E.: Methods for access and retrieval of mathematical content in
ActiveMath. Proceedings of ICMS 2006, LNAI 4151, Springer Berlin/Heidelberg,
331–342 (2006).

7. Kohlhase, M., Franke, A.: MBase: Representing knowledge and context for the
integration of mathematical software systems. Journal of Symbolic Computation,
Special Issue on the Integration of Computer algebra and Deduction Systems,
365–402 (2001).

8. Asperti, A., Selmi, M.: Efficient retrieval of mathematical statements. In
Mathematical Knowledge Management, LNCS 3119, Springer Verlag, 1–4 (2004).

9. Asperti, A., Guidi, F., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: A content based
mathematical search engine: Whelp. Proceedings of the TYPES 2004, LNCS 3839,
Springer Verlag, 17–32 (2004).

10. Stuber, J., van den Brand, M.: Extracting Mathematical Semantics from LATEX
Documents. LNCS 2901, Springer, Germany, 160–173 (2003).

11. Mišutka, J.: Mathematical search engine. Master thesis, Faculty of Mathematics and
Physics, Charles University in Prague (2007).

12. Miller, B. R.: Authoring mathematical knowledge. In 2nd North American Workshop
on Mathematical Knowledge Management, Phoenix (2004). http://dlmf.nist.gov/
LaTeXML/.

13. Miller, B. R.: DLMF, LATEXML and some lessons learned. Hot Topic Workshop on The
Evolution of Mathematical Communication in the Age of Digital Libraries (2006).

14. Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: INFTY — An integrated
OCR system for mathematical documents. Proceedings of DocEng, France (2003).

		webmaster@dml.cz
	2012-08-27T15:55:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

