
DML 2009

Ross Moore
Ongoing Efforts to Generate “Tagged PDF” using pdfTeX

In: Petr Sojka (ed.): Towards a Digital Mathematics Library. Grand Bend, Ontario, Canada, July
8-9th, 2009. Masaryk University Press, Brno, 2009. pp. 125--131.

Persistent URL: http://dml.cz/dmlcz/702553

Terms of use:
© Masaryk University, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702553
http://project.dml.cz

i
i

“dml09” — 2009/6/30 — 0:11 — page 125 — #135 i
i

i
i

i
i

Ongoing Efforts to Generate “Tagged PDF”
using pdfTEX

Ross Moore

Mathematics Department, Macquarie University, Sydney, Australia
ross@maths.mq.edu.au

Abstract. Recently PDF has been accepted as a standard for production of
electronic documents, as ISO 32000-1:2008, with an acronym of PDF/UA
(for “Universal Accessibility”). The second draft ISO 32000-2:2009 is to
include specifications for including MathML tagging of mathematical
environments and expressions. This talk presents a report on work-in-
progress, aimed at:
(a) developing the primitive commands for pdfTEX needed to support

the production of fully tagged PDF documents;
(b) writing appropriate TEX and LATEX macros to make effective use of the

new primitives;
(c) authoring changes to internal LATEX structures to use these macros

automatically at appropriate places within the existing code-base for
LATEX.

This is work that is being undertaken together with Hàn Thế Thành,
author of pdfTEX [2], who has added some new primitive commands to
an experimental version of this software tool.

1 Background

In July 2008, Adobe’s PDF Reference 1.7 [1] became ISO 32000 [4]. Since 2005,
the PDF Reference 1.4 has served as the basis for ISO 19005 [3], as an archival
format for technical documents. Both of these standards rely heavily on “Tagged
PDF”, so that not only is the content displayed at the highest quality, but also its
structure is provided, allowing for selective extraction of content and “reflow”
on small-screen devices (such as a PDA or modern mobile-phone), and screen-
reading perhaps in alternate languages. Work is under way on revision of ISO
19005, called PDF/A-2, to accommodate extra features introduced with PDF 1.5,
1.6 and 1.7. Furthermore, in November 2008 it was agreed that a revised ISO
32000-2 should include tagging of the structure of mathematical expressions
and formulae, using MathML tags. It may take as long as 2–3 years before these
updated standards are released in their final form.

TEX and LATEX remain de facto standards for technical documents, particularly
those having a large amount of mathematical content, though other methods
are starting to gain significant usage. Whilst PDF is the main output format

Petr Sojka (editor): DML 2009, Towards a Digital Mathematics Library, pp. 125–131.
© Masaryk University, 2009 ISBN 978-80-210-4781-5

i
i

“dml09” — 2009/6/30 — 0:11 — page 126 — #136 i
i

i
i

i
i

126 Ross Moore

Catalog 1

Pages

Page 101

Contents

Page 102

Contents

Contents 201

Contents 202

Pages 100

Kids [...]

StructTreeRoot

StructTreeRoot 300

K [...]

ClassMap

RoleMap

StructElem 301

P

K [...]

StructElem 302

P

Pg

K 0

StructElem 303

P

Pg

K [...]

StructElem 304

P

Pg

K [...]

Chap Head1 Para Para

Head 1 <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 2>>

StructParents 0

StructParents 1

ParentTree

Parent tree 400

Nums [...] 401

 [...]

402

 [...]

ParentTreeNextKey

IDTree

403

Kids [...]

Fig. 1: Interleaving of structure and content tagging within a 2-page PDF
document, structured as a heading and two paragraphs. (based on an example
in [1])

for LATEX, there have been no automated methods to include the structure and
content tagging that the above standards require. Work being undertaken here
is aimed at providing this missing support when pdfTEX [2] is used as the
PDF-producing software. As well as requiring new primitive commands to mark
content and build the structure trees that are needed for this tagging, a large
amount of the LATEX codebase will need to be revised to take advantage of the
new features. In this paper and associated talk, examples are shown of work
done so far, towards this aim.

Section 2 gives an idea of how tagging in PDF works, indicating the
complexity of the extra structures that PDF-producing software needs to
provide; Figure 1 gives a schematic view of these structures, within a document
having a quite simple structure. On the other hand, MathML tagging generally
requires a much deeper structure tree. In Section 3 an example (see Figure 2) is
presented, showing how the MathML tagging is represented, using new TEX

i
i

“dml09” — 2009/6/30 — 0:11 — page 127 — #137 i
i

i
i

i
i

Ongoing Efforts to Generate “Tagged PDF” using pdfTEX 127

primitives and within the PDF, such that it can then be faithfully exported to
XML.

2 Tagging PDF documents

Figure 1 indicates the extra structures that need to be created when producing
“Tagged PDF”. The upper half of the image shows the kinds of object that are
needed to display a PDF file as a series of pages. These kinds of objects include:

(i) page content streams, which consist of the low-level commands to select
fonts and place text on the page – the blue boxes headed as ‘Contents. . . ’;

(ii) an indexing object for each page – the blue boxes headed as ‘Page. . . ’;
(iii) an indexing object, headed ‘Pages’ that acts as a parent for the collection

of ‘Page. . . ’ objects;
(iv) the previous object is a child of the ‘Catalog’, which is the root node for

the complete document structure.

With tagged PDF there is also a Structure Tree whose root node ‘StructTreeRoot’
is another child of the ‘Catalog’. This is itself the root node for a tree of objects
headed as ‘StructElem. . . ’, which describe the abstract structure of the textual
content of the document. Each ‘StructElem’ node has both references to its
children, and a back-pointer to its parent node within the Structure Tree.

To define the content that is encompassed within the structure, there need
to be references from the nodes of the Structure Tree to specific locations within
the ‘Contents’ streams. The locations are indicated by the (round) rectangles,
with arrows indicating how the structure relates to these. Extra arrows point
from structure nodes to ‘Page’ nodes, which help identify where the content
can be seen; that is, on which page does it (mostly) occur.

A second tree is linked-to from the ‘StructTreeRoot’; this is called the
‘ParentTree’, containing a node for each physical page. These nodes are each
an array of references to all the ‘StructElem’ nodes that have content on the
corresponding page. There is a link from each ‘Page. . . ’ object to the ‘ParentTree’,
which allows the corresponding node to be easily located.

Finally a third ‘IDTree’ is an optional feature. Each ‘StructElem’ node can be
given a unique name. The ‘IDTree’ acts as the root node for a tree built up to
include arrays of these names, each paired with a pointer to the corresponding
‘StructElem’ node. This possibility of associating names to structure is for the
benefit of Application software that produces or manipulates PDF files. It
can use whatever naming scheme it likes to facilitate access to the kinds of
structured objects that it needs to work with.

Figure 1 is based on an example in the PDF Reference document [1]. The
structure it represents consists of a document section (chapter) having a heading
and a paragraph stretching across two pages, together with another paragraph.

i
i

“dml09” — 2009/6/30 — 0:11 — page 128 — #138 i
i

i
i

i
i

128 Ross Moore

3 MathML tagging within a PDF document

Figure 2 shows the effect of having a piece of mathematics tagged (using
MathML syntax) within a PDF document. The middle part of the image
shows how the page would appear within an Adobe Reader, or (in this case)
Acrobat, browser. This view is partly obscure by Acrobat’s ‘Order Panel’, which
displays the tagging of a mathematical expression, with an <mrow> selected. The
corresponding content is highlighted with rectangles back in the browser view.
On the left side we see the result of an ‘Export to XML 1.0’ action, writing the
tagged contents out into a text file. This export has included the mathematical
symbols using UTF8 format, so the correct Unicode Plane 1 “Mathematical
Alphanumerics” are shown within a text editor that supports the full Unicode
range.

This example was produced using an experimental version of pdfTEX. The
fonts being used are from the Computer Modern family, which are the standard
fonts that have traditionally been used with TEX and LATEX. Mappings to Unicode
Plane 1 characters are achieved using the LATEX package mmap.sty, described
within a recent TUGboat article [5].

The LATEX coding below shows part of what was used to produce
the tagging of mathematics shown in Figure 2. It shows how to use
new primitive commands \pdfstructelem, \pdfstartmarkedcontent and
\pdfendmarkedcontent.

\pdfstructelem attr{/S /Formula} 3 27
\pdfstructelem attr{/S /math} 27 28
\pdfstructelem attr{/S /mrow} 28 29
\pdfstructelem attr{/S /msup} 29 30
\pdfstructelem attr{/S /mrow} 30 31
\pdfstructelem attr{/S /mo} 31 32
\pdfstartmarkedcontent attr{/ActualText(\050)
/Alt(, open bracket,)} 32 {mo}\biggl(\pdfendmarkedcontent

\pdfstructelem attr{/S /mi} 31 33
\pdfstartmarkedcontent attr{/Alt(alpha)}noendtext

33 {mi}\alpha \pdfendmarkedcontent
\pdfstructelem attr{/S /mo} 31 34
\pdfstartmarkedcontent attr{/Alt(plus)}noendtext

34 {mo}+ \pdfendmarkedcontent
...

The primitive \pdfstructelem requires two numbers specifying a unique
identifier for the structure node being created, preceded by the identifier of its
parent node, and attributes including the type of tag. Leaf nodes, constructed
with \pdfstartmarkedcontent, require the identifier of the parent structure
node. Their attributes can include /Alt text to be read by a screen-reader,
and an /ActualText alternative for text-extraction. The kind of node for a
mathematical symbol agrees with its parent structure node, (e.g., /mi, /mo or
/mn). This is followed by the TEX coding to produce a visual representation,

i
i

“dml09” — 2009/6/30 — 0:11 — page 129 — #139 i
i

i
i

i
i

Ongoing Efforts to Generate “Tagged PDF” using pdfTEX 129

Fig. 2: MathML tagging within a PDF document

terminated by \pdfendmarkedcontent. Part of the PDF content stream resulting
from this coding is given below, showing how the tagging is interspersed with
positioning and font-changing commands, and the font characters themselves.

1 0 0 1 70.69 -23.949 cm
/mo <</MCID 15 /ActualText(\050) /Alt(, open bracket,)>>BDC
1 0 0 1 0 17.036 cm BT
/F1 9.9626 Tf/F18 1 Tf()Tj/F1 9.9626 Tf [(\040)]TJ ET EMC
1 0 0 1 7.887 -17.036 cm
/mi <</MCID 16 /Alt(alpha)>>BDC BT
/F11 9.9626 Tf/F18 1 Tf()Tj/F11 9.9626 Tf [(\013)]TJ ET EMC
1 0 0 1 6.41 0 cm
/mo <</MCID 17 /Alt(plus)>>BDC
1 0 0 1 2.214 0 cm BT
/F8 9.9626 Tf/F18 1 Tf()Tj/F8 9.9626 Tf [(+)]TJ ET EMC

This kind of coding, directly in pdfTEX primitives, is really only useful for
testing and “proof of concept” examples, such as Figure 2. Any mistake in the

i
i

“dml09” — 2009/6/30 — 0:11 — page 130 — #140 i
i

i
i

i
i

130 Ross Moore

numerical identifiers can result in a broken PDF that may appear to render
properly, but nevertheless crashes Acrobat due to a malformed structure tree.

Handling those numerical identifiers and parent relationships is something
better done using an extra layer of LATEX macros, as in the coding example
below. A \taginlinemath macro sets up an enclosing /Formula structure tag.
Presentation MathML structure is specified using \tagmathbranch. MathML
content tags are associated with TEX source using \tagmathbleaf, which has
an optional argument for spoken text. A variant \tagmathaleaf accommodates
/ActualText replacements for large delimiters and extended constructions
which require more than one glyph to display a single symbol.

\taginlinemath{%
\tagmathbranch{msup}{\storePDFparentID
\tagmathbranch{mrow}{%
\tagmathaleaf[, open bracket,]{mo}{/stretchy /false
/minsize(1.2em) /maxsize(1.2em)}{\050}{\bigl(}%

\tagmathbleaf[alpha]{mi}{}{\alpha}%
\tagmathbleaf[plus]{mo}{}{+}%
\tagmathbleaf[beta]{mi}{}{\beta}%
\tagmathaleaf[, close bracket,]{mo}{/stretchy /false

/minsize(1.2em) /maxsize(1.2em)}{\051}{\bigr)^{%
\adjustendcontent \tagmathbleaf[all squared,]{mn}{}{2}%
}%end of ^
}% </mo>

}% </mrow>
}% </msup>
...

In the above examples, the MathML tagging has been coded by hand to
get working LATEX source. Ultimately such markup, that interweaves MathML
tagging with TEX code, needs to be generated automatically. This will require
new coding structures called from modified expansions for existing LATEX
internal commands and environments (as used with paragraphs, headings,
etc.), as well as with mathematical environments. For math the proposed
strategy is to write the LATEX source of a complete environment to disk, run
a 3rd-party MathML converter to generate the tagging, then read the result
back into the running job, merging the two coded views of the same piece of
mathematics. Any external MathML converter could be used, provided it can
be run as a command-line program using TEX’s \write18 facility. Alternatively,
if a MathML version is already available for a piece of LATEX source, then this
could be used instead.

References

1. Adobe Systems Inc.; PDF Reference 1.7, November 2006.
http://www.adobe.com/devnet/pdf/pdf_reference.html

2. Hàn Thế Thành; Thesis – pdfTEX, published as: TUGboat, 21:4, (2000).
http://www.tug.org/TUGboat/Contents/contents21-4.html

i
i

“dml09” — 2009/6/30 — 0:11 — page 131 — #141 i
i

i
i

i
i

Ongoing Efforts to Generate “Tagged PDF” using pdfTEX 131

3. ISO 19005-1:2005; Document Management – Electronic document file format for long
term preservation – Part 1: Use of PDF 1.4 (PDF/A-1).
http://www.iso.org/iso/catalogue_detail?csnumber=38920

4. ISO/DIS 32000; Document management – Portable document format (PDF 1.7), July
2008. http://www.iso.org/iso/catalogue_detail?csnumber=51502

5. Moore, Ross R.; Advanced features for publishing mathematics, in PDF and on the
Web. TUGboat, 29:3, (2008), pp. 464–473.
http://www.tug.org/TUGboat/Contents/contents29-3.html

6. PDF/UA Universal Accessibility; websites at http://pdf.editme.com/pdfua and
http://www.aiim.org/Standards/article.aspx?ID=27861.

		webmaster@dml.cz
	2012-08-27T16:20:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

