
DML 2010

Miha Filej; Michal Růžička; Martin Šárfy; Petr Sojka
Metadata Editing and Validation for a Digital Mathematics Library

In: Petr Sojka (ed.): Towards a Digital Mathematics Library. Paris, France, July 7-8th, 2010.
Masaryk University Press, Brno, Czech Republic, 2010. pp. 57--62.

Persistent URL: http://dml.cz/dmlcz/702573

Terms of use:
© Masaryk University, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702573
http://project.dml.cz

Metadata Editing and Validation
for a Digital Mathematics Library

Miha Filej1, Michal Růžička2, Martin Šárfy3, and Petr Sojka2

1 University of Ljubljana, Faculty of Computer and Information Science
Tržaška 25, 1000 Ljubljana, Slovenia

miha.filej@gmail.com
2 Masaryk University, Faculty of Informatics
Botanická 68a, 602 00 Brno, Czech Republic,

mruzicka@mail.muni.cz, sojka@fi.muni.cz
3 Masaryk University, Institute of Computer Science

Botanická 68a, 602 00 Brno, Czech Republic
sarfy@ics.muni.cz

Abstract. For preparing and validating metadata for the Digital Math-
ematics Library DML-CZ, a new tool, the Metadata Editor, has been
developed. This paper outlines the procedures for Linguistic and geo-
graphical localizations its components. Also mentioned are such aspects
as dynamic generation of form editing based on the XML Schema, the
validation procedures as well as support for semiautomatic procedures
regarding quality assurance.
Key words: DML-CZ, Metadata Editor, internationalization, translation,
localization, validation, XML, forms, Ruby, Perl, JavaScript

1 Introduction

Since 2005, the Czech Digital Mathematics Library project (DML-CZ) [3] has
been under development in the Czech Republic. An important part of the
project has been the development of the Metadata Editor [4,11]—a client–server
web application designed to manage, edit, and validate each article’s metadata
and full texts prior to their integration into the digital library.

The Metadata Editor is open-source software (http://dme.sourceforge.
net/) and having proven its efficiency is now in use in a variety of other
environments. These include the Faculty of Arts of Masaryk University, the
Kramerius project of the Moravian Library [13], and the Editor may also be
used in the EuDML project [5] as well. In this article we present some recent
developments of the Metadata Editor.

2 On-line Submissions and Validation

The viability of a digital library rests with new acquisitions emerging mainly in
the form of born-digital publications. The born-digital inputs to the Metadata
Editor come from different sources, primarily from editors of various journals.

Petr Sojka (editor): DML 2010, Towards a Digital Mathematics Library, pp. 57–62.
c© Masaryk University, 2010 ISBN 978-80-210-5242-0

mailto:miha.filej@gmail.com
mailto:mruzicka@mail.muni.cz
mailto:sojka@fi.muni.cz
mailto:sarfy@ics.muni.cz
http://dml.cz
http://dml.cz
http://dml.cz
http://dme.sourceforge.net/
http://dme.sourceforge.net/
http://www.fi.muni.cz/usr/sojka/
http://www.fi.muni.cz/usr/sojka/dml-2010.html

58 M. Filej, M. Růžička, M. Šárfy, P. Sojka

To assure a smooth integration of a new publication into the Metadata
Editor Database, it has to satisfy a particular data format specification available
to all the contributors. For this reason, it was necessary to set up a safe
and comfortable interface between the contributors and the Metadata Editor.
Because the Metadata Editor is a web application, it is easy to provide the users
with direct on-line access based on a private user account in the Editor. After
logging in the user can upload a new delivery directly and it is automatically
assigned to the appropriate journal. The new entries are automatically validated
so that the user gets warnings about inappropriate formats of data, while flawed
submissions are completely rejected. It obviates later corrections and helps the
users to prepare data in the required format.

3 Dynamic Generation of Editing Forms

One of the most important functions of the Metadata Editor consists in
facilitating interactive modification of metadata. The operators are allowed
to browse the contents of the Metadata Editor database and make necessary
adjustments through the web-based interface of the relevant forms.

Since the metadata language is formally defined by an XML Schema, it
is possible to generate the forms dynamically based on the XML Schema
definition. The mechanism consists of server-side and client-side scripting. The
XML Schema is processed on the server by a Perl script generating a JavaScript
code that is included in the web page and which is subsequently sent to
the client. This JavaScript code runs in the web browser of the end user and
generates a form matching the language defined by the source XML Schema.

Not all features of the XML Schema are supported, but the mechanism is
powerful enough to satisfy the requirements. In addition to being a part of the
Metadata Editor, a generalized version of the forms generator is available as
a standalone open-source project [9].

4 Internationalizing the Metadata Editor

4.1 Internationalization, Translation, Localization

In a nutshell, adapting the user interface of an existing application to new
languages involves changing the output in a way that will please the current
user. While translation could easily be considered the most important part of
this process, it is not enough by itself—both translation and localization are
required.

When dealing with source and target regions that are not similar, a complete
localization of an application is difficult to achieve. Common parts of an
application that have to be localized are time and date formats. The way time
or date is displayed—the number of digits used, the separators, the order of
date components, whether the 24- or 12-hour format is used—these can all
vary from region to region. In addition, time zones in which users reside may

Metadata Editing and Validation for a Digital Mathematics Library 59

differ. The process of localization has to ensure that every date output of the
application is displayed relative to the corresponding time zone.

Depending on the degree of internationalization that needs to be performed
and the locales that need to be supported, more specific issues may be
encountered: pluralization, units conversion (metric vs. imperial, currencies
etc.), right-to-left text orientation. Particular attention has to paid to words or
phrases that have different meanings due to cultural differences and may even
be offensive.

4.2 Implementation

The Metadata Editor is built using a variety of technologies and programming
languages. The part that interacts with the user is mostly handled by Ruby [8],
which requires support from end libraries. In the past, there were various
(incompatible) internationalization solutions in the Ruby ecosystem, each
solving its own set of problems. In 2007 an effort to provide a generalized
library emerged resulting in I18n [10], the library that is now the de facto
standard for the internationalization of Ruby applications. Being a general
solution it does not provide complex internationalization facilities; instead it
defines an interface for other libraries to extend its functionality and remain
compatible with each other at the same time.

I18n provides two basic methods, I18n.translate and I18n.localize (due
to frequent use abbreviated to I18n.t and I18n.l, respectively). I18n.t handles
translation by mapping an explicitly defined namespaced key to a string in
a natural language. The approach differs from the popular GNU gettext [6]
which maps a string in a natural language to a string in another natural
language (although gettext’s .so and .po files can still be used with I18n to
store the translations). Having explicitly programmer-defined keys should
result in greater maintainability by simplifying the way translations are reused
throughout the application and avoids the issue where two sentences in different
contexts in a language translate to the same sentence in another language, and
vice-versa. I18n.l takes various objects like time, date etc. and localizes them
according to the defined localization rules.

I18n’s pluggable back-ends allow internationalized data to be stored in
different ways. In addition to the gettext format mentioned above, YAML
files, various relational databases and key-value stores are available as storage
options. By defining the interface for implementing a back-end, the I18n library
enables programmers to build a custom storage solution that suits their needs.

4.3 Choosing a Locale

Apart from altering the code to replace hardcoded strings with calls to methods
that translate and localize them, a logic that handles switching between the
locales needs to be introduced to the application. Since the Metadata Editor is
a web application, the locale has to be set per request. With the help of sessions
and cookies it is possible to persist a given locale between requests of the same

60 M. Filej, M. Růžička, M. Šárfy, P. Sojka

user, so the question remains: which locale is to be introduced for the first
time (for a new user with no cookies)? There is no safe way how to determine
a locale for a user’s first request, but a web application is able to take a guess
based on a few hints.

The HTTP/1.1 protocol defines the Accept-Language header [7] and at first
it may be tempting to use the information provided by the user agent to set the
default locale for the user, but there are several things to take into account [12].
Many users are unaware of the setting which was probably set when the user
agent was installed and is might not conform to their preferences. The user
agent may send a request that only defines the language without specifying
the region (e.g. instead of de-DE, de-CH or de-AT indicating German as spoken
in Germany, Switzerland or Austria, respectively, only de may be requested).
If the user does not access the application from his own machine, the inferred
locale may be inappropriate, especially when one is in a foreign country. Last
but not least, the header may not be set at all.

Another clue from which the locale can be inferred is the user’s IP address.
With the help of a database or an external geolocation service it is possible to
determine the user’s geographical origin; but the approach shares a lot of the
shortcomings described above. It is important that the application is not bound
to its guess but allows the user to set his own preference at any point of the
interaction. Whenever a locale is explicitly chosen, it is safe to assume it as
a default for future requests from the same user.

To sum up, the logic for setting a locale has to consider (from highest to
lowest priority): the previously set preference, the locale guessed from the
HTTP headers, the locale guessed from the IP of the source and the default
locale. Ideally the logic would set the locale as soon as the request was received,
at the beginning of the interaction with the user, the programme input. Then,
when computing the output, dedicated functions would perform translation
and localization depending on the set locale.

4.4 Refactoring, Dangers, Precautions

The effort of adapting an application to another language rests with the
difference between the source and the target language. Given that an adaptation
to a broader set of languages is preferable, the codebase requires a major
altering—a process that is prone to mistakes. The Metadata Editor being
a relatively complex codebase, taking precautions against introducing bugs is
the more important. The desired result of the process of internationalization
is—(at least when rendering in the original locale) that the output matches
the output of the programme before it was adapted. To assure this a set of
specifications is needed.

Automated software testing is strongly encouraged in the Ruby community
and the past few years have seen an evolution of tools and practices for
unit, function and integration testing. In 2008 a tool called Cucumber [2] was
introduced. It differs from other solutions in the way that specifications (called
features) are not written in Ruby, but in a language called Gherkin [1]. This

Metadata Editing and Validation for a Digital Mathematics Library 61

domain specific language serves two purposes: documentation and automated
tests. It allows describing software behaviour irrespective of how that behaviour
is implemented. Gherkin’s grammar has only a few simple rules and reads
like spoken language. This allows feature specifications to be written and
understood not only by programmers but by domain experts as well, thus
increasing the value of the specifications. While Cucumber itself is written in
Ruby, it can be used to test codes written in other languages, which makes it
suitable to cover the non-Ruby parts of the Metadata Editor.

In Figure 1 one can see that Cucumber communicates with the application
at the framework level, offering a better control over the request parameters
than a direct communication with the application server or the web server level
would provide.

web server

cucumberapplication server

client request/response

framework

application
code

test runner

feature
specifications

interface

Fig. 1. Cucumber integration diagram

5 Conclusions

The Metadata Editor is a live, continuously developing project. New features
are added as needed. The on-line input and validation service was worked in
to provide users with a comfortable and safe interface for data inclusion, the
user interface is dynamically generated based on the formal definition of the
metadata, the localization of the Metadata Editor is in progress.

The Metadata Editor is used in several projects and will possibly be used in
the EuDML project as well.

References

1. aslakhellesoy / cucumber. [online], http://wiki.github.com/aslakhellesoy/
cucumber/gherkin, Last edited by zwyan2009, 2 days ago [cit. 2010-04-28].

http://wiki.github.com/aslakhellesoy/cucumber/gherkin
http://wiki.github.com/aslakhellesoy/cucumber/gherkin

62 M. Filej, M. Růžička, M. Šárfy, P. Sojka

2. Cucumber : Behaviour driven development with elegance and joy. [online], http:
//cukes.info/, [cit. 2010-04-28].

3. Czech Digital Mathematics Library. [online], http://dml.cz/, [cit. 2010-04-24].
4. Digitization Metadata Editor. [online], http://dme.sourceforge.net/,

[cit. 2010-04-28].
5. EuDML: The European Digital Mathematics Library. [online], http://www.eudml.

eu/, This page was last modified on 20 January 2010, at 08:09. [cit. 2010-04-25].
6. gettext. [online], http://www.gnu.org/software/gettext/, Updated: $Date:

2010/01/31 14:51:43 $ [cit. 2010-04-28].
7. HTTP/1.1: Header Field Definitions : Accept-Language. [online], http://www.w3.

org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4, [cit. 2010-04-28].
8. Ruby Programming Language. [online], http://www.ruby-lang.org/en/,

[cit. 2010-04-28].
9. SchemaForms. [online], http://sforms.sourceforge.net/, [cit. 2010-05-30].

10. svenfuchs / i18n. [online], http://github.com/svenfuchs/i18n, [cit. 2010-04-28].
11. Bartošek, M., Kovář, P., Šárfy, M.: DML-CZ Metadata Editor : Content Creation

System for Digital Libraries. In: Sojka, P. (ed.) DML 2008 – Towards Digital
Mathematics Library. pp. 139–151 (2008), Birmingham, UK, July 27th, 2008.

12. Honomichl, L.: Accept-Language used for locale setting. [online], http://www.w3.
org/International/questions/qa-accept-lang-locales, Last substantive up-
date 2003-09-17 12:15 GMT. This version 2006-11-25 16:35 GMT [cit. 2010-04-28].

13. Šárfy, M.: Metadatový editor pro digitální knihovny. In: Knihovny současnosti 2009.
pp. 140–154. Brno (2009), http://www.sdruk.cz/sec/2009/sbornik/2009-6-140.
pdf, Seč u Chrudimi, CZ, June 23rd, 2009. ISBN 978-80-86249-54-4

http://cukes.info/
http://cukes.info/
http://dml.cz/
http://dme.sourceforge.net/
http://www.eudml.eu/
http://www.eudml.eu/
http://www.gnu.org/software/gettext/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
http://www.ruby-lang.org/en/
http://sforms.sourceforge.net/
http://github.com/svenfuchs/i18n
http://www.w3.org/International/questions/qa-accept-lang-locales
http://www.w3.org/International/questions/qa-accept-lang-locales
http://www.sdruk.cz/sec/2009/sbornik/2009-6-140.pdf
http://www.sdruk.cz/sec/2009/sbornik/2009-6-140.pdf

		webmaster@dml.cz
	2012-08-27T16:29:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

