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Abstract
This work is concerned with the numerical solution of a hydrodynamic model

of the macroscopic behavior of flocks of birds due to Fornasier et al., 2011. The
model consists of the compressible Euler equations with an added nonlocal, nonlinear
right-hand side. As noticed by the authors of the model, explicit time schemes are
practically useless even on very coarse grids in 1D due to the nonlocal nature of the
equations. To this end, we apply a semi-implicit discontinuous Galerkin method to
solve the equations. We present a simple numerical test of the resulting scheme.

1. Continuous problem

In [4], a new hydrodynamic limit of a modification of the famous Cucker-Smale
model was derived. The equations describe, using macroscopic quantities, the dy-
namics of flocks of birds or other self-organizing entities. The equations are highly
nonlinear and nonlocal and are therefore extremely expensive to treat numerically.
In [4] a first simple simulation was performed using the finite volume method. Here,
we discretize the model more efficiently using the discontinuous Galerkin method.

Let Ω = (0, 1) ⊂ R and for 0 < M < +∞, we set QM := Ω × (0,M). We treat
the following problem written in conservative variables. Find w : QM → R3 such
that

∂w

∂t
+
∂f(w)

∂x
= g(w) in QM , (1)

where w = (ρ, ρu,E)> ∈ R3 is the state vector and

f(w) =
(
f1(w), f2(w), f3(w)

)>
=
(
ρu, ρu2 + p, (E + p)u

)>
,

g(w) = λ
(
0,A(w),B(w)

)>
.

(2)

Here ρ denotes the density, u velocity, E energy and p pressure. The right-hand side
functions A and B are given by

A(w)(x, t) =

∫
R
b(|x− y|)

(
u(y, t)− u(x, t)

)
ρ(x, t)ρ(y, t) dy,

B(w)(x, t) =

∫
R
b(|x− y|)ρ(x, t)

(
ρ(y, t)u(x, t)u(y, t)− 2E(y, t)

)
dy,

(3)
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where

b(|x− y|) =
K

(λ+ |x− y|2)β+1
, (4)

and K,λ > 0 and β ≥ 0 are given constants. The relations between E, p are the
classical laws of a perfect gas,

E = ρ

(
3

2
T +

u2

2

)
, p = ρT, (5)

where T is the thermodynamic temperature.
In (3), we write the right-hand side terms A,B as functions of w, although

the integrals in (3) are written terms of the nonconservative variables ρ, u, T . Ex-
pressing A,B in w in a suitable way is a key ingredient in our scheme and will be
described in detail in Section 2.3. System (1) is equipped with the initial condition
w(x, 0) = w0(x) and periodic boundary conditions.

2. Discretization

We shall use the multidimensional notation for Ω ⊂ Rd, although in our compu-
tations we have d = 1. Let Th be triangulation of Ω and Fh the system of all faces
(nodes in 1D) of Th. For each Γ ∈ Fh we choose a unit normal nΓ = ±1, which,
for Γ ⊂ ∂Ω, has the same orientation as the outer normal to Ω. For each interior
face Γ ∈ Fh there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that nΓ is the outer

normal to K
(L)
Γ . For v piecewise defined on Th and Γ ∈ Fh we introduce v|(L)

Γ is the

trace of v|
K

(L)
Γ

on Γ, v|(R)
Γ is the trace of v|

K
(R)
Γ

on Γ, 〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
and

[v]Γ = v|(L)
Γ − v|

(R)
Γ . On ∂Ω, we define v|(L)

Γ , v|(R)
Γ using periodic boundary conditions.

If [· ]Γ, 〈· 〉Γ, v|(L)
Γ , v|(R)

Γ appear in an integral over Γ ∈ Fh, we omit the subscript Γ.
Let p ∈ N and let P p(K) be the space of polynomials on K ∈ Th of degree ≤ p.

The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sh := [Sh]
3, where Sh = {v; v|K ∈ P p(K),∀K ∈ Th}.

2.1. Discontinuous Galerkin space semidiscretization

The discrete problem is derived in the following way. We multiply (1) by a test
function ϕh ∈ Sh, integrate over K ∈ Th and apply Green’s theorem in the convective
terms. Summing over K ∈ Th and rearranging the boundary terms, we obtain∫

Ω

∂w

∂t
·ϕ dx+

∑
Γ∈Fh

∫
Γ

f(w)n · [ϕ] dS−
∑
K∈Th

∫
K

f(w) · ∂ϕ
∂x

dx =

∫
Ω

g(w) ·ϕ dx. (6)

Since w will be approximated by a function from Sh, which are discontinuous on
edges, we approximate the physical flux f(w)n through an edge Γ ∈ Fh by a so-called
numerical flux H(w(L),w(R), n) as in the finite volume method. In our computations
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we use the Vijayasundaram numerical flux, cf. [5, 2]. Now we can define the following
forms defined for w,ϕ ∈ Sh:
Convective form:

bh(w,ϕ) =
∑
Γ∈Fh

∫
Γ

H(w(L),w(R), n) · [ϕ] dS −
∑
K∈Th

∫
K

f(w) · ∂ϕ
∂x

dx,

right-hand side source term form:

lh(w,ϕ) = −
∫

Ω

g(w) ·ϕ dx.

Finally, we introduce the space semi-discrete problem: We seek wh ∈ C1([0,M ];Sh):

d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) + lh(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀t ∈ (0,M). (7)

2.2. Time discretization

Equation (7) represents a system of nonlinear ordinary differential equations,
which must be discretized in time. Due to extreme time step restrictions caused by
the nonlocal right-hand side terms, cf. [4], we want to avoid using an explicit scheme.
However an implicit time discretization is also very expensive due to its nonlinearity.
Therefore we use the semi-implicit scheme of [3] and apply it to our problem.

Let 0 = t0 < t1 < t2 < . . . be a partition of time interval [0,M ] and define
τk = tk+1 − tk. We approximate wk

h ≈ wh(tk), where wk
h ∈ Sh. We use a first

order backward difference approximation for the time derivative. Following [3], the
nonlinear convective terms bh(w

k+1
h ,ϕh) are linearized as

b̃h(w
k
h,w

k+1
h ,ϕh) = −

∑
K∈Th

∫
K

A (wk
h)w

k+1
h · ∂ϕh

∂x
dx

+

∫
Fh

(
P+
(
〈wk

h〉, n
)
w
k+1,(L)
h + P−

(
〈wk

h〉, n
)
w
k+1,(R)
h

)
· [ϕh] dS,

(8)

where A = Df
Dw

and P+,P− are matrices defining the Vijayasundaram numerical flux,
cf. [3] for details.

As for the source terms, again we linearize them to obtain the approximation
lh(w

k+1
h ,ϕh) ≈ l̃h(w

k
h,w

k+1
h ,ϕh). The specific construction of this linearization is

technical and will be presented separately in Section 2.3.
Collecting all the considerations, we obtain the following semi-implicit DG scheme:

Definition 1. We say that the sequence wk
h ∈ Sh, k = 0, 1, . . ., is a semi-implicit

DG solution of problem (1) if for all ϕh ∈ Sh(wk+1
h −wk

h

τk
,ϕh

)
+ b̃h(w

k
h,w

k+1
h ,ϕh) + l̃h(w

k
h,w

k+1
h ,ϕh) = 0. (9)
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Equation (9) represents a linear equation for the unknown wk+1
h . By choos-

ing basis functions of Sh with supports on only one element, we obtain a sparse,
block-tridiagonal matrix with lower left and upper right blocks corresponding to
periodic boundary conditions. To solve these systems, we use the direct solver
UMFPACK, [1]. It is our goal to construct l̃h in such a way so as to preserve
the sparsity structure of the systems solved.

2.3. Linearization of the source terms lh

First, we rewrite the right-hand side integrals A,B in terms of the conservative
variables. For the integral A, we obtain

A =

∫
R
b(|x− y|)w(x, t) ·

(
w2(y, t),−w1(y, t), 0

)
dy. (10)

Similarly, we write B as

B =

∫
R
b(|x− y|)w(x, t) ·

(
− 2w3(y, t), w2(y, t), 0

)
dy. (11)

Therefore, we can rewrite the vector g(w) as

g(w)(x, t) = λ

∫
R
b(|x− y|)U2

(
w(y, t)

)
w(x, t) dy, (12)

where U2(w) ∈ R3×3 is the matrix

U2(w) =

 0 0 0
w2 −w1 0
−2w3 w2 0

 .

Approximating w(x, t) ≈ wk+1
h (x) and w(y, t) ≈ wk

h(y), we get the linearized form

l̃h(w
k
h,w

k+1
h ,ϕh) =

∫
R

(∫
R
b(|x− y|)U2

(
wk
h(y)

)
dy

)
wk+1
h (x) ·ϕh(x) dx. (13)

Adding l̃h to the scheme (9) does not change the sparsity structure of the system
matrix, since it contributes only to the block-diagonal. This is important, since
other expressions than (12) are possible, however they lead to a full system matrix,
which is undesirable. Nonetheless, the computation of these terms is extremely time
consuming due to their nonlocal nature. Even if the basis functions of Sh are local,
in order to evaluate l̃h, we must compute the inner integral

∫
R b(|x−y|)U2

(
wk
h(y)

)
dy,

which is time consuming due to the slow decay of the function b(|x− y|).
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3. Numerical experiment

In this numerical experiment, we start at t = 0 with a Gaussian distribution
of density ρ(x) = exp(−10(x − 0.5)2) along with constant temperature T = 10
and the velocity distribution u(x) = − sin(2πx). The triangulation consists of 400
piecewise quadratic elements. We observe the formation of a sharp peak in ρ, as
seen in Figure 1. Due to jumps in the solution, artificial diffusion was added, cf. [3].

Figure 1: Numerical results for density.

128



Furthermore, in large regions of Ω, a state close to vacuum occurs, i.e. ρ ≈ 0 and
the matrices A ,P+,P− are no longer defined. To avoid this complication, at each
time step, wk

h was postprocessed to avoid the vacuum state: If ρ < ε or T < ε, then
set ρ := ε or T := ε and recompute the energy E using relation (5). This defines
a new state w̃k

h which is used in (9) instead of wk
h to compute wk+1

h . In our case, we
use ε := 10−5.

4. Conclusion

We have presented an efficient numerical method for the solution of a nonlinear
and nonlocal version of the compressible Euler equations describing the dynamics
of flocks of birds from [4]. To avoid severe time step restrictions, a semi-implicit
discontinuous Galerkin scheme is applied. A suitable treatment of the nonlocal terms
is given, which leads to sparse linear systems. Shock capturing and postprocessing
of vacuum are added to obtain a stable scheme. To our knowledge, these are the first
numerical results for this model, except for one test case in the original work [4].
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The research of V. Kučera is supported by the Grant No. P201/13/00522S of
the Czech Science Foundation. He is a junior researcher at the University Cen-
ter for Mathematical Modelling, Applied Analysis and Computational Mathematics
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