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Abstract

The scheme for the numerical solution of the incompressible Navier-Stokes equa-
tions coupled with the equation for temperature through the temperature dependent
viscosity and thermal conductivity coefficients is presented. It is applied, together
with the spectral element method, to the 2D calculations of flow around heated cylin-
der. High order polynomial approximation is combined with the decomposition of
whole computational domain to only a few elements. Resulting data are compared
with the experimental data.

1. Introduction

The viscosity and the thermal conductivity of water and air depend on the tem-
perature. As a consequence, a wake behind an obstacle in an isothermal setting differs
from the situation, when the body and the fluid temperatures do not coincide. The
experimental data, see [5], for the flow around the heated cylinder are available for
both water and air in the flow regimes exhibiting regular vortex shedding. The cited
experimental data are available for Reynolds numbers (Re = DV∞/ν∞) in the range
50 < Re < 170, when Re is related to the cylinder diameter D (V∞ is the upstream
velocity magnitude and ν∞ is the upstream value of the kinematic viscosity). The
conditions and flow parameters in the mentioned experiment were such, that the
compressibility of both water and air can be neglected. Therefore the fluid den-
sity (ρ) may be assumed to be a constant and the incompressible model will be used.
The system of equations describing the heated flow consists of the Navier-Stokes
equations (1) with the incompressible constraint (2)

∂~v

∂t
+ ~v · ∇~v = −∇p+∇ ·

[
ν
(
∇~v + (∇~v)T

)]
, (1)

∇ · ~v = 0 (2)
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and the convection-diffusion equation for temperature (T ):

ρcp

(
∂T

∂t
+ ~v · ∇T

)
= ∇ · (λ∇T ) , (3)

where in the system (1)-(3) ~v denotes the fluid velocity vector, p is the kinematic
pressure, λ the thermal conductivity and the constant cp is the specific heat at the
constant pressure. Due to the nature of the pressure in the incompressible models
the above system is complete without the equation of state, on the other hand
the variability of the material coefficients causes strong coupling of equations (1)
and (3). The thermal dependencies of ν and λ can be approximated by power
function obtained from a tabulated data as in [3]:

ν(T ) = ν∞(T/T∞)ων , (air: ων = 0.7774, water: ων = −7 ), (4)

λ(T ) = λ∞(T/T∞)ωλ , (air: ωλ = 0.85, water: ωλ = 0.71 ), (5)

where 1 ≤ (T/T∞) ≤ T̃ = (TW/T∞) (TW is the constant temperature of the cylinder
wall).

The system of equations (1)-(3) generally admits non-smooth or even discontinu-
ous solutions, but observations do not confirm any shocks in the mentioned range of
Re for the fluids in the state which coincides with description in [5]. This suggests
possible existence of a smoother solution. Therefore we will use the computational
method based on the assumption of smooth data and solution, as is the spectral
method (see e.g. [2]). This method converges with increasing (e.g. polynomial)
order of the expansion basis. If the method is applicable, its minimization of the
number of degrees of freedom and the convergence rate are superior to methods of
lower, fixed order, which converge by dividing the computational domain to smaller
parts. On the other hand, spectral methods are not always applicable. Already the
fact, that the cylinder is in our case represented as a circular hole inside the domain,
forces us to leave pure spectral method and use the spectral element method, which
combines the geometrical flexibility of the finite element method with the approach
of the spectral method. This leads us to use of minimal number of elements and ap-
plication of very high order expansion basis. However, the class of equations where
the high orders are advantageous for numerical computation is limited and this fact
must be taken into account in design of the numerical scheme.

2. Numerical scheme

The numerical scheme for the system (1)–(3) was developed on the base of the
splitting scheme for the Navier-Stokes equations with a variable viscosity ([1]), where
the temperature dependent viscosity was decomposed to the sum of the constant ν∞
and the variable part νs: ν(T (~x, t)) = ν∞ + νs(~x, t). Denoting by “ ˆ ” and “ ˜ ”
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intermediate fields, by superscript the values of the variables in the n-th time level
and by ∆t the time step, we arrive to the first order scheme in time (see [4]):

~̂v − ~vn

∆t
= −(~vn · ∇)~vn +∇ · [νns (∇~vn +∇T~vn)] , (6)

~̃v − ~̂v
∆t

= −∇pn+1 ⇒︸︷︷︸
∇·~̃v=0

∇2pn+1 = ∇ ·

(
~̂v

∆t

)
, (7)

~vn+1 − ~̃v
∆t

= ν∞∇ · ∇~vn+1 . (8)

The key role plays the high order pressure boundary condition (HOPBC), which
is asserted on the boundaries, where the Dirichlet condition for velocity is prescribed:

∂pn+1

∂~n
= ~n ·

[
−(~vn · ∇)(~vn) +∇ ·

(
νn∇~vn + νn(∇~vn)T

)]
. (9)

Temperature dependence of the thermal conductivity is needed to keep the cor-
rect Prandtl number (Pr = νρcp/λ). The scheme for the temperature equation
was derived again by the operator splitting combined with the splitting of λ to the
constant λ∞ and the variable part λs, i.e. λ(T (~x, t)) = λ∞ + λs(~x, t).

The operator splitting then allows the implicit treatment of the diffusion operator
with the constant coefficient (λ∞) and the explicit treatment of the part with the
variable conductivity (λs). The first order scheme in time for temperature reads:

T̂ − T n

∆t
= −(~vn · ∇)T n − 1

ρcp
∇ · (λns∇T n) . (10)

As in (7) and (8) the spectral element method is applicable to the implicit step
of the scheme for temperature:

λ∞
ρcp
∇2T n+1 − T n+1

∆t
= − T̂

∆t
. (11)

The whole scheme (6)–(11) was implemented on the base of the modified Nek-
tar++ library of version 3.3.0 and the deeply modified incompressible Navier-Stokes
solver provided with the same library.

3. Mesh and parameters of the computation

The model assumed the flow in an open channel, which is not significantly in-
fluenced by a tank walls (in experiment) or Dirichlet boundary conditions on outer
boundaries (in computation). Therefore the dimensions of the computational do-
main must be large enough. The cylinder diameter D = 1 was chosen for simplicity
and then the spatial dimensions of the computational domain were: 20D upstream,
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Figure 1: The computational mesh consisting of 9 elements with description of the
boundary conditions (HOPBC is given by eq. (9)). The curve of the cylinder wall
was given by 10th order polynomial for each of the adjacent elements.

60D downstream and 20D above and under the cylinder. We divided the compu-
tational domain to small number of elements (NEL = 9) and used the rich ex-
pansion basis, having polynomial orders up to p = 49 in each coordinate variable
(2500 DOFs per element). The no slip condition and value of relative temperature T̃
was prescribed at the cylinder wall. Figure 1 shows the boundary conditions and the
computational mesh with all its elements. The chosen values of the inlet boundary
conditions imply ν∞ = 1/Re and λ∞/(ρcp) = 1/(RePr), so we can set Re and Pr
as independent, dimensionless parameters and avoid the explicit specification of the
constants ρ and cp. The initial conditions for both velocity and temperature were
constants equal to the values on the inflow boundary. The final quantity for the
comparison with the experimental results was the Strouhal number St = fD/V∞
(f denotes here the frequency of the vortex shedding). The effects of the heating as
a relation of St, Re and Pr numbers was studied also theoretically, see the empirical
formula derived in [3], which shall also be used for the comparison with the results
of the computation.

4. Results

The value of the Strouhal number can be determined from the temporal oscila-
tions of the approximative values of the forces acting on the cylinder. These forces
are often denoted as lift and drag force. As the flow develops to the von Kármán
vortex street, the oscillations tend to stable frequency. The stabilized periodicity
was recognized in the data and the averaged frequency through multiple periods
was computed (see Figure 3). Since the flow develops slowly from the constant
initial conditions, a long time computation was needed (about 300000 time steps
∆t = 0.001, depending on the Reynolds number).
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Figure 2: The resulting dependence of
Strouhal number on Reynolds number
for various temperatures (T̃ = TW/T∞)
and flow of air.
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Figure 3: Plot of the lift coefficient CL
for Re = 123.2, TW/T∞ = 1.5 in the flow
of air. Rings indicate the extremes taken
for computation of the Strouhal number.

The resulting graphs of St−Re dependencies for both air and water, for various
cylinder temperatures, is shown in Fig. 2 and Fig. 4. The continuous curve is given
by the empirically obtained formula, see [3].

5. Conclusion

The presented results demonstrate applicability of the computational scheme
(6)–(11) introduced in combination with high order spatial approximation. Obtained
St− Re dependencies show qualitatively good agreement with the experimental re-
sults ([5, 3]) across various cylinder temperatures. Observed shift of the data is
mostly caused by insufficient expansion basis, since the expansion coefficients of the
highest orders were converged only to the values around 0.01. This setting of the
expansion basis was chosen due to high memory demands of the matrix system of
reference computations, since the work was performed on single CPU.

The increase/decrease of the Strouhal number caused by heating is smaller than
predictions of both the experiment and the empirical formula. On the other hand,
in case of water flow, the differences of the experiment from the empirical formula
are on the same level as the error of the computation.

The results are well comparable with standard approaches using hundreds of
thousands low order elements. The main advantage of the spectral approach stays
in the significant reduction of number of DOFs and possible reaching of exponen-
tial error decay. Achievement of more accurate solutions will be the goal of future
computations.
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Figure 4: Resulting St−Re dependence for various temperatures in flow of water.
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