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Abstract

A way of data approximation called smooth was introduced by Talmi and Gilat
in 1977. Such an approach employs a (possibly infinite) linear combination of smooth
basis functions with coefficients obtained as the unique solution of a minimization
problem. While the minimization guarantees the smoothness of the approximant and
its derivatives, the constraints represent the interpolating or smoothing conditions at
nodes. In the contribution, a special attention is paid to the periodic basis system
exp(−ikx). A 1D numerical example is presented.

1. Introduction

Measurements of the values of a continuous function of one or more independent
variables are performed in many branches of science and technology. The data cor-
respond to a finite number of measurement nodes but we need also its extension:
the values corresponding to other points in some domain. The way of smooth inter-
polation [3, 4] is to minimize the L2 norm of the interpolating function and that of
its chosen (possibly all) derivatives. This is a variational problem with constraints
represented by the interpolation conditions. An example of a smooth interpolation
is the well-known spline interpolation.

We are mostly interested in the case of a single independent variable in the
contribution. We generalize the approach of [4], and introduce the problem to be
solved and the tools necessary to this aim in Sec. 2. We also quote the general
existence theorem for smooth interpolation [3]. We are concerned with the use of
basis system exp(−ikx) of exponential functions of pure imaginary argument for 1D,
2D, and 3D smooth approximation problems in Sec. 3. In the conclusion, we show
and discuss results of numerical experiments to compare the classical interpolation
formulae and various kinds of the smooth approximation.
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2. Problem of interpolation. Smooth interpolation

Let us have a finite number N of (complex, in general) measured (sampled) values
f1, f2, . . . , fN ∈ C obtained at N mutually distinct nodes X1, X2, . . . , XN ∈ Rn.
Assume that fj = f(Xj) are measured values of some continuous function f . The
dimension n of the independent variable may be arbitrary. For the sake of simplicity
we put n = 1 except for Sec. 3 and assume that X1, X2, . . . , XN ∈ Ω, where either
Ω = [a, b] is a finite interval or Ω = (−∞,∞).

The problem of interpolation is construction of the interpolating function z ful-
filling the interpolation conditions

z(Xj) = f(Xj), j = 1, . . . , N. (1)

The problem of data interpolation does not have a unique solution. The property (1)
of the interpolating function is uniquely formulated by mathematical means but
there are also additional conditions on the subjective perception of the behavior of
the interpolating curve between nodes that can hardly be formalized.

An inner product space is introduced to take into account the additional con-
ditions in the problem of smooth interpolation [3], [4]. Let {Bl}∞l=0 be a sequence
of nonnegative numbers and let L be the smallest nonnegative integer such that
BL > 0 while Bl = 0 for l < L. Let W̃ be a linear vector space of complex functions
g continuous together with their derivatives of all orders on the interval Ω.

Put

(g, h)L =
∞∑
l=0

Bl

∫
Ω

g(l)(x)[h(l)(x)]∗ dx, |g|2L =
∞∑
l=0

Bl

∫
Ω

|g(l)(x)|2 dx, (2)

where ∗ denotes the complex conjugate.

If L = 0 (i.e. B0 > 0), g ∈ W̃ , and the value of |g|0 exists and is finite, then
(g, h)0 = (g, h) has the properties of inner product and the expression |g|0 = ‖g‖ is
norm in the normed space W0.

If L > 0 let PL−1 ⊂ W̃ be the subspace whose basis {ϕp} consists of monomials
ϕp(x) = xp−1, p = 1, . . . , L, and (ϕp, ϕq)L = 0 for p 6= q. Using (2), we construct the

quotient space W̃/PL−1 whose zero class is the subspace PL−1. We see that then (·, ·)L
and | · |L represent the inner product and norm in the normed space WL = W̃/PL−1.

For an arbitrary L ≥ 0, choose a basis system of functions {gk} ⊂ WL, k =
1, 2, . . . , that is complete and orthogonal (in the inner product of WL), (gk, gm)L = 0
for k 6= m, (gk, gk)L = |gk|2L > 0. If L > 0 then it is, moreover, (ϕp, gk)L = 0 for
p = 1, . . . , L, k = 1, 2, . . . . The set {ϕp} is empty for L = 0.

The problem of smooth interpolation consists in finding the coefficients Ak and ap
of the expression z(x) =

∑∞
k=1Akgk(x) +

∑L
p=1 apϕp(x) such that (1) holds and the

quantity |z|2L attains its minimum.
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Let the sum RL(x, y) =
∑∞

k=1 gk(x)g∗k(y)|gk|−2
L , called the generating function,

converges for all x, y ∈ Ω. Theorem 1 of [3] states how to obtain the smooth
interpolant z in the form

z(x) =
N∑
j=1

λjRL(x,Xj) +
L∑
p=1

apϕp(x), (3)

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution
of a nonsingular system of N + L linear algebraic equations.

3. A choice of basis function system

Recall that we have put n = 1. Let the function f to be approximated be periodic
in [0, 2π]. We choose periodic exponential functions of pure imaginary argument for
the basis system {gk}. The following theorem shows important properties of the
system.

Theorem 1. Let there be an integer s ≥ L such that Bl = 0 for all l > s in WL.
The system of periodic exponential functions of pure imaginary argument

gk(x) = exp(−ikx), x ∈ [0, 2π], k = . . . ,−2,−1, 0, 1, 2, . . . , (4)

is then complete and orthogonal in WL.

Proof. The orthogonality and completeness of the system {gk} in Hs(0, 2π) is proven,
e.g., in [1]. The proof for the space WL is based on the equivalence of norms.

The range of k implies a minor change in the notation introduced above. For the
basis system (4), notice that

RL(x, y) =
∞∑

k=−∞

gk(x)g∗k(y)

|gk|2L
=

∞∑
k=−∞

exp(−ik(x− y))

|gk|2L
(5)

is the Fourier series in L2(0, 2π) with the coefficients |gk|−2
L , |gk|2L = 2π

∑∞
l=LBlk

2l.
Let now the function f to be approximated be nonperiodic on (−∞,∞) and

f (l)(±∞) = 0 for all l ≥ 0. Let us define the generating function RL(x, y) as the
Fourier transform of the function |gk|−2

L of a continuous variable k,

RL(x, y) =

∫ ∞
−∞

exp(−ik(x− y))

|gk|2L
dk, (6)

if the integral exists. Using the effect of transition from the Fourier series (5) to
the Fourier transform (6), we have transformed the basis functions, enriched their
spectrum, and released the requirement of periodicity of f . Moreover, if the inte-
gral (6) does not exist, in many instances we can calculate RL(x, y) as the Fourier
transform F of the generalized function |gk|−2

L of k.
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Choosing now a particular sequence {Bl}, we complete the definition of the in-
ner product and norm (2) in a particular WL. Let us thus put Bl = 0 for all l
with the exception of B2 = 1 (cf. [4]). It means that we have L = 2 and min-
imize the usual L2 norm of the second derivative of the interpolant (3), z(x) =∑N

j=1 λjR2(x,Xj) + a0 + a1x. We have |gk|22 = 2πk4 and putting r = |x − y|, we
arrive at

R2(x, y) = F(1/(2πk4)) = 1
12
r3, (7)

where F denotes the integral Fourier transform or the Fourier transform of a gener-
alized function [2]. It is easy to find out that this version of smooth approximation
is, in fact, the well-known cubic spline interpolation.

There are further practical examples of smooth approximation where the integral
generating function RL can be calculated with the help of the Fourier transform.

We can generalize the smooth interpolation procedure of Sec. 2 to Rn, n being
a positive integer. We do not introduce the notation in Rn in detail but will you keep
in mind that all the derivatives are partial now. We choose the system of periodic
exponential functions gk(x) = exp(−ik ·x) of pure imaginary vector argument, which
can be proven to be complete and orthogonal in WL, and put r equal to the Euclidean
norm of x− y.

Let n = 2. In the definition of inner product in WL, we put L = 2 and con-
struct analog of a spline in two dimensions. The interpolant has the form z(x) =∑N

j=1 λjR2(x,Xj) + a0 + a1x1 + a2x2 and it is |gk|22 = 2π(k2
1 + k2

2)2. We arrive at

R2(x, y) = F(1/(2π(k2
1 + k2

2)2)) = C2r
2 ln r + C ′2r

2, where C2, C ′2 are constants [2].
Let n = 3. With the same choice L = 2 we construct analog of a spline in three

dimensions. The interpolant has the form z(x) =
∑N

j=1 λjR2(x,Xj) + a0 + a1x1 +

a2x2 + a3x3 and it is |gk|22 = 2π(k2
1 + k2

2 + k2
3)2. We have R2(x, y) = F(1/(2π(k2

1 +
k2

2 + k2
3)2)) = C3r, where C3 is a constant [2].

For n = 1, we will also consider another interesting choice of {Bl} with the
system (4). Putting L = 0, r = |x− y| and, in particular, Bl = D2l/(2l)!, D = 1

3
, we

calculate [4]

R0(x, y) =
1

2D cosh(πr/(2D))
. (8)

4. Computational comparison

To present results of numerical experiments we use two complete and orthogonal
systems {gk} in WL. We assume that the function to be interpolated is not periodic.

(i) Exponential functions of pure imaginary argument (4) {dashed line} with
the generating function (7), L = 2, B2 = 1, i.e. cubic spline interpolation.

(ii) The same functions (4) {dashed line} with the generating function (8).

(iii) Orthonormalized monomials {dotted line}. The system of monomials
hk(x) = xk, k = 0, 1, 2, . . . , is orthonormalized numerically on (−1, 1) by the Gram-
Schmidt procedure with respect to the inner product (g, h)0. We use L = 0 and Bl

the same as in (ii). R0(x, y) is evaluated numerically.
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Figure 1: N = 5, “pole” x = 0.25 is not an interpolation node. Curves at x = 0.80
from top to bottom: (i), (ii), true, (iii), (iv)

Next two interpolation methods are classical.

(iv) Polynomial interpolation {dotted line}.
(v) Rational interpolation {dash-dot line}.

The interpolated function

f(x) = ln( 1
100

(x+ 1
2
)2 + 10−5) +

6

1 + 16(x− 1
4
)2

+ 6 (9)

has “almost a singularity” at x = −1
2

and “almost a pole” at x = 1
4
. The smooth

as well as classical interpolation of the function (9) has been constructed in several
equidistant grids of N nodes on [−1, 1]. Some very inaccurate results (obtained e.g.
by the polynomial interpolation of high degree) are omitted in some of the following
graphs. In the figures, the solid line represents the true solution, i.e. the function (9).
The results of interpolation are in Fig. 1 and 2. They show some qualitative behavior
of the results but the quantitative properties can hardly be seen.

5. Conclusion

Since the extent of this contribution is limited we presented only a single exam-
ple. It would not be fair to draw principal conclusions from it. The computation
shows that the smooth interpolation is a competitive method. The L∞ error of all
the methods used, except for error of the polynomial interpolation, decreases as N
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Figure 2: N = 17. Curves at x = −0.55 from top to bottom: true, (i) identical to
(ii) and (iii), (v)

increases. Nevertheless, we should keep in mind that the only ultimate interpolation
conditions are the values at nodes.

The case of n > 1 is much more interesting and makes many important appli-
cations possible. The interpolation nodes can be arbitrarily placed in the plane or
space and large sets of data measured can be handled. There are also several further
choices of the sequence {Bl} that lead to a smooth approximating function possessing
some “physical properties” like the cubic spline.
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