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A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS
GALERKIN METHOD FOR PARABOLIC PROBLEM∗

Ivana Šebestová, Vı́t Doleǰśı

Abstract

We deal with a posteriori error estimates of the discontinuous Galerkin method
applied to the nonstationary heat conduction equation. The problem is discretized
in time by the backward Euler scheme and a posteriori error analysis is based on the
Helmholtz decomposition.

1 Introduction

Our aim is to develop a sufficiently accurate and efficient numerical method for
simulations of unsteady flows. A promising technique is a combination of the discon-
tinuous Galerkin finite element method (DGFEM) for the space discretization and
the backward difference formula for the time discretization, see [1], [2]. In order to
both apply an adaptive algorithm and assess the discretization error, a posteriori
error estimates have to be developed.

Within this paper, we focus on simplified model problem, represented by the
heat equation, which is discretized by the high order DGFEM and the backward
Euler method. We develop a posteriori error estimates based on the Helmholtz
decomposition of the gradient of the error, see [4]. Therefore, this paper represents
an extension of results from [6] where low order DGFEM was considered.

2 Problem definition

Let Ω ⊂ Rd (d = 2 or 3) be a bounded simply connected polyhedral Lipschitz
domain with a boundary ∂Ω, T > 0 and QT = Ω × (0, T ). Let us consider the
problem:

∂u/∂t−∆u = f in QT ,
u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.
(1)

We use a standard notation for the Lebesgue, Sobolev and Bochner spaces. We
introduce a weak formulation of (1).

∗This work is a part of the research projects MSM 0021620839 (V. Doleǰśı). The research of
I. Šebestová was supported by grant No. 10209/B-MAT/MFF of the Grant Agency of Charles
University Prague.
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Definition 1. The function u : QT → R such that u ∈ L2(0, T ;H1
0 (Ω)) and ∂u/∂t ∈

L2(0, T ;H1
0 (Ω)) is the weak solution of the problem (1) if

〈∂u(t)/∂t, v〉+ ∫
Ω
∇u(t) · ∇v dx = 〈f(t), v〉 ∀v ∈ H1

0 (Ω), for a.a. t ∈ (0, T ),
u(x, 0) = u0(x) in Ω,

(2)
where 〈·, ·〉 denotes the duality pairing between H1

0 (Ω) and H−1(Ω) and where we
assume f ∈ C(0, T ;H−1(Ω)) and u0 ∈ L2(Ω).

3 Discretization

3.1 Time semidiscretization

Let 0 = t0 < t1 < ... < tN̄ = T be a partition of the time interval [0, T ] and set
τn = tn− tn−1, τ = max{τn : 1 ≤ n ≤ N̄}. We use the backward Euler scheme in (2)
and get the semi-discrete problem: Find a sequence {un}1≤n≤N̄ , u

n ∈ H1
0 (Ω) such

that

∫

Ω

un − un−1

τn
v dx+

∫

Ω

∇un · ∇v dx =

∫

Ω

fnv dx ∀v ∈ H1
0 (Ω),

where fn = f(·, tn).
3.2 Space discretization

We will carry out the space discretization with the aid of the DGFEM. On each
time level tn, n = 1, . . . , N̄ , we consider a family {Th,n}h>0 of partitions of Ω into
a finite number of closed triangles in 2D and tetrahedra in 3D with mutually disjoint
interiors. We assume that the following conditions are satisfied.

shape regularity: ∃Cs > 0 :
hK

ρK
≤ Cs ∀K ∈ Th,n, (3)

local quasi-uniformity: ∃CH > 0 : hK ≤ CHhK
′ ∀K,K

′ ∈ Th,n sharing a face,
(4)

where hK = diam(K) forK ∈ Th,n, ρK denotes the radius of the largest d-dimensional
ball inscribed into K, and ∂K denotes the boundary of element K. Moreover,
we assume that there exists a triangulation T̃h,n satisfying (3) and (4) which is
a refinement of both Th,n−1 and Th,n, 1 ≤ n ≤ N̄ and such that

∃CHT > 0 : ∀1 ≤ n ≤ N̄ ∀K ∈ T̃h,n ∀K ′ ∈ Th,n, K ⊂ K
′
:
hK′

hK

< CHT .

By F I
h,n and FD

h,n we denote the set of all interior faces (edges for d = 2) and faces
(edges for d = 2) on ∂Ω, respectively. For a simplicity, we put Fh,n = F I

h,n ∪ FD
h,n.

Further, we set hΓ = diam(Γ) for Γ ∈ Fh,n. For each Γ ∈ F I
h,n there exist two

elements KL
Γ and KR

Γ such that Γ ⊂ KL
Γ ∩KR

Γ . We define a unit normal vector nΓ
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to each Γ ∈ F I
h so that it points out of KL

Γ . Finally, we assume that nΓ, Γ ∈ FD
h,n,

has the same orientation as the outward normal to ∂Ω.
Over the triangulation T̃h,n we define the so-called broken Sobolev space

Hs(Ω, T̃h,n) = {v; v|K ∈ Hs(K) ∀K ∈ T̃h,n}

equipped with the norm ‖v‖2
Hs(Ω,T̃h,n) =

∑
K∈T̃h,n ‖v‖2Hs(K). For v ∈ H1(Ω, T̃h,n) we

define the broken gradient ∇hv of v by (∇hv)|K = ∇(v|K) for ∀K ∈ T̃h,n and use the
following notation: vLΓ stands for the trace of v|KL

Γ
on Γ, vRΓ is the trace of v|KR

Γ
on Γ,

〈v〉Γ = 1
2
(vLΓ + vRΓ ), [v]Γ = vLΓ − vRΓ , Γ ∈ F I

h,n. Further, for Γ ∈ FD
h,n, we define vLΓ as

the trace of v|KL
Γ
on Γ, and 〈v〉Γ = [v]Γ = vLΓ . If [·]Γ and 〈·〉Γ appear in an integral of

the form
∫
Γ
. . . dS, we will omit the subscript Γ and write [·] and 〈·〉 instead. Finally,

we define the space of discontinuous piecewise polynomial functions

Sn
hp = {v; v ∈ L2(Ω), v|K ∈ P p(K)∀K ∈ T̃h,n},

where P p(K) is the space of all polynomials on K of degree p.
Now, we can state the discrete problem: For a given approximation u0

h ∈ S0
hp of

an initial condition u0 find a sequence {un
h}1≤n≤N̄ , u

n
h ∈ Sn

hp such that

∫

Ω

un
h − un−1

h

τn
vh dx+

∑

K∈T̃h,n

∫

K

∇un
h · ∇vh dx−

∑
Γ∈Fh,n

∫

Γ

〈∇un
h · n〉[vh] dS

+θ
∑

Γ∈Fh,n

∫

Γ

〈∇vh · n〉[un
h] dS +

∑
Γ∈Fh,n

∫

Γ

σ[un
h][vh] dS =

∫

Ω

fnvh dx

for all vh ∈ Sn
hp, where θ = −1, θ = 1, and θ = 0 corresponds to the symmetric,

nonsymmetric, and incomplete variants of the DGFEM, respectively.

In this section, we derive a residual-based a posteriori error estimate of the dis-
cretization error based on the Helmholtz decomposition of the gradient of the error.
This approach was developed in [4], where the heat equation was solved with the aid
of the combination of the Crouzeix-Raviart nonconforming finite elements in space
and the backward Euler scheme in time.

Since the time error estimation is almost the same as in [4], we focus on the
spatial error estimation.

Definition 2. Let {un}1≤n≤N̄ be the semi-discrete solution and {un
h}1≤n≤N̄ be the

discrete solution of (1). Then we set

{en}1≤n≤N̄ = {un − un
h}1≤n≤N̄ .

We will need an interpolation operator that maps H1(Ω, T̃h,n) into Sn
hp ∩H1

0 (Ω).
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3.3 Oswald interpolation operator

Let N 0
h,n be the set of all Lagrangian vertices of the elements of T̃h,n. According

to, e.g., [3], we define the Oswald interpolation operator I0
Os : S

n
hp → Sn

hp∩H1
0 (Ω) by

I0
Os(vh)(ν) =

1

card(ων)

∑
K∈ων

vh|K(ν), ν ∈ N 0
h,n\NB

h,n

= 0, ν ∈ NB
h,n

where ων = {K ∈ T̃h,n; ν ∈ K}, NB
h,n = {ν ∈ N 0

h,n; ν ∈ ∂Ω}. Moreover, we define

the interpolation operator I0h,n : H1(Ω, T̃h,n) → Sn
hp ∩H1

0 (Ω) by

I0h,n(v) = I0
Os(Πhp(v)) ∀ v ∈ H1(Ω, T̃h,n),

where Πhp denotes the L2-projection of v on the space Sn
hp.

In order to overcome difficulties with the nonconformity of Sn
hp, the Helmholtz

decomposition of the gradient of the error is carried out as follows (see, e.g., [5]):

∇he
n = ∇φn + curlχn, (5)

where φn ∈ H1
0 (Ω) = {v ∈ H1(Ω); v = 0 on ∂Ω} is the solution of the problem

∫

Ω

∇φn · ∇v dx =

∫

Ω

∇he
n · ∇v dx ∀v ∈ H1

0 (Ω),

χn ∈ H(curl,Ω) = {v ∈ (L2(Ω))k; curl v ∈ (L2(Ω))d} (k = 1 for d = 2 and k = 3
for d = 3). Moreover, the following holds: ‖∇he

n‖2Ω = ‖∇φn‖2Ω + ‖curlχn‖2Ω. The
orthogonality of the splitting is crucial because it suffices to estimate each part of
the error independently. A proof of the above assertions can be found in [5].

Furthermore, we recall some fundamental properties presented in [6].

Lemma 1. Let vh ∈ Sn
hp ∩ H1

0 (Ω), φ ∈ H1
0 (Ω) and χ ∈ (H1(Ω))k (k = 1 for d = 2

and k = 3 for d = 3) be arbitrary. The error en satisfies

∑

K∈T̃h,n

∫

K

∇en · ∇vh dx =

∫

Ω

en−1 − en

τn
vh dx+ θ

∑

Γ∈FI
h,n

∫

Γ

〈∇vh · n〉[un
h] dS, (6)

∑

K∈T̃h,n

∫

K

∇en · ∇φ dx =

∫

Ω

(fn − un − un−1

τn
)φ dx−

∑

K∈T̃h,n

∫

∂K

∇un
h · nφ dS

+
∑

K∈T̃h,n

∫

K

∆un
hφ dx, (7)

∑

K∈T̃h,n

∫

K

∇encurlχdx = −
∑

K∈T̃h,n

∫

∂K

un
hcurlχ · n dS. (8)
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Definition 3. Let n ≥ 1. We define the local spatial error indicator by

ηnK = hK

∥∥∥∥fn +∆un
h −

un
h − un−1

h

τn

∥∥∥∥
K

+ h
1/2
K ‖∇un

h · n‖∂K + ‖un
h‖H1/2(∂K)

+
∑

Γ∈Fh,n∩FK

(
h
−1/2
Γ ‖[un

h]‖Γ + h
1/2
Γ ‖[un

h]‖Γ
)
,

where FK denotes the set of all edges or faces of a triangle or of a tetrahedron K,
respectively, and ||·||K stands for the L2(K)-norm. The global spatial error estimator
is defined by ηn = (

∑
K∈T̃h,n(η

n
K)

2)1/2.

Now, we state the main result, an upper bound on the error.

Theorem 1. Let {un}1≤n≤N̄ be the semi-discrete solution and {un
h}1≤n≤N̄ be the

discrete solution of (1). Let 1 ≤ N ≤ N̄ . Then the error en satisfies

∑

K∈T̃h,N

‖eN‖2K +
N∑

n=1

τn
∑

K∈T̃h,n

‖∇en‖2K ≤
∑

K∈T̃h,1

‖e0‖2K +
N∑

n=1

C(ηn)2(1 + max{h2
n, τn}),

where a constant C is independent of the mesh parameter and the time step.

Sketch of the proof: According to (5), we can write

τn
∑

K∈T̃h,n

‖∇en‖2K = τn
∑

K∈T̃h,n

∫

K

∇en · ∇φn dx

+ τn
∑

K∈T̃h,n

∫

K

∇encurlχn dx.

(9)

Denoting ψ1 and ψ2 the two terms on the right-hand side of (9), setting φ = φn

in (7), χ = χn in (8) and multiplying both inequalities by τn yield

ψ1 = τn

∫

Ω

(fn − un − un−1

τn
)φn dx− τn

∑

K∈T̃h,n

∫

∂K

∇un
h · nφn dS

+ τn
∑

K∈T̃h,n

∫

K

∆un
hφ

n dx,

ψ2 = −τn
∑

K∈T̃h,n

∫

∂K

un
hcurlχ

n · n dS.

Now, we modify the expression ψ1. Adding τn multiple of (6) with vh = I0h,nφ
n

to ψ1 and expressing term −τn
∑

K∈T̃h,n
∫
K
∇en ·∇I0h,nφ

n dx according to identity (7),

we obtain
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ψ1 = τn
∑

K∈T̃h,n

∫

K

(fn +∆un
h −

un − un−1

τn
)(φn − I0h,nφ

n) dx (10)

−τn

∫

Ω

en−1 − en

τn
I0h,nφ

n dx− τn
∑

K∈T̃h,n

∫

∂K

∇un
h · n(φn − I0h,nφ

n) dS

+τnθ
∑

Γ∈FI
h,n

∫

Γ

〈∇I0h,nφ
n · n〉[un

h] dS.

By adding and subtracting suitable terms in (10), estimating all terms in ψ1

and ψ2 using approximation properties of I0h,n, trace inequalities, inverse inequality,
and well known inequalities such as Hölder’s, Young’s, etc., we finally come to the
assertion of Theorem 1.

4 Conclusion

We derived the error upper bound for the heat conduction equation discretized
by the high order discontinuous Galerkin finite element method in space and the
backward Euler scheme in time. Analogously to [4], the Helmholtz decomposition
was used to overcome difficulties arising due to the nonconformity of the DGFEM.
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