
PANM 15

Jan Vlček; Ladislav Lukšan
Limited-memory variable metric methods that use quantities from the preceding iteration

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Dolní Maxov, June 6-11, 2010. Institute of Mathematics AS CR, Prague,
2010. pp. 227–232.

Persistent URL: http://dml.cz/dmlcz/702762

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702762
http://dml.cz

LIMITED-MEMORY VARIABLE METRIC METHODS THAT USE
QUANTITIES FROM THE PRECEDING ITERATION∗

Jan Vlček, Ladislav Lukšan

1. Introduction

In this contribution, a new family of globally convergent limited-memory (LM)
variable metric (VM) line search methods for unconstrained minimization is pre-
sented. Numerical results indicate that the new methods can save computational
time substantially for certain problems in comparison with the well-known L-BFGS
method, see [3], [8].

VM or quasi-Newton line search methods, see [2], [4], start with an initial point
x0 ∈ RN and generate iterations xk+1 ∈ RN by the process xk+1 = xk+sk, sk = tkdk,
k ≥ 0, where dk is the direction vector and tk > 0 is a stepsize.

It is assumed that the problem function f : RN → R is differentiable and step-
size tk is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, (1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk = −Hkgk
with a symmetric positive definite matrix Hk; usually H0 is a multiple of I and Hk+1

is obtained from Hk by a rank-two VM update to satisfy the quasi-Newton condition
Hk+1yk = sk (see [2], [4]), where yk = gk+1 − gk, k ≥ 0. For i ≥ 0 we denote

bi = sTi yi, Vi = I − (1/bi)siy
T
i

(note that sTi yi > 0 for gi ̸= 0 by (1)). To simplify the notation we frequently omit
index k and replace index k + 1 by symbol + and index k − 1 by symbol −.

The L-BFGS method (LM variant of the well-known BFGS method, see [3], [8])
is based on the following quasi-product form of the BFGS update

H+ = (1/b)ssT + V HV T . (2)

The advantage of this form consists in the fact that only the last m̃+1 = min(k+1,m)
couples {si, yi}ki=k−m̃, where m ≥ 1 is a given parameter, are stored to compute the
direction vector dk+1 = −Hk+1gk+1 by the Strang recurrences, see [8]. Matrices Hk+1

are not computed, only defined by Hk+1 = Hk+1
m̃+1, k ≥ 0, where

Hk+1
0 = (bk/|yk|2)I, (3)

Hk+1
i+1 = (1/bj)sj s

T
j + VjH

k+1
i V T

j , j = k − m̃+ i, 0 ≤ i ≤ m̃ . (4)

∗This work was supported by the Grant Agency of the Czech Republic, project No. 201/09/1957,
and the Institutional research plan No. AV0Z10300504.

227

Note that matrixHk, which satisfies dk = −Hkgk, is different from matrixHk+1
m̃ in

the last update (4) in general; among others since matrixHk is created by updating of
matrix Hk

0 = (bk−1/|yk−1|2)I, not Hk+1
0 = (bk/|yk|2)I. Thus Hk+1

m̃ gk ̸=−dk generally.
The Strang recurrences cannot be used directly for other updates from the Broy-

den class (see [2], [4]) than for the BFGS update (but another efficient approach is
possible, see [6]). Some generalizations of the L-BFGS method are investigated in [9].
Here we focus on the approach which uses quantities from the preceding iteration.

Note that our methods do not belong to the Broyden class and has some common
features with the multi-step quasi-Newton methods (see e.g. [7]).

We describe the new class of VM updates in Section 2 and the corresponding
algorithm in Section 3; global convergence is treated in Section 4 and numerical
results are reported in Section 5. Details and proofs of assertions can be found in [9].

2. The new class of methods

The Broyden class updates except for the BFGS update need calculate vector Hy
in every iteration. This drawback can be eliminated by utilization of the quasi-
Newton condition Hy− = s−. Although it is not satisfied in LM case, in this way
we can construct efficient methods that use the same number of stored vectors and
matrix by vector multiplications as the L-BFGS method, see Section 3.

Theorem 2.1. Let matrix H be symmetric positive definite, Hy− = s−, σ ∈ (−1, 1),

s̄ = s − σ
√
b/b− s−, ȳ = y − σ

√
b/b− y−, b̄ = s̄Ty ̸= 0 and ϱ̄ = (1 − σ2) b/b̄. Then

update HNB
+ with parameter σ given by

HNB
+ = (ϱ̄/ b̄) s̄s̄T + V̄ HV̄ T , V̄ = I − (1/ b̄) s̄ȳT , (5)

is positive definite and satisfies the quasi-Newton condition HNB
+ y = s (for σ= 0 we

obtain the BFGS update and assumption Hy−=s− can be omitted). If σ= sTy−/
√
bb−

then s̄Ty− = 0, b̄ = s̄T ȳ and if also σ ∈ (−1, 1) and b̄ > 0, then (5) represents the
generalized BFGS update with nonquadratic correction parameter ϱ̄ (see [4]), with
vectors s and y replaced by s̄, ȳ. If σ = sT−y/

√
bb− then sT−ȳ = 0 and ϱ̄ = 1.

Our numerical experiments indicate that convergence is significantly deteriorated
when |σ| → 1 and that all values σ satisfying |σ| ≤ 1/2 with a suitable sign (Theo-
rem 2.1 and Lemma 2.1 motivate us to use the sign of sTy−) give very good results.

Lemma 2.1. Let Hy− = s− and f be quadratic function f(x) = 1
2
(x−x∗)TG(x−x∗),

x∗ ∈ RN , with a symmetric positive definite matrix G. If vectors s, s− are linearly
independent and update HNB

+ of matrix H is given by (5) then choice σ = sTy−/
√
bb−

(or equivalently σ = sT−y/
√
bb−) satisfies b̄ > 0, σ ∈ (−1, 1), ϱ̄ = 1 and HNB

+ y− = s−.

Note that we need not calculate value sTy−. We use only the sign of sTy−,
therefore in view of the following lemma we can utilize the value sT−g, computed
during the line search procedure, in spite of the fact that assumption d = −Hg is
not appropriate to LM updates, see Section 1. In Section 3 we describe a choice of
the sign of σ in details.

228

Lemma 2.2. Let H be nonsingular matrix, Hy−=s−.If d=−Hg then sTy−=−tsT−g.

Taking into account Theorem 2.1 and Lemma 2.1, we will choose such parameter
σ ∈ (−1, 1) that corresponding b̄ is positive and not too small in comparison with b
in a sense that b̄ ≡ b(1− σ sT−y/

√
bb−) ≥ b(1− λ), λ ∈ (0, 1), which is equivalent to

σ sT−y ≤ λ
√
bb−. The following lemma shows that in case that b̄ < b(1− λ) for some

σ ∈ (−1, 1), we can replace this σ by a more appropriate value.

Lemma 2.3. Let σ sT−y > λ
√
bb− for some λ ∈ (0, 1). Then sT−y ̸= 0 and value

σ̂ = λ
√
bb−/|sT−y| > 0 satisfies ±σ̂ sT−y ≤ λ

√
bb− (for both signs) and σ̂ < |σ|.

3. Implementation

Here we give the procedure based on Section 2. We define matrices Hk+1
0 and

Hk+1 = Hk+1
m̃+1, m̃ = min(k,m−1), m ≥ 1, k ≥ 0, by relations similar to (3), (4).

Instead of matrices Hk, only m̃+1 ≤ m couples of vectors are stored here to compute
the direction vector dk+1 = −Hk+1gk+1, using the Strang recurrences, see [8], with
a little modification - using transformed nonquadratic correction parameter ϱ̄, see [4].

We choose the sign of σ in accordance with the sign of −tsT−g ≈ sTy−, see
Lemma 2.2 and Theorem 2.1. Since sTy− = sT−y for f quadratic, see Lemma 2.1,
we prefer the sign of sT−y in case that |tsT−g| is too small in comparison with |sT−y|
(constant 20 in Step 2 was found empirically). Using Lemma 2.3, we bound |σ| to
have b̄ not too small, compared with b. For simplicity, we omit stopping criteria.

Algorithm 3.1

Data: The number m of VM updates per iteration, upper bound σ ∈ (0, 1) for
|σk|, safeguard parameter λ ∈ (0, 1) and line search parameters ε1 and ε2,
0 < ε1 <

1
2
, ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x0 ∈ RN , define direction vector d0 =
−g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1), gk+1 =
∇f(xk+1), yk = gk+1 − gk and bk.

Step 2: Update preparation. If |sT−y| > 20t|sT−g| set νk = sgn(sT−y), otherwise set
νk = −sgn(sT−g). Choose parameter σ̌k ∈ [0, σ] (for k = 0 we choose σ̌k = 0)
and set σk = νk σ̌k. If σk s

T
−y > λ

√
bb− set σk = λνk

√
bb−/|sT−y|. Using

Theorem2.1, compute b̄k, s̄k and ϱ̄k and define V̄k.

Step 3: Update definition. Set m̃ = min(k,m − 1) and define Hk+1
0 = (bk/|yk|2) I

and Hk+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (ϱ̄j/b̄j)s̄j s̄

T
j + V̄jH

k+1
i V̄ T

j , j = k − m̃+ i, 0 ≤ i ≤ m̃ . (6)

Step 4: Direction vector. Set k := k + 1 and compute dk = −Hkgk by the modified
Strang recurrences, using the definition of matrices {Hk

i }
min(k,m)
i=0 , and go to

Step 1.

229

4. Global convergence

Assumption 4.1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Since our new LMmethods do not belong to the Broyden class, the usual approach
must be modified. The following lemma before the main theorem plays basic role.

Lemma 4.1. Let matrix A be symmetric positive definite, ϑ > 0, τ ̸= 0, u ∈ RN

and v ∈ RN . Then update A+ given by A+ = τ 2ϑuuT +
(
I − τ uvT

)
A

(
I − τ vuT

)
is positive definite and satisfies

Tr(A+) ≤ τ 2ϑ|u|2 + Tr(A)
(
1 + |τ |(|u||v|)

)2
, (7)

Tr(A−1
+) ≤ Tr(A−1) + |v|2/ϑ. (8)

Theorem 4.1. Let objective function f satisfy Assumption 4.1. Then Algorithm3.1
generates a sequence {gk} that either terminates with gk=0 for some k or lim

k→∞
|gk|=0.

5. Numerical results

First we demonstrate the influence of parameter σ on the number of evaluations
and computational time, using the collection of sparse and partially separable test
problems from [5] (Test 14, 22 problems) with N = 1000, m = 10, λ = 1/2 and the
final precision ∥g(x⋆)∥∞ ≤ 10−6.

Results are given in Table 1, where ’NFE’ is the total number of function and
also gradient evaluations over all problems, ’Time’ the total computational time in
seconds and ϕ is the arithmetic mean of values ’NFE’ and ’Time’ over all σ.

σ NFE Time σ NFE Time

0.0 22522 8.36 0.3 19854 7.42

0.033 22185 8.25 0.333 19865 7.36

0.067 21121 7.80 0.367 20068 7.49

0.1 20751 7.72 0.4 21359 7.81

0.133 20940 7.82 0.433 21250 7.82

0.167 20929 7.77 0.467 20779 7.71

0.2 20144 7.55 0.5 19754 7.28

0.233 20579 7.62 0.533 20207 7.39

0.267 22064 8.08 ϕ 20845 7.72

L-BFGS: NFE = 22092 Time = 8.91

Tab. 1: Influence of parameter σ for Test 14.

230

NFV Percentage increase of NFV for σ =
Problem N l-bfgs .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

BDQRTIC 5000 248 -29 -10 -19 -43 -33 -16 -8 -18 5 -26
BROYDN7D 2000 3029 -1 -2 -3 -3 -3 -3 -2 0 2 6
CHAINWOO 1000 515 -8 -13 -19 -14 -18 -13 -20 -17 -15 -14
CURLY10 1000 5628 4 8 8 5 -5 2 -1 3 -7 -3
CURLY20 1000 6852 -6 -7 -6 -9 -9 -7 -10 -9 -7 -10
CURLY30 1000 7222 -3 -5 -5 -7 -10 -10 -5 -9 -13 -7
DIXMAANE 3000 249 -4 -3 -4 6 -4 -4 -10 2 -11 -10
DIXMAANF 3000 189 1 2 14 14 16 14 11 -2 -4 13
DIXMAANG 3000 188 11 17 9 5 10 6 13 6 6 -7
DIXMAANH 3000 185 7 12 15 10 10 7 -6 5 -4 5
DIXMAANI 3000 881 -9 -12 -17 -14 -27 -33 -40 -64 -77 -35
DIXMAANJ 3000 317 -3 -3 -4 -5 0 -9 -6 -16 17 20
DIXMAANK 3000 270 9 -5 -11 -7 7 4 16 7 37 28
DIXMAANL 3000 263 0 -8 -10 -3 -10 -13 -9 8 8 14
FLETCBV2 1000 944 28 1 -6 26 35 35 23 54 37 -4
FMINSRF2 5625 305 5 1 2 2 2 1 2 8 6 3
FMINSURF 5625 460 0 -2 4 13 -6 -18 -4 3 -3 -13
GENHUMPS 1000 2223 8 26 14 17 41 19 27 47 52 48
GENROSE 1000 2393 -2 -2 0 0 2 3 5 8 10 13
MOREBV 5000 116 3 3 -10 -7 -1 -3 -5 -2 0 5
MSQRTALS 529 3622 -22 -9 -22 3 -7 -10 -4 -12 -27 -12
NCB20 1010 497 3 33 28 7 48 10 -5 25 4 3
NCB20B 1000 1792 -5 -23 -5 -5 -8 -9 -9 -12 -9 -6
NONCVXU2 1000 3902 -11 -17 -4 4 -2 -13 -9 0 -16 -39
NONDQUAR 5000 4244 -17 3 1 3 -1 -11 3 13 -16 -10
POWER 500 110 -5 -7 -7 -5 -12 -13 -14 -13 -11 -13
QUARTC 5000 236 0 0 0 0 0 0 0 0 0 0
SINQUAD 5000 339 5 3 3 -3 10 0 1 11 -3 7
SPARSINE 1000 10680 -10 -8 -8 -4 -12 -9 -11 -15 -26 -19
SPMSRTLS 4999 224 1 0 -1 0 -5 -2 1 -2 -2 -3
VAREIGVL 500 168 -3 -4 -3 -10 -10 -15 -5 -8 -9 -11
All problems 58291 -5.6 -3.5 -3.8 -1.2 -4.0 -5.7 -4.2 -2.6 -10.2 -8.1

Tab. 2: CUTE - Percentage increase of NFV against L-BFGS.

For a better comparison with the L-BFGS method, we performed additional tests
with problems from the widely used CUTE collection [1] with various dimensions N ,
m = 10, λ = 1/2 and the final precision ∥g(x⋆)∥∞ ≤ 10−6. The percentage increase
of NFV for various values of parameter σ against NFV for the L-BFGS (negative
values indicate that our results are better than for the L-BFGS) is given in Table 2,
where NFV is the number of function and also gradient evaluations. In the last line,
the total values over all problems and their percentage increase are given.

231

Our limited numerical experiments indicate that the suitable choice of param-
eter σ can improve efficiency of limited-memory methods, substantially for some
problems.

References

[1] Bongartz, I., Conn, A.R., Gould, N., and Toint, P.L.: CUTE: constrained and un-
constrained testing environment. ACM Transactions on Mathematical Software
21 (1995), 123–160.

[2] Fletcher, R.: Practical methods of optimization. John Wiley & Sons, Chichester,
1987.

[3] Liu, D.C. and Nocedal, J.: On the limited memory BFGS method for large scale
optimization. Math. Prog. 45 (1989), 503–528.

[4] Lukšan, L. and Spedicato, E.: Variable metric methods for unconstrained opti-
mization and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61–95.

[5] Lukšan, L. and Vlček, J.: Sparse and partially separable test problems for un-
constrained and equality constrained optimization. Report V-767, ICS AS CR,
Prague, 1998.

[6] Lukšan, L. and Vlček, J.: A recursive formulation of limited memory variable
metric methods from the Broyden class. Report V-1059, ICS AS CR, Prague,
2009.

[7] Moughrabi, I.A.: New implicit multistep quasi-Newton methods. Numerical
Analysis and Applications 2 (2009), 154–164.

[8] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comp.
35 (1980), 773–782.

[9] Vlček, J. and Lukšan, L.: Generalizations of the limited-memory BFGS method
based on quasi-product form of update. Report V-1060, ICS AS CR, Prague,
2009.

232

