
PANM 12

Ladislav Lukšan; Jan Vlček
Software system for universal functional optimization

In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics,
Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute of Mathematics AS CR, Prague, 2004.
pp. 155–161.

Persistent URL: http://dml.cz/dmlcz/702789

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702789
http://dml.cz

SOFTWARE SYSTEM FOR UNIVERSAL FUNCTIONAL
OPTIMIZATION∗

Ladislav Lukšan, Jan Vlček

UFO is an interactive system for universal functional optimization that serves
for solving both dense medium-size and sparse large-scale optimization problems.
The UFO system can be used for formulation and solution of particular optimization
problems, for preparation of specialized optimization routines and for designing and
testing new optimization methods.

UFO is an extensive software system for solving a broad class of optimization
problems. The solution of an optimization problem is processed in three phases. In
the first phase the optimization problem is specified and an optimization method is
selected. This can be made in three different ways:

• Full dialogue mode. The problem specification and the method selection are
realized by using a conversation between the user and the UFO system.

• Batch mode. The problem specification and the method selection are realized
by using the UFO control language. An input file written in the UFO control
language has to be prepared.

• Combined mode. Only a part of the specification is written in the input file.
The rest of the specification is obtained as in the dialogue mode. This possibil-
ity is usually the best one since the problem functions can be defined beforehand
by using a convenient text editor.

The first phase is realized by using the UFO preprocessor. This preprocessor
is written in the Fortran 77 language and its output is a Fortran 77 control pro-
gram. In the second phase, the control program is translated by using a Fortran
77 compiler and a final program is linked by using library modules. In the third
phase, the final program is executed and thus results, which can be viewed by using
extensive output means, are obtained. A detailed description of the UFO system is
contained in research report [1], which can be downloaded from the internet page
http://www.cs.cas.cz/~luksan/ufo.html.

UFO is an open modular system. Individual optimization methods are realized
by the connection of corresponding universal modules. In this way, we can gener-
ate a large number of modifications of a given method and find the most suitable

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project code
IAA1030405, and with the subvention from Ministry of Education of the Czech Republic, project
code MSM 242200002.

155

implementation. In the case of unconstrained optimization or optimization with lin-
ear constraints, we can change the following modules ((O)–output, (C)–constraint
handling, (M)–method realization, (F)–objective function evaluation):

• (O) Input and output subroutines (text or graphic).

• (C) Subroutines for the determination of a feasible point for various types of
linear constraints and various representations of linear manifolds.

• (C) Subroutines for transformation of gradients, Hessian matrices and direction
vectors.

• (C) Subroutines for adding or deleting active constraints.

• (M) Subroutines for direction determination (line-search, trust-region) that use
various direct solvers for different matrix representations and various iterative
methods with different preconditioners.

• (M) Subroutines for step-size selection (line-search, trust-region).

• (M) Subroutines for updating approximations of the Hessian matrix or its
inverse (various variable metric updates for different matrix representations).

• (F) Subroutines that evaluate values and gradients of the objective function.

The UFO system can be used for solving a broad class of continuous optimiza-
tion problems and also for some related problems. Essentially, it can be used for
unconstrained optimization, optimization with linear and nonlinear constraints, non-
smooth optimization, global optimization and also for solving systems of nonlinear
algebraic or ordinary differential equations. At the same time, the objective func-
tion can be quite general or it can have a special form that makes possible to use
a special optimization method. Special objective function can be linear, quadratic,
the sum of squares (or powers), the sum of absolute values or the maximum of values
(minimax). It is also possible to use various integral criteria containing solution to
ordinary differential equations.

To demonstrate the use of the UFO system, we consider the minimization of the
objective function

F (x) = x1x3

on the set given by box constraints x1 ≥ 0, x3 ≥ 0, x5 ≥ 0, x7 ≥ 0 and general
nonlinear constraints

(x4 − x6)
2 + (x5 − x7)

2 ≥ 4,

(x3x4 − x2x5)/
√

x2
2 + x2

3 ≥ 1,

(x3x6 − x2x7)/
√

x2
2 + x2

3 ≥ 1,

(x1x3 + (x2 − x1)x5 − x3x4)/
√

(x2 − x1)2 + x2
3 ≥ 1,

(x1x3 + (x2 − x1)x7 − x3x6)/
√

(x2 − x1)2 + x2
3 ≥ 1.

156

The starting point is x1 = 3.0, x2 = 0.0, x3 = 2.0, x4 = −1.5, x5 = 1.5, x6 = 5.0,
x7 = 0.0. The batch input file for the UFO system has the form:

$FLOAT W

$SET(INPUT)

X(1)= 3.0D0 ; XL(1)= 0.0D0 ; IX(1)= 1 ; X(2)= 0.0D0

X(3)= 2.0D0 ; XL(3)= 0.0D0 ; IX(3)= 1 ; X(4)=-1.5D0

X(5)= 1.5D0 ; XL(5)= 1.0D0 ; IX(5)= 1 ; X(6)= 5.0D0

X(7)= 0.0D0 ; XL(7)= 1.0D0 ; IX(7)= 1

CL(1)=4.0D0 ; IC(1)= 1 ; CL(2)=1.0D0 ; IC(2)= 1

CL(3)=1.0D0 ; IC(3)= 1 ; CL(4)=1.0D0 ; IC(4)= 1

CL(5)=1.0D0 ; IC(5)= 1

$ENDSET

$SET(FMODELF)

FF=X(1)*X(3)

$ENDSET

$SET(FMODELC)

IF (KC.EQ.1) THEN

FC=(X(4)-X(6))**2+(X(5)-X(7))**2

ELSE IF (KC.EQ.2) THEN

W=SQRT(X(2)**2+X(3)**2) ; FC=(X(3)*X(4)-X(2)*X(5))/W

ELSE IF (KC.EQ.3) THEN

W=SQRT(X(2)**2+X(3)**2) ; FC=(X(3)*X(6)-X(2)*X(7))/W

ELSE IF (KC.EQ.4) THEN

W=SQRT((X(2)-X(1))**2+X(3)**2)

FC=(X(1)*X(3)+(X(2)-X(1))*X(5)-X(3)*X(4))/W

ELSE IF (KC.EQ.5) THEN

W=SQRT((X(2)-X(1))**2+X(3)**2)

FC=(X(1)*X(3)+(X(2)-X(1))*X(7)-X(3)*X(6))/W

ENDIF

$ENDSET

$NF=7 ; $NX=7 ; $NC=5

$BATCH

$STANDARD

The minimum function value is F = 23.3137. It has been reached at point x1 = 4.828,
x2 = 0.000, x3 = 4.828, x4 = 1.000, x5 = 2.414, x6 = 2.414, x7 = 1.000.

The UFO system contains optimization methods that can be divided into the
following classes:

• Heuristic methods for small-size problems. This class contains the pattern
search method of Hooke and Jeeves and the simplex method of Nelder and
Mead.

157

• Conjugate direction methods that use no matrices. This class contains various
modifications of the conjugate gradient methods together with the limited-
memory variable metric method of Nocedal based on the Strang recursions.

• Variable metric methods that use rank-one and rank-two updates for obtaining
a positive definite approximation of the inverse Hessian matrix.

• Limited-memory variable metric methods of Byrd, Nocedal and Schnabel based
on a compact representation of variable metric updates that are applied to
small-size matrices.

• Limited-memory variable metric methods based on product-form updates that
are applied to a positive semidefinite approximation of the shifted inverse
Hessian matrix.

• Limited-memory variable metric methods of Gill and Leonard based on reduced
updates that are applied to an approximation of the reduced Hessian matrix.

• Various modifications of the Newton method that use Hessian matrices com-
puted either analytically or numerically.

• Truncated version of the Newton method where the iterative conjugate gra-
dient method is applied to the linear system and directional derivatives are
approximated by using gradient differences. This method uses no matrices.

• Various modifications of the Gauss-Newton method for nonlinear least squares,
where the Hessian matrix is approximated by the normal-equation matrix im-
proved by the variable metric updates. Alternatively, these methods are real-
ized in the form utilizing linear least squares subproblems using the Jacobian
matrix or its approximation.

• Quasi-Newton methods for nonlinear least squares and nonlinear equations that
use rank-one updates for obtaining an approximation of the inverse Jacobian
matrix.

• Limited-memory quasi-Newton methods for nonlinear least squares and non-
linear equations based on a compact representation of variable metric updates
that are applied to small-size matrices.

• Modifications of the Brent method for nonlinear equations.

• Proximal bundle methods for nonsmooth optimization.

• Bundle-Newton methods for nonsmooth optimization. These methods use
second-order information and are intended for small-size problems.

• Variable metric methods for nonsmooth optimization that use bundles with
three elements at most.

• Variable metric methods for large-scale partially separable nonsmooth func-
tions.

• Simplex-type methods for linear and quadratic programming problems.

• Interior-point methods for linear and quadratic programming problems.

• Recursive quadratic programming methods for discrete nonlinear minimax prob-
lems.

158

• Recursive quadratic programming methods for general nonlinear programming
problems.

• Recursive quadratic programming methods for large-scale problems with sparse
equality constraints.

• Interior-point methods for large-scale sparse nonlinear programming problems.

• Nonsmooth-equation methods for large-scale sparse nonlinear programming
problems.

• Random search methods for global optimization.

• Continuation methods for global optimization. This class contains tunneling
function methods and filled function methods.

• Clustering methods for global optimization. This class contains a density clus-
tering method and a single linkage clustering method.

• Multi-level methods for global optimization. This class contains a multi-level
single linkage clustering method and a multi-level mode analysis method.

These optimization methods can be realized with various strategies for step-size
selection. There are line-search methods, general trust-region methods, special trust-
region methods for nonlinear least squares, Marquardt-type methods for nonlinear
least squares and filter-type methods for nonlinear programming including Fletcher-
Leyffer filters, barrier filters and Markov filters. Moreover, various direct solvers for
different matrix representations and various iterative methods with different precon-
ditioners can be used for direction determination. The UFO system also contains
many efficient methods for solving related subproblems, for example methods for
solving systems of ordinary differential equations.

Besides numerical methods, the UFO system contains many input and output
tools. There is a control language for batch processing, text dialogue for unix sys-
tems, graphic dialogue for Microsoft windows, text screen output for unix systems,
graphic screen output for Microsoft windows and various types of output text files.
Furhermore, many collections of problems for testing optimization methods and tools
for testing external subroutines describing model functions are included. The UFO
preprocessor contains also subroutines for automatic differentiation and the interface
to the CUTE testing environment.

Finally, we introduce one practical application. We consider the optimization
of a three-section cascaded transmission-line 10:1 transformer over a 100-percent
bandwidth. Optimality criterion is to minimize the reflection coefficient over 11 fre-
quency points in the band 0.5–1.5 GHz. The design parameters are the characteristic
impedances and the lengths of individual transformer sections normalized with re-
spect to quarter-wave length at the center of frequency. The nonsmooth objective
function has the form

f(x) = max
1≤i≤11

fi(x),

fi(x) =

∣∣∣∣1− 2
v1(x, ωi)

w1(x, ωi) + v1(x, ωi)

∣∣∣∣ ,

159

160

where v1(x, ωi) a w1(x, ωi) are complex numbers computed recursively in such a way
that v4(x, ωi) = 1, w4(x, ωi) = 10 and

vk(x, ωi) = cos(ϑix2k−1)vk+1(x, ωi)

+j sin(ϑix2k−1)
1

x2k

wk+1(x, ωi),

wk(x, ωi) = cos(ϑix2k−1)wk+1(x, ωi)

+j sin(ϑix2k−1)x2kvk+1(x, ωi)

for k = 3, 2, 1. Here j =
√−1 is the imaginary unit, ϑi = (π/2)ωi and ωi, 1 ≤ i ≤ 11,

are design frequencies.

References

[1] L. Lukšan, M. Tůma, M. Šǐska, J. Vlček, N. Ramešová: UFO 2002 – Interactive
system for universal functional optimization. Technical Report V-883. Institute
of Computer Science, Academy of Sciences, Prague, ICS AS CR, 2002.

161

