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VARIATIONALLY-DERIVED LIMITED-MEMORY METHODS
FOR UNCONSTRAINED OPTIMIZATION∗

Jan Vlček, Ladislav Lukšan

1. Introduction

Variable metric (VM) methods, see [2], [5], for unconstrained minimization, are
the most popular iterative methods for small and medium-size problems, since they
are simple and numerically efficient and have good convergence properties. Starting
with an initial point x1 ∈ RN , they generate a sequence xk ∈ RN , k ≥ 1, by the
process xk+1 = xk+tkdk, where dk ∈ RN is a direction vector and tk ≥ 0 is a stepsize.

We assume that the problem function f : RN → R is uniformly convex and
has bounded second-order derivatives and denote fk = f(xk), gk = ∇f(xk), sk =
xk+1 − xk and yk = gk+1 − gk, k ≥ 1. VM methods use symmetric positive definite
matrices Hk, k ≥ 1; usually H1 = I and Hk+1 is obtained from Hk by a rank-two
VM update to satisfy the quasi-Newton condition Hk+1yk = sk.

We will investigate the line search methods satisfying

dk = −Hkgk, fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1)

k ≥1, where 0<ε1 <1/2, ε1 <ε2 <1. The most efficient VM methods belong to the
Broyden class with parameter η (we often omit index k and replace k + 1 by symbol
+) H+ = H + ssT /b −HyyT H/a + (η/a) [(a/b)s−Hy] [(a/b)s−Hy]T , a = yT Hy,
b = sT y. For η = 0 we obtain the DFP update, for η = 1 the BFGS update.

2. Shifted variable metric methods

Here matrices Hk have the form Hk = ζkI + Ak, k ≥ 1, see [9], [10], where ζk > 0
and Ak are symmetric positive semidefinite; usually A1 = 0 and Ak+1 is obtained
from Ak by a VM update to satisfy shifted analogy of the quasi-Newton condition

A+y = %s̃, s̃ = s− ζ+y. (2)

If % = 1, matrix H+ satisfies the quasi-Newton condition H+y = s. We use non-unit
values of % only for variationally-derived limited-memory methods. We denote

a = yT Hy, ā = yT Ay, â = yT y, b = sT y, b̄ = yT ABs, b̃ = s̃T y, B = H−1.

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project code
IAA1030405, and with the subvention from Ministry of Education of the Czech Republic, project
code MSM 242200002.
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As in standard VM methods, we obtain the shifted analogy of the Broyden class for
b̃ > 0 (which implies s̃ 6= 0, y 6= 0; if ā = 0, we simply omit the last two terms)

A+ = A + %
s̃s̃T

b̃
− AyyTA

ā
+

η

ā

(
ā

b̃
s̃− Ay

) (
ā

b̃
s̃− Ay

)T

. (3)

For η = 0 we obtain the shifted DFP update, for η = 1 the shifted BFGS update.

Theorem 2.1. Let A be positive semidefinite, η ≥ 0 and µ
∆
= ζ+â/b < 1. Then

matrix A+ given by (3) is positive semidefinite.

We will suppose that η ≥ 0 and µ ∈ (0, 1). In the simplest strategy of the shift
parameter µ determination, its value remains the same in all iterations (e.g. 0.20 ≤
µ ≤ 0.25). If µ ≥ 1/2, then the convergence is usually lost (the shifted DFP method
is an exception). Analysis of the shifted BFGS method leads to formula

µ =
√

ζâ/a
/(

1 +
√

1− b2/(â|s|2)
)

, (4)

which gives good results, with the exception of the first five to ten iterations, when

it should be corrected, e.g. µ = min(max(
√

1− ā/a/(1+
√

1− b2/(â|s|2) ), 0.2), 0.8).

2.1. Global convergence

Assumption 2.1. The objective function f : RN →R is uniformly convex and has
bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤ G < ∞,
x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues of
the Hessian matrix G(x)).

Assumption 2.2. Parameters %k and µk of the shifted VM method are uniformly
positive and bounded, in the sense that 0 < % ≤ %k ≤ %, 0 < µ ≤ µk ≤ µ < 1, k ≥ 1.

Theorem 2.2. Consider the shifted variable metric method (3) satisfying Assump-
tion 2.2 with µ sufficiently small and suppose that the line search method fulfils (1).
Let the objective function satisfy Assumption 2.1. If η ∈ [0, 1] and µ2 ≤ ζâ/a or
µ = µ (e.g. if µ2 >ζâ/a), then lim infk→∞ |gk|=0 (global convergence).

2.2. Computational experiments

We use a collection of 92 relatively difficult problems ([7], Test 28) and the final
precision ‖g(x?)‖∞ ≤ 10−6. In the tables, NIT is the total number of iterations,
NFV the number of function (or gradient) evaluations and ‘Fail’ denotes the number
of problems where NFV reached its limit. Table 1 demonstrates an influence of the
constant parameter µ on the shifted BFGS method. In Table 2 we use choice (4)
of µ with the mentioned corrections in the first six iterations. The first three rows
contain results for the shifted BFGS method (SBFGS, η = 1), the method (3) with
η=2 (SBC2) and the shifted DFP method (SDFP, η=0).The last four rows contain
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µ 0.22 0.32 0.42 0.48 0.50 0.52
NFV 13992 15093 18429 28357 65080 103575

Tab. 1: N = 50.

N = 50 N = 200
Method NIT NFV Fail Time NIT NFV Fail Time
SBFGS 11256 12178 - 1.03 30429 36080 1 25.11
SBC2 11065 12670 - 1.05 32448 40019 1 26.34
SDFP 46010 48237 8 3.78 92799 100461 15 74.88
BFGS 14958 16474 1 1.26 36099 39991 2 27.21
BC2 12733 15152 1 1.04 30116 35814 2 23.88

DFP/1 79486 84215 35 6.66 146851 158979 32 113.75
DFP/2 15163 35422 2 1.84 36795 84255 2 42.15

Tab. 2:

results for standard VM methods: the BFGS method (BFGS), method from the
Broyden class with η = 2 (BC2), both with scaling in the first iteration, the DFP
method (DFP/1) and the DFP method with the third inequality in (1) replaced by
|gT

k+1dk| ≤ 0.1|gT
k dk| (DFP/2), both without scaling.

This table demonstrates that the shifted BFGS method is more efficient than the
standard BFGS method and the shifted DFP method can give better results than the
standard DFP method with usual scaling strategies and usual line search methods
(better scaling strategies for standard VM methods are introduced in [5]).

3. Limited-memory methods

These methods belong to shifted VM methods; they satisfy (2) with (positive
semidefinite) matrix Ak = UkU

T
k , where Uk, k ≥ 1, is rectangular. We need to store

only matrix Uk, which can be updated using relation Uk+1 = VkUk, k ≥ 1, with some
matrix Vk. The shifted BFGS method (see Section 2.) is ideal as starting method,
see [9]. Thus in this section we will assume that the starting iterations have been
executed and that matrix U has m ≥ 1 columns in all iterations.

With V = I + pqT , good results were obtained only for q = Bs and q = y. Thus
we will investigate the case V = I + p1y

T + p2s
T B, p1 ∈ RN , p2 ∈ RN .

3.1. Methods based on general expression of the basic update

Denoting δ̄ = āsT BABs− b̄2 (δ̄ ≥ 0 by the Schwarz inequality), we can write

A+ = A + %s̃s̃T /b̃− AyyTA/ā + (q2q
T
2 − v2v

T
2 )/(āδ̄), qT

2 y = 0,

for δ̄ 6= 0 (which implies ā 6= 0), where v2 = āABs− b̄Ay (see [9] for the case δ̄ = 0).
To construct this update, we choose vector parameter q2 satisfying qT

2 y = 0 and

calculate p1 and p2, using formulas p2 = (q2 − v2)/δ̄, p1 =
(√

%ā/b̃ s̃−Ay − b̄p2

)/
ā.
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SSBC - simple method based on the shifted Broyden class

Surprisingly, very good results were obtained with choice q2 =
√

δ̄
(
(ā/b̃)s̃− Ay

)
.

Then we have the shifted BFGS update (3) with the additional term −v2v
T
2 /(āδ̄).

DSBC - method with direction vector after the shifted Broyden class

It suffices to compare value H+Bs, see [9].

3.2. Variationally-derived limited-memory methods

Standard VM methods can be obtained as updates with the smallest correction of
VM matrix in the sense of some norm (see [5]). We extend this approach to limited-
memory methods, replacing the shifted quasi-Newton condition U+UT

+y = A+y = %s̃
equivalently by (the first two conditions imply the third one)

UT
+y = z, U+z = %s̃, zT z = %b̃. (5)

Theorem 3.1. Let T be a symmetric positive definite matrix, z ∈ Rm and denote
U the set of N ×m matrices. Then the unique solution to (Frobenius matrix norm)

min{ϕ(U+) : U+ ∈ U} s.t. (5), ϕ(U+) = yT Ty ‖T−1/2(U+ − U)‖2
F ,

is
U+ = U − Ty

yT Ty
yT U + (%s̃− Uz +

yT Uz

yT Ty
Ty)

zT

zT z
. (6)

If Ty = %s̃ − Uz, then the value of ϕ(U+) reaches its minimum on the set of
symmetric positive definite matrices T and update (6) can be written in the form

U+ = U − [1/(%b̃− yT Uz)](%s̃− Uz)(UT y − z)T . (7)

VAR1 - type 1 variationally-derived method

By analogy with the BFGS method, we set z = ϑUT Bs, ϑ = ±
√

%b̃/c̄ in (7):

U+ = U − [1/(%b̃− ϑb̄)](%s̃− ϑABs) (y − ϑBs)T U,

which gives the best results for the choice sgn(ϑb̄) = −1 (compare with Theorem 3.2).

VAR2 - type 2 variationally-derived method

With ϑ, z given as above and with the simple choice Ty = s̃, (6) leads to

U+ = U − s̃yT U/b̃ +
[(

%/ϑ + b̄/b̃
)
s̃− ABs

]
sT BU/c̄.

Efficiency of both these methods significantly depends on the value of parameter %.
Very good results were obtained with the following choices of %: %(1) = ν, %(2) =

√
νε,

%(3) = ζ/(ζ + ζ+) and %(4) =

√
µ

√
%(3)/2, where ν = µ/(1− µ) and ε =

√
ζâ/a.
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3.3. Global convergence

Theorem 3.2. Consider methods SSBC, DSBC, VAR1 and VAR2 satisfying As-
sumption 2.2 with µ sufficiently small. Let the line search method fulfil (1) and the
objective function satisfy Assumption 2.1. If µ2 ≤ ζâ/a or µ = µ and, for VAR1,

ϑk =−sgnb̄k min
[
C̃,

√
%kb̃k/c̄k

]
, k≥1, for some 0<C̃ <∞, then lim infk→∞ |gk|=0.

3.4. Computational experiments

We use the collections of problems [7] (Test 28) and [6] (Test 14, usually well-
conditioned problems), the final precision ‖g(x?)‖∞≤10−6, m = 10, the choice of µ
after (4) with corrections and the shifted BFGS method for starting iterates.

Symbols NFV and ‘Fail’ have the same meaning as in Section 2.2. The first four
rows of the table give results for methods SSBC, DSBC, VAR1 and VAR2. For
methods VAR1, VAR2 we use % = %(4) for VAR1 in Test 28 and % = %(3) otherwise.
The last four rows contain results for the following limited-memory methods: NS
(see [8]), BNS (see [1]), RH (see [4]) and CGM (see [3]); this method often stopped
before the requested precision was achieved. Note that methods BNS and NS store
2m vectors while method CGM stores no additional vectors.

Test 28, 80 problems Test 14, 22 problems
N = 1000 N = 5000

Method NFV Fail Time NFV Fail Time NFV Fail Time
SSBC 104246 - 1:06.8 20203 - 15.74 83866 - 13:21.4
DSBC 109178 - 1:13.3 21969 - 17.25 95090 - 14:48.0
VAR1 99261 - 1:00.3 19680 - 13.86 72214 - 9:32.8
VAR2 92699 - 0:55.4 18546 - 13.76 70127 - 9:30.6
NS 98275 - 0:51.9 21456 - 15.17 84426 - 11:02.2

BNS 122593 1 1:02.8 26003 1 16.55 77803 - 11:38.1
RH 113925 - 0:56.1 33181 - 24.09 150827 2 12:34.6

CGM 223219 2 1:15.3 41049 - 17.91 168471 1 6:45.3

Tab. 3:
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