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ON A FINITE ELEMENT METHOD APPLICATION
IN AEROELASTICITY∗

Petr Sváček

Abstract

The subject of this paper is the numerical simulation of aeroelastic problems. The
interaction of two-dimensional incompressible viscous flow and a vibrating airfoil is
modelled. The solid airfoil, which can rotate around the elastic axis and oscillate in
the vertical direction, is considered. The numerical simulation consists of the finite
element solution of the Navier-Stokes equations coupled with the system of ordinary
differential equations describing the airfoil motion. The stabilization procedure is
of GLS type. The developed numerical approximation is applied on an aeroelastic
problem.

1. Introduction

The mathematical model of relevant technical cases consists of (incompressible)
fluid model and (elastic) structure model. In this paper mainly the numerical ap-
proximation of fluid motion is addressed. In order to approximate the Navier-Stokes
equations several methods can be used. Besides finite differences, the finite volume
method can be used for the approximation (for application of finite volume method
to solution of incompressible flow cf. [5]). In the present paper the finite element
method is used for approximation of the fluid motion. In this case one needs to treat
several sources of instability: one caused by the fact that Babuška-Brezzi condition
needs to be satisfied in order to guarantee the stability of the scheme, the other
source of instability related to the fact that extremely large Reynolds numbers are
involved in the problem (Re ≈ 105–106).

2. Mathematical model

The incompressible viscous air flow is described with the aid of Navier-Stokes
system of equations written in so-called Arbitrary Lagrangian-Eulerian (ALE) form,
cf. [6], [2]. In order to clarify the method, we start with the definition of an ALE
mapping At: We assume that the mapping At is a given C1 continuous bijective map-
ping from the reference (original) configuration Ω0 onto the computational domain
at a time t, i.e. the current configuration Ωt.

At : Ω0 7→ Ωt, Y 7→ y(t, Y ) = At(Y ).

∗The author acknowledges the financial support of the Ministry of Education of the Czech
Republic by Research Plan MSM 6840770003 and also the financial support of the Grant Agency
of the Czech Republic by the project No. 201/05/P142.
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Fig. 1: The elastic support of the airfoil hanging on translational and rotational springs.

The time derivative with respect to the reference frame Ω0 is called the ALE
derivative, i.e.

DAtf

Dt
=

∂f

∂t
+ (wg · ∇)f. (1)

With the aid of the ALE derivative DAtu/Dt, the Navier-Stokes system of equa-
tions is rewritten as follows

DAtu

Dt
− ν4u +

(
(u−wg) · ∇

)
u +∇p = 0, ∇ · u = 0, in Ωt , (2)

where by Ωt we denote the computational domain occupied by fluid at time t ∈ (0, T ),
u denotes the velocity vector, p denotes the kinematic pressure (i.e. the dynamic
pressure divided by the air density), and the domain velocity vector is denoted
by wg. On the boundary ∂Ω we prescribe suitable boundary conditions. First,
the boundary ∂Ω is decomposed into three distinct parts, i.e. ∂Ω = ΓWt ∪ ΓD ∪ ΓO.
On ΓD and ΓWt a Dirichlet boundary conditions are prescribed, i.e.

a) u = uD on ΓD, b) u = wg on ΓWt . (3)

The latter part of the boundary is the only moving part of the boundary. The bound-
ary ΓO represents the outlet, where the following boundary condition is prescribed

[
−(p− pref )n− 1

2
(u · n)−u + ν

∂u

∂n

]∣∣∣∣
ΓO

= 0, (4)

where pref is a reference pressure value (e.g. zero).
If ΓO is the outflowing part of the boundary, i.e. (u ·n)− = 0, the condition (4) is

equivalent to the well known do-nothing boundary condition. We consider the weak
formulation (2–4) in the Sobolev spaces (H1(Ω))

2
and L2(Ω) for the velocities and

pressures, respectively.
The fluid model is coupled with the nonlinear equations of motion for a flexibly

supported airfoil, see [7]

m ḧ + Sα α̈ cos α− Sα α̇2 sin α + khh h = −L(t), (5)

Sα ḧ cos α + Iαα̈ + kαα α = M(t).
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where h and α denotes the vertical (downwards oriented) and the rotational (clock-
wise oriented) displacements, respectively, whereas L and M denote the aerody-
namical lift force and torsional moment. The mathematical models (5) and (2) are
coupled with the evaluation of aerodynamical forces defined by

L = −
∫

ΓWt

2∑
j=1

σ2jnjdS, M = −
∫

ΓWt

2∑
i,j=1

σijnjr
ort
i dS, (6)

where rort
1 = −(xEO2 − x2), rort

2 = xEO1 − x1 and σij is the stress tensor, cf. [3].

3. Numerical approximation

First, let us start with an equidistant discretization of the time interval [0, T ] with
the time step ∆t, i.e. tk = k ·∆t for k = 0, 1, 2, . . . . Let un, pn denote approximations
of the velocity vector u and the pressure p evaluated at the time tn, i.e. un ≈ u(tn)
and pn ≈ p(tn). The ALE derivative of the velocity vector u is approximated by

DAtf

Dt
≈ 3un+1 − 4ûn + ûn−1

2∆t
, (7)

where the velocity un+1 denotes the approximate velocity at time tn+1 and the ve-
locities ûn, ûn−1 are the velocities at previous time steps tn and tn−1 transformed
from domains Ωtn , Ωtn−1 onto the current computational domain Ωtn+1 , i.e., ûn ≡
un

(Atn

(A−1
tn+1

(y)
))

,ûn−1 ≡ un−1
(Atn−1

(A−1
tn+1

(y)
))

. The time difference formula is
then involved in the problem (2), i.e.

3un+1 − 4ûn + ûn−1

2∆t
− ν4u +

(
(u−wg) · ∇

)
u +∇p = 0, (8)

∇ · u = 0, in Ωt

and the system of equations (8) is formulated weakly. The components of the ap-
proximate solution are sought in the space X∆. X∆ denotes the finite element space
of Taylor-Hood elements, i.e. piecewise quadratic velocity components and linear
pressures.

The stabilized discrete problem reads: Find U = (u, p) ∈ X∆ such that

a(U,U, V ) + L∆(U,U, V ) + P∆(U, V ) = f(V ) + F∆(V )

for all V = (v, q) ∈ X0
∆ (X0

∆ denotes the space of functions from X∆ being zero
on the Dirichlet part of boundary). The terms a(·, ·, ·) and f(·) are the standard
Galerkin terms defined as

a(U∗, U, V ) =
3

2∆t
(u,v)Ω + ν (∇u,∇v)Ω +

((
(u−wn+1

g ) · ∇)
u,v

)
Ω

− (p,∇ · v)Ω + (∇ · u, q)Ω ,

f(V ) =
1

2∆t

(
4ûn − ûn−1,v

)
Ω
−

∫

ΓO

prefv · n dS, (9)

237



the terms L∆(·, ·) and F∆(·) are GLS (Galerkin Least Squares) additional stabiliza-
tion terms defined as

L∆(U∗, U, V ) =
∑

K∈τ∆

δK

( 3

2∆t
u− ν4u + ((u∗ −wg) · ∇)u +∇p, ψ(u, q)

)
K

,

F∆(V ) =
∑

K∈τ∆

δK

( 1

2∆t
(4ûn − ûn−1), ψ(u, q)

)
K

, (10)

where ψ(u, q) ≡ ((u∗ −wg) · ∇)v + ∇q, and the term P∆(U, V ) is the grad-div
stabilization term defined as

P∆(U, V ) =
∑

K∈τ∆

τK(∇ · u,∇ · v)K , (11)

where U = (u, p), V = (v, q), U∗ = (u∗, p) and δK and τK are suitably chosen para-
meters, cf. [4].

4. Numerical results

The presented method was applied to several practical problems and the numerical
results were validated. Here, the numerical results for the coupled system (2) and (5)
is presented for the case of flexibly supported airfoil NACA 0012. The solution was
performed for far field velocity U∞ = 5 m s−1 and modified parameter values were
taken from [1]. The critical velocity determined by NASTRAN computations was
30.4m/s, which corresponds to the results computed by the presented method. The
airfoil response can be seen in Figure 2 and 3.
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Fig. 2: Aerodynamical forces acting on airfoil NACA 0012 for far field velocity U∞ =
29ms−1 causes damped vibrations.
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Fig. 3: The airfoil response of the aerodynamical forces applied on the airfoil NACA 0012
for far field velocity U∞ = 32ms−1 .
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