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ADAPTIVE FRAME METHODS WITH CUBIC
SPLINE-WAVELET BASES∗

Dana Černá, Václav Finěk

In recent years, adaptive wavelet methods have been successfully used for solving
operator equations [2, 3, 5]. It has been shown that these methods converge and that
they are asymptotically optimal in the sense that storage and number of floating point
operations, needed to resolve the problem with desired accuracy, remain proportional
to the problem size when the resolution of the discretization is refined.

Suitable wavelet bases on bounded domains are needed for these methods. They
are usually constructed in the following way: Wavelets on the real line are adapted
to the interval and then by tensor product technique to the n-dimensional cube.
Finally, by splitting the domain into nonoverlapping subdomains which are images
of (0, 1)n under appropriate parametric mappings, one can obtain wavelet bases on
a fairly general domain. However, it can be very difficult to find these parametric
mappings. For this reason, more general adaptive wavelet-frame methods were
proposed in [7, 10]. These methods use frames instead of wavelet bases. A frame on
a bounded domain can be obtained by a union of wavelet bases on the overlapping
subdomains, which are lifted tensor products of a basis on the unit interval. Thus,
the construction of wavelet frames is much simpler than the construction of wavelet
bases.

The effectiveness of adaptive wavelet and frame methods is strongly influenced
by the choice of the wavelet basis on the interval, in particular by its conditioning.
However, the conditioning of the known spline-wavelet bases [8, 9] becomes bad for
primal polynomial exactness of order N > 3, which causes problems in practical
applications. In our contribution, we focus on the cubic case, i.e. N = 4, and
we propose a construction of cubic spline-wavelet bases on the interval adapted for
complementary boundary conditions of the first order. We show that these bases are
well-conditioned and that the corresponding stiffness matrices have small condition
numbers. Furthermore, we show that the adaptive wavelet frame method from [7]
with bases constructed in our paper realizes the optimal convergence rate.

1. Construction of boundary adapted spline-wavelet bases

In this section, we introduce a construction of stable spline-wavelet bases on
the interval satisfying complementary boundary conditions of the first order. It

∗The research of the first author has been supported by the MSMT project no. LC06024, while
the second author has been supported by the project IGS financed by Technical University in
Liberec.
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means that the primal wavelet basis is adapted for homogeneous Dirichlet boundary
conditions of the first order, while the dual wavelet basis preserves the full degree of
polynomial exactness. This construction is based on the spline-wavelet bases from [4].
Let Ñ be the order of polynomial exactness of the dual MRA.

Let Φold
j = {φj,k, k = −3, . . . , 2j − 1} be the primal scaling basis on level j from [4].

The functions φj,−3, φj,2j−1 are the only two functions which do not vanish at bound-
ary points. Therefore, defining

Φj :=
{
φj,k, k = −2, . . . , 2j − 2

}
(1)

we obtain primal scaling bases satisfying the first order Dirichlet boundary condi-
tions.
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Fig. 1: Cubic primal scaling basis for Ñ = 6, j = 3 satisfying complementary boundary
conditions of the first order.

On the dual side, we also need to omit one scaling function at each boundary,
because the number of the primal scaling functions must be the same as the number
of the dual scaling functions. Let Θold

j =
{
θold

j,k , k = −3, . . . , 2j − 1
}

be the dual
scaling basis on level j before biorthogonalization from [4]. There are boundary
functions of two types. The functions θold

j,−3, . . ., θold
j,−4+Ñ

are left boundary functions

of the first type which are defined to preserve polynomial exactness of order Ñ . The
functions θold

j,−3+Ñ
, . . ., θold

j,Ñ−2
are left boundary functions of the second type. The

right boundary scaling functions are then derived by reflection of the left boundary
functions. Since we want to preserve the full degree of polynomial exactness, we omit
one function of the second type at each boundary. Thus, we define

θj,k = θold
j,k−1, k = −2, . . . ,−3 + Ñ ,

θj,k = θold
j,k , k = −2 + Ñ , . . . , 2j − Ñ − 2,

θj,k = θold
j,k+1, k = 2j − Ñ − 1, . . . , 2j − 2.

Since the set Θj := {θj,k : k = −2, . . . , 2j − 2} is not biorthogonal to Φj, we derive

a new set Φ̃j from Θj by biorthogonalization. Let Aj = (〈φj,k, θj,l〉)2j−2
k,l=−2, then

viewing Φ̃j and Θj as column vectors we define Φ̃j := A−T
j Θj, assuming that Aj is

invertible, which is the case of all choices of Ñ in our numerical experiments.
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Our next goal is to determine the corresponding sets of wavelets at the scale j, i.e.

Ψj := {ψj,k, k = 1, . . . 2j}, Ψ̃j :=
{

ψ̃j,k, k = 1, . . . 2j
}

. We follow a general principle

called stable completion as in [8] with some small changes. Since this construction
is quite subtle we do not go into details here.
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Fig. 2: Some cubic primal wavelets for Ñ = 6 satisfying the complementary boundary
conditions of the first order.

2. Quantitative properties of the constructed bases

In this section, quantitative properties of the constructed bases are presented. In
order to further improve the condition we provide L2-normalization of the primal
functions. Then we multiply the dual functions by appropriate constants to preserve
biorthogonality. The L2-normalized bases are denoted by the superscript N . The
conditioning of the resulting single-scale bases are listed in Table 1.

N Ñ j Φj ΦN
j Φ̃j Φ̃N

j Ψj ΨN
j Ψ̃j Ψ̃N

j

4 6 6 4.53 4.30 7.89 6.83 9.46 8.00 16.37 7.96
4 8 6 4.53 4.30 11.15 10.05 8.45 8.02 25.30 15.26
4 10 6 4.53 4.30 17.89 16.97 8.39 8.42 37.65 35.80

Tab. 1: The conditioning of single-scale scaling and wavelet bases.

The other criterion for the effectiveness of wavelet bases is the condition number
of the corresponding stiffness matrix. Here, let us consider the stiffness matrix for
the Poisson equation:

Aj0,s =
(〈

ψ′j,k, ψ
′
l,m

〉)
ψj,k,ψl,m∈Ψj0,s

, (2)
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where Ψj0,s = Φj0∪
⋃j0+s−1

j=j0
Ψj denotes the multiscale basis. It is well-known that the

condition number of Aj0,s increases quadratically with the matrix size. To remedy
this, we use a diagonal matrix for preconditioning

Aprec
j0,s = D−1

j0,sAj0,sD
−1
j0,s, Dj0,s = diag

(〈
ψ′j,k, ψ

′
j,k

〉1/2
)

ψj,k∈Ψj0,s

. (3)

To further improve the condition number of Aprec
j0,s we apply orthogonal transforma-

tion to the scaling basis on the coarsest level as in [1] and then we use diagonal matrix
for preconditioning. We denote the obtained matrix by Aort

j0,s. Condition numbers of
the resulting matrices are listed in Table 2.

N Ñ j s M Aprec
j,s Aort

j,s N Ñ j s M Aprec
j,s Aort

j,s

4 4 4 1 33 47.02 15.38 4 8 5 1 65 205.56 15.92
3 129 49.56 17.40 3 257 208.37 25.04
5 513 50.17 18.52 5 1025 209.12 27.47
7 2049 50.28 18.91 7 4097 209.31 27.69

4 6 4 1 33 48.98 15.25 4 10 5 1 65 224.22 22.51
3 129 49.56 15.94 3 257 226.17 81.72
5 513 50.17 16.24 5 1025 226.42 91.26
7 2049 50.28 16.31 7 4097 226.63 92.17

Tab. 2: The condition numbers of stiffness matrices Aprec
j,s , Aort

j,s of the size M ×M .

3. Adaptive frame method with the constructed bases

Adaptive frame methods are designed in particular for solving operator equations
on complicated domains. However, even in some one-dimensional numerical examples
the optimal convergence rate was not realized, probably due to stability problems
of the used bases. Our intention is to show that the optimal convergence rates of
adaptive wavelet frame methods can be achieved also for the case of cubic spline
wavelets. We should emphasize that we consider the one-dimensional example as
a milestone on the way to higher-dimensional problems.

We consider the same test example as in [6], i.e. the Poisson equation

−u′′ = f in Ω = (0, 1) , u (0) = u (1) = 0, (4)

with the functional f defined by

f (v) = 4v

(
1

2

)
−

∫ 1

0

(
9π2 sin (3πx) + 4

)
v (x) dx. (5)

Then the solution u is given by

u (x) =

{
− sin (3πx) + 2x2, x ∈ [0, 0.5) ,

− sin (3πx) + 2 (1− x)2 , x ∈ [0.5, 1] .
(6)
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To test our bases, we construct a wavelet frame on Ω simply as the union of
interval wavelet bases on Ω1 = (0, 0.7) and Ω2 = (0.3, 1) . Note that the singularity
is contained in the overlapping part and thus the boundary scaling functions and
wavelets, which may potentially cause instabilities, are more involved in the frame
than in the wavelet approach. This is the reason why we use wavelet frames instead
of wavelet bases directly.

Let us define

A = D−1 〈Ψ′, Ψ′〉D−1, f = D−1 〈f, Ψ〉 , D = diag
(〈

ψ′j,k, ψ
′
j,k

〉1/2
)

ψj,k∈Ψ
. (7)

Then the variational formulation of (4) is equivalent to

AU = f , (8)

and the solution u is given by u = UD−1Ψ. We solve the infinite dimensional
problem (8) by the inexact damped Richardson iterations, for details we refer to [7].

Since the solution u has limited Sobolev regularity, u ∈ Hs (Ω)∩H1
0 (Ω) only for

s < 1.5, the linear methods can only converge with limited order. Let Bs
q (Lp (Ω))

denote a Besov space of smoothness s over Lp (Ω) with additional index q. It can be
shown that u ∈ Bs+1

τ (Lτ (Ω)) for any positive s and τ = (s + 0.5)−1. Therefore,

‖U−Uk‖l2 ≤ C (# supp Uk)
−n , (9)

where Uk is the k-th approximate iterand. The theoretical rate of convergence n
is limited only by the polynomial exactness of the underlying wavelet bases, in our
case the relation (9) holds for any n < 3. Figure 3 shows the logarithmic plot of the
realized convergence rate for the bases designed in this contribution with Ñ = 4 and
Ñ = 6.
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−2 Ñ = 6

# supp U
k

|| 
r k ||

1

3

Fig. 3: The l2 norm of the residual rk = f−AUk versus the number of degrees of freedom.

To conclude: We proposed a construction of cubic spline-wavelet bases on the in-
terval adapted for complementary boundary conditions of the first order. As opposed
to bases from [8, 9], bases constructed in our paper are well-conditioned, the corre-
sponding stiffness matrices have small condition numbers and the adaptive wavelet
frame method from [7] with our bases realizes the optimal convergence rate.
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