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ON LAGRANGE MULTIPLIERS OF TRUST-REGION
SUBPROBLEMS∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

1. Introduction

Consider the problem
min F (x), x ∈ Rn,

where F : Rn → R is a twice continuously differentiable objective function. Basic
optimization methods (trust-region and line-search methods) [6] generate points
xi ∈ Rn, i ∈ N , in such a way that x1 is arbitrary and

xi+1 = xi + αidi, i ∈ N ,

where di ∈ Rn are direction vectors and αi > 0 are step sizes.
Trust-region methods [1] are globally convergent techniques widely used, for ex-

ample, in connection with the Newton’s method for unconstrained optimization.
They can be advantageously used when the Hessian matrix (or its approximation) of
the objective function is indefinite, ill-conditioned or singular. This situation often
arises in connection with the Newton’s method for general objective function (indef-
initeness) or with the Gauss-Newton’s method for nonlinear least-squares problems
(near singularity).

For a description of trust-region methods we define the quadratic function

Qi(d) =
1

2
dT Bid + gT

i d

which locally approximates the difference F (xi + d)− F (xi), the vector

ωi(d) =
(Bid + gi)

‖gi‖
for the accuracy of computed direction, and the number

ρi(d) =
F (xi + d)− F (xi)

Qi(d)

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project
No. IAA1030405, the Grant Agency of the Czech Republic, project No. 201/06/P397, and the
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for the ratio of actual and predicted decrease of the objective function. Here gi =
g(xi) = ∇F (xi) and Bi ≈ ∇2F (xi) is an approximation of the Hessian matrix of the
function F at the point xi ∈ Rn.

Trust-region methods are based on approximate minimizations of Qi(d) on the
balls ‖d‖ ≤ ∆i followed by updates of radii ∆i > 0. Thus direction vectors di ∈ Rn

are chosen to satisfy the conditions

‖di‖ ≤ ∆i, (1)

‖di‖ < ∆i ⇒ ‖ωi(di)‖ ≤ ω, (2)

−Qi(di) ≥ σ‖gi‖min(‖di‖, ‖gi‖/‖Bi‖), (3)

where 0 ≤ ω < 1 and 0 < σ < 1. Step sizes αi ≥ 0 are selected so that

ρi(di) ≤ 0 ⇒ αi = 0, (4)

ρi(di) > 0 ⇒ αi = 1. (5)

Trust-region radii 0 < ∆i ≤ ∆ are chosen in such a way that 0 < ∆1 ≤ ∆ is arbitrary
and

ρi(di) < ρ ⇒ β‖di‖ ≤ ∆i+1 ≤ β‖di‖, (6)

ρi(di) ≥ ρ ⇒ ∆i ≤ ∆i+1 ≤ ∆, (7)

where 0 < β ≤ β < 1 and 0 < ρ < 1.

2. Direction determination

A crucial part of each trust-region method is the direction determination. There
are various commonly known methods for computing direction vectors satisfying
conditions (1)-(3). To simplify the notation, we omit the major index i and use the
inner index j.

The most sophisticated method is based on a computation of the optimal lo-
cally constrained step. In this case, the vector d ∈ Rn is obtained by solving the
subproblem

min Q(d) =
1

2
dT Bd + gT d subject to ‖d‖ ≤ ∆. (8)

Necessary and sufficient conditions for this solution are

‖d‖ ≤ ∆, (B + λI)d = −g, B + λI º 0, λ ≥ 0, λ(∆− ‖d‖) = 0,

where λ is the optimal Lagrange multiplier. The Moré-Sorensen method [5] is based
on solving the nonlinear equation 1/‖d(λ)‖ = 1/∆ with (B + λI)d(λ) + g = 0 by
the Newton’s method, possibly the modified Newton’s method [8] using the Choleski
decomposition of B + λI.

Steihaug [7] and Toint [9] proposed a technique for finding an approximate solu-
tion of (8). This implementation is based on the conjugate gradient algorithm [6] for
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solving the linear system Bd = −g. We either obtain an unconstrained solution with
a sufficient precision or stop on the trust-region boundary. The latter possibility oc-
curs if either a negative curvature is encountered or the constraint is violated. This
method is based on the fact that Q(dj+1) < Q(dj) and ‖dj+1‖ > ‖dj‖ hold in the
subsequent CG iterations if the CG coefficients are positive and no preconditioning
used. For a general preconditioner C (symmetric and positive definite), we have
‖dj+1‖C > ‖dj‖C , where ‖dj‖2

C = dT
j Cdj.

There are two possibilities how the Steihaug-Toint method can be preconditioned.
The first way uses the norms ‖di‖Ci

(instead of ‖di‖) in (1)–(7), where Ci are precon-
ditioners chosen. This possibility is not always efficient because the norms ‖di‖Ci

,
i ∈ N , vary considerably in the major iterations and preconditioners Ci, i ∈ N ,
can be ill-conditioned. The second way uses Euclidean norms in (1)–(7), even if
arbitrary preconditioners Ci, i ∈ N , are used. In this case, the trust-region can
be leaved prematurely and the direction vector obtained can be farther from the
optimal locally-constrained step than that obtained without preconditioning. This
shortcoming is usually compensated by the rapid convergence of the preconditioned
CG method. Our computational experiments indicate that the second way is more
efficient in general.

Another approach, the GLRT method [2], approximately solves (8) iteratively by
using the symmetric Lanczos process. A vector dj which is the j-th approximation
of optimal d is contained in the Krylov subspace Kj = span{g, Bg, . . . , Bj−1g} of
dimension j defined by the matrix B and the vector g. In this case, dj = Zd̃, where
d̃ is obtained by minimizing the quadratic function

1

2
d̃T T d̃ + ‖g‖eT

1 d̃

subject to ‖d̃‖ ≤ ∆. Here, T = ZT BZ (with ZT Z = I) is the Lanczos tridiagonal
matrix and e1 is the first column of the unit matrix. Using preconditioner C, the
preconditioned Lanczos method generates basis such that ZT CZ = I. Thus, we
have to use the norms ‖di‖Ci

in (1)–(7), i.e. the first way of preconditioning, which
can be inefficient when Ci vary considerably in the trust-region iterations or are
ill-conditioned.

3. A shifted Steihaug-Toint method

In this contribution, we consider a sequence of subproblems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd + gT d,

with corresponding Lagrange multipliers λj, j ∈ {1, . . . , n}. The method [3] uses
the conjugate gradient method applied to the linear system (B+ λ̃I)d+g = 0, where
λ̃ is an approximation to the optimal Lagrange multiplier λ. For this reason, we
need to investigate the properties of the Lagrange multipliers corresponding to the
trust-region subproblems used.

132



Before showing the main result, we first present several lemmas, which lead to
the main theorem. The first lemma, coming from [7], shows a simple property of
the conjugate gradient method, the second one compares Krylov subspaces of the
matrices B and B + λI, and the last one states a relation between the values of the
Lagrange multipliers and the norms of the direction vectors.

Lemma 1. Let B be a symmetric and positive definite matrix, let

Kj = span{g, Bg, . . . , Bj−1g}, j ∈ {1, . . . , n},
be the j-th Krylov subspace given by the matrix B and the vector g. Let

dj = arg min
d∈Kj

Q(d), where Q(d) =
1

2
dT Bd + gT d.

If 1 ≤ k ≤ l ≤ n, then
‖dk‖ ≤ ‖dl‖.

Especially,
‖dk‖ ≤ ‖dn‖, where dn = arg min

d∈Rn
Q(d).

Lemma 2. Let λ ∈ R and

Kj(λ) = span{g, (B + λI)g, . . . , (B + λI)j−1g}, j ∈ {1, . . . , n},
be the j-dimensional Krylov subspace generated by the matrix B+λI and the vector g.
Then

Kj(λ) = Kj(0).

Lemma 3. Let ZT
j BZj + λkI, λk ∈ R, k ∈ {1, 2}, where Zj ∈ Rn×j is a matrix

whose columns form an orthonormal basis for Kj, be symmetric and positive definite.
Let

dj(λk) = arg min
d∈Kj

Qλk
(d), where Qλ(d) =

1

2
dT (B + λI)d + gT d.

Then
λ2 ≤ λ1 ⇔ ‖dj(λ2)‖ ≥ ‖dj(λ1)‖.

Now we are in a position to present the main theorem.

Theorem 1. Let dj, j ∈ {1, . . . , n}, be solutions of the minimization problems

dj = arg min
d∈Kj

Q(d) subject to ‖d‖ ≤ ∆, where Q(d) =
1

2
dT Bd + gT d,

with corresponding Lagrange multipliers λj, j ∈ {1, . . . , n}. If 1 ≤ k ≤ l ≤ n, then

λk ≤ λl.
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4. Applications

The result of Theorem 1 can be applied to the following idea. We apply the
Steihaug-Toint method to a shifted subproblem

min Q̃(d) = Qλ̃(d) =
1

2
dT (B + λ̃I)d + gT d subject to ‖d‖ ≤ ∆, (9)

where λ̃ is an approximation to the optimal λ. If we set λ̃ = λj for some j ≤ n,
then Theorem 1 implies that 0 ≤ λ̃ = λj ≤ λn = λ. As a consequence of this
inequality, one has that λ = 0 implies λ̃ = 0 so that ‖d‖ < ∆ implies λ̃ = 0. Thus,
the shifted Steihaug-Toint method proposed in [3] reduces to the standard Steihaug-
Toint method in this case. At the same time, if B is positive definite and 0 < λ̃ ≤ λ,
then one has ∆ = ‖(B + λI)−1g‖ ≤ ‖(B + λ̃I)−1g‖ < ‖B−1g‖ by Lemma 3. Thus,
the unconstrained minimizer of (9) is closer to the trust-region boundary than the
unconstrained minimizer of (8) and we can expect that d(λ̃) is closer to the optimal
locally constrained step than d(0). Finally, if B is positive definite and λ̃ > 0, then
the matrix B + λ̃I is better conditioned than B and we can expect that the shifted
Steihaug-Toint method will converge more rapidly than the standard Steihaug-Toint
method.

The shifted Steihaug-Toint method for solving subproblem (8) consists of the
three major steps.

1. Carry out j ¿ n steps (usually j = 5) of the unpreconditioned Lanczos method
to obtain the tridiagonal matrix T ≡ Tj = ZT

j BZj.

2. Solve the subproblem

min
1

2
d̃T T d̃ + ‖g‖eT

1 d̃ subject to ‖d̃‖ ≤ ∆,

using the method of Moré and Sorensen, to obtain the Lagrange multiplier λ̃.

3. Apply the (preconditioned) Steihaug-Toint method to the shifted subproblem

min Q̃(d) subject to ‖d‖ ≤ ∆

to obtain the direction vector d = d(λ̃), a suitable approximation to the solution
of problem (8).

5. Numerical experiments

We present a numerical comparison of methods for computing direction vectors
satisfying conditions (1)-(3):

• MS – the method of Moré and Sorensen [5] for computing the optimal locally
constrained step.

134



• ST – the basic (unpreconditioned) Steihaug [7] and Toint [9] method.

• SST – the basic (unpreconditioned) shifted Steihaug-Toint method [3].

• GLRT – the method of Gould, Lucidi, Roma, and Toint [2] which combines CG
method with the Lanczos process to give a good approximation to the optimal
locally constrained step.

• PST – the preconditioned Steihaug-Toint method.

• PSST – the preconditioned shifted Steihaug-Toint method.

Note that the incomplete Choleski preconditioner is used for methods PST and
PSST, the number of extra CG or Lanczos steps in SST and PSST methods is equal
to 5, and the number of Lanczos vectors in the GLRT method is bounded from above
by 100.

The methods were tested by using two collections of 22 sparse test problems with
1000 and 5000 variables (subroutines TEST14 and TEST15 described in [4], which can
be downloaded from www.cs.cas.cz/luksan/test.html). The results are given in
Tables 1 and 2, where NIT is the total number of iterations, NFV is the total number of
function evaluations, NFG is the total number of gradient evaluations, NDC is the total
number of Choleski-type decompositions (complete for method MS and incomplete
for methods PST, PSST), NMV is the total number of matrix-vector multiplications,
and Time is the total computational time in seconds. Note that NFG is much greater
than NFV in Table 1, since the Hessian matrices are computed by using gradient
differences. At the same time, the problems referred in Table 2 are the sums of
squares having the form F (x) = (1/2)fT (x)f(x) and NFV denotes the total number
of vector f(x) evaluations. Since f(x) is used in the expression g(x) = JT (x)f(x),
where J(x) is the Jacobian matrix of f(x), NFG is comparable with NFV in this case.

Results in Tables 1 and 2 require several comments. All problems are sparse
with a simple sparsity pattern. For this reason, the MS method based on complete
Choleski-type decompositions (CD) is very efficient, much better than unprecondi-
tioned methods based on matrix-vector multiplications (MV). Since TEST14 contains
reasonably conditioned problems, the preconditioned MV methods are competitive
with the CD method. On the contrary, TEST15 contains several very ill-conditioned
problems (one of them had to be removed) and thus, the CD method works better
than the MV methods.

6. Conclusion

Our conclusions concern large-scale problems where the sparsity pattern plays
a considerable role. The Moré-Sorensen method is very efficient for ill-conditioned
but reasonably sparse problems. If the problems do not have sufficiently sparse
Hessian matrices, then this method can be much worse than the Steihaug-Toint
method whose efficiency also strongly depends on suitable preconditioning. There
are two possibilities of preconditioning mentioned in Section 2. The first one changes
the trust-region problem whereas the second one deforms the trust-region path in the
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N Method NIT NFV NFG NDC NMV Time

1000 MS 1911 1952 8724 3331 1952 3.13
ST 3475 4021 17242 0 63016 5.44
SST 3149 3430 15607 0 75044 5.97
GLRT 3283 3688 16250 0 64166 5.40
PST 2608 2806 12802 2609 5608 3.30
PSST 2007 2077 9239 2055 14440 2.97

5000 MS 8177 8273 34781 13861 8272 49.02
ST 16933 19138 84434 0 376576 134.52
SST 14470 15875 70444 0 444142 146.34
GLRT 14917 16664 72972 0 377588 132.00
PST 11056 11786 53057 11057 23574 65.82
PSST 8320 8454 35629 8432 59100 45.57

Tab. 1: Comparison of methods using TEST14.

N Method NIT NFV NFG NDC NMV Time

1000 MS 1946 9094 9038 3669 2023 5.86
ST 2738 13374 13030 0 53717 11.11
SST 2676 13024 12755 0 69501 11.39
GLRT 2645 12831 12547 0 61232 11.30
PST 3277 16484 16118 3278 31234 11.69
PSST 2269 10791 10613 2446 37528 8.41

5000 MS 7915 33607 33495 14099 8047 89.69
ST 11827 54699 53400 0 307328 232.70
SST 11228 51497 50333 0 366599 231.94
GLRT 10897 49463 48508 0 300580 214.74
PST 9360 41524 41130 9361 179166 144.40
PSST 8634 37163 36881 8915 219801 140.44

Tab. 2: Comparison of methods using TEST15.

original trust-region problem. Note that the GLRT method cannot be preconditioned
in the second way since the preconditioned Lanczos process does not generate the
orthonormal basis related to the original trust-region subproblem. Our preliminary
tests have shown that the first preconditioning technique is less efficient because it
failed in many cases.

To sum up, the shifted Steihaug-Toint method combines good properties of the
Moré-Sorensen and the Steihaug-Toint methods. Our computational experiments
indicate that this method works well in connection with the second way of precondi-
tioning. The point on the trust-region boundary obtained by this method is usually
closer to the optimal solution in comparison with the point obtained by the original
Steihaug-Toint method.
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