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LIMITED-MEMORY VARIABLE METRIC METHODS
BASED ON INVARIANT MATRICES∗

Jan Vlček, Ladislav Lukšan

We present a new family of limited-memory variationally-derived variable met-
ric (VM) line search methods with quadratic termination property (see [4]) for un-
constrained minimization. Starting with x0∈RN , VM line search methods (see [4])
generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, where the
direction vectors dk ∈ RN are descent, i.e. gT

k dk < 0, and the stepsizes tk > 0 satisfy

f(xk+1)− f(xk) ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1)

k≥0, with 0<ε1 <1/2 and ε1 <ε2 <1, where f is an objective function, gk = ∇f(xk).
We denote yk = gk+1 − gk, k ≥ 0 and by ‖.‖F the Frobenius matrix norm.

1. A new family of limited-memory methods

Our methods are based on approximations H̄k = UkU
T
k , k > 0, H̄0 = 0, of

the inverse Hessian matrix, which are invariant under linear transformations (it is
significant in case of ill-conditioned problems), where N × min(k, m) matrices Uk,
1 ≤ m ¿ N , are obtained by limited-memory updates that satisfy the quasi-Newton
condition

H̄k+1yk = sk or equivalently UT
+y = z, U+z = s, zT z = b. (2)

We frequently omit index k, replace index k+1 by symbol +, index k−1 by symbol −
and denote Vr = I − ryT/rT y for r ∈ RN , rT y 6= 0 (projection matrix),

B = H−1, b = sTy>0, ā = yTH̄y, b̄ = sTBH̄y, c̄ = sTBH̄Bs, δ̄ = āc̄− b̄2≥0.

Standard VM updates can be derived as updates with the minimum change of
VM matrix (see [4]), which we extend to limited-memory methods (see [6], [7]).

Theorem 1.1. Let T be a symmetric positive definite matrix, z ∈ Rm, 1 ≤ m ≤ N ,
p = Ty, and U the set of N ×m matrices. Then the unique solution to min{ϕ(U+) :
U+ ∈ U} s.t. (2), where ϕ(U+) = yT Ty ‖T−1/2(U+ − U)‖2

F , is

U+ =szT/b +Vp U
(
I−zzT /zTz

)
, H̄+ =ssT/b +Vp U

(
I−zzT /zTz

)
UT V T

p . (3)
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Updates (3) can be invariant under linear transformations, i.e. can preserve the
same transformation property of H̄ = UUT as inverse Hessian (see [7]).

Theorem 1.2. Consider a change of variables x̃ = Rx + r, where R is N × N
nonsingular matrix, r ∈ RN . Let p ∈ span{s, H̄y, Uz} and suppose that z and
coefficients in the linear combination of vectors s, H̄y and Uz forming p are invariant
under the transformation x → x̃, i.e. they are not influenced by this transformation.
Then for Ũ = RU matrix U+ given by (3) also transforms to Ũ+ = RU+.

In the special case (this choice satisfies the assumptions of Theorem 1.2)

p = (λ/b)s + [(1− λ)/ā]H̄y if ā 6= 0, p = (1/b)s, λ = 1 otherwise (4)

we can easily compare (3) with the Broyden class update of H̄ with parameter η = λ2,
to obtain H̄+ = H̄BC

+ − VpUz(VpUz)T /zTz , where H̄BC
+ = ssT/b + VpH̄V T

p (see [6]).

The last update is useful for starting iterations. Setting U+ = [
√

1/b s] in the first

iteration, every such update modifies U and adds one column
√

1/b s to U+. Except
for the starting iterations, we will assume that matrix U has m ≥ 1 columns.

To choose parameter z, we utilize analogy with standard VM methods (see [7]).

Lemma 1.3. Let H = SST with N × N matrix S and let z = α(ST Bs + θST y),
α, θ ∈R, with zT z = b. Then every update (3) with S, S+, S+ST

+ instead of U , U+,
H̄+ and with p given by (4) belongs to the scaled Broyden class with

η = λ2 − b α2 yTHy
(
θλ/b− (1− λ)/yT Hy

)2
. (5)

Thus we concentrate here on the choice z = α(ST Bs + θST y), zT z = b. Lemma 1.4
(see [7]) gives simple conditions for this z to be invariant under linear transformations.

Lemma 1.4. Let number θ/t be invariant under transformation x̃=Rx + r, where
t is the stepsize, R is N × N nonsingular matrix and r ∈ RN , and suppose that
Ũ =RU . Then vector z used in Lemma 1.3 is invariant under this transformation.

We use the choice θ = −b̄/ā. Then θ/t is invariant and zT z = b gives (if āδ̄ = 0,

we do not update) z = ±
√

b/(āδ̄) (ā UTBs− b̄ UTy), yT Uz = 0, and VpUz = Uz.

2. Variationally-derived simple correction

To have matrices H̄k invariant, we use such updates that −H̄kgk cannot be used
as the direction vectors dk. Thus we find the minimum correction (in the sense of
Frobenius matrix norm, see [7]) of matrix H̄+ +ζI, ζ > 0, in order that the resultant
matrix H+ may satisfy the quasi-Newton condition H+y = s. First we give the
projection variant of the well-known Greenstadt’s theorem, see [3].

For M = H̄+ + ζI, the resulting correction (8) together with update (3) give our
family of limited-memory VM methods.
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Theorem 2.1. Let M,W be symmetric matrices, W positive definite, q = Wy and
denote M the set of N×N symmetric matrices. Then the unique solution to

min{‖W−1/2(M+ −M)W−1/2‖F : M+ ∈M} s.t. M+y = s (6)

is given by Vq (M+ −M) V T
q = 0 and can be written (the usual form is on the right)

M+ =E+Vq (M−E)V T
q ≡ M+ (wqT+qwT )/qTy − wTy · qqT /(qTy)2 , (7)

where E is any symmetric matrix satisfying Ey = s, e.g. E = ssT/b, w = s−My.

Theorem 2.2. Let W be a symmetric positive definite matrix, ζ > 0, q = Wy and
denote M the set of N × N symmetric matrices. Suppose that matrix H̄+ satisfies
the quasi-Newton condition (2). Then the unique solution to

min{‖W−1/2(H+ − H̄+ − ζI)W−1/2‖F : H+ ∈M} s.t. H+y = %s

is H+ = H̄+ + ζVqV
T
q . (8)

As regards parameter ζ, the widely used choice is ζ = b/yTy which minimizes
|(H̄+ − ζI)y|. We can obtain slightly better results, e.g. by the choice

ζ = % b/(yT y + 4 ā). (9)

The following lemmas (see [7]) help us to obtain vector q in such a way that correc-
tions (7), (8) represent the Broyden class updates of H̄++ζI with parameter η.

Lemma 2.3. Let A be a symmetric matrix and denote a = yT Ay. Then every
update (7) with M = A, M+ = A+, q = s− αAy, a 6= 0, and αa 6= b represents the
Broyden class update with parameter η = (b2 − α2ab )/(b− αa)2.

Lemma 2.4. Let ζ > 0, κ = ζ yTy/b, η > −1/(1 + κ) and let matrix H̄+ satisfy
the quasi-Newton condition (2). Then correction (8) with q = s − σy, where σ =

b(1±
√

(1 + κ)/(1 + ηκ) )/yTy represents the Broyden class update of matrix H̄+ +ζI
with parameter η.

For q = s, i.e. η = 1, we get the BFGS update. Better results were obtained
with the formula, based on analogy with the shifted VM methods (see [6], [7]):

η = min [1, max [0 , 1 + (1/κ)(1 + 1/κ) (1.2 ζ−/(ζ− + ζ)− 1)]] . (10)

3. Correction formula

Corrections in Section 2 respect only the latest vectors sk, yk. Thus we can
again correct (without scaling) matrices Ȟk+1 = H̄k+1 + ζkVqk

V T
qk

, k > 0, obtained
from (8), using previous vectors si, yi, i = k−j, . . . , k−1, j ≤ k. Our experiments
indicate that the choice j = 1 brings the maximum improvement. This leads to the
formula H+ = ssT /b + Vs

[
s−sT

−/b− + V −
s

(
H̄+ + ζVqV

T
q

)
(V −

s )T
]
V T

s , where V −
s =

I − s−yT
−/b−, which is less sensitive to the choice of ζ than (8).
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4. Quadratic termination property

We give conditions for our family of limited-memory VM methods with exact line
searches to terminate on a quadratic function in at most N iterations (see [7]).

Theorem 4.1. Let m ∈ N be given and let Q(x) = 1
2
(x − x∗)T G(x − x∗), where

G is an N × N symmetric positive definite matrix. Suppose that ζk > 0, tk > 0,
k ≥ 0, and that for x0 ∈ RN iterations xk+1 = xk + sk are generated by the method
sk = −tkHkgk, gk = ∇Q(xk), k ≥ 0, with exact line searches, i.e. gT

k+1sk = 0, where

H0 = I, Hk+1 = Uk+1U
T
k+1 + ζkVqk

V T
qk

, k ≥ 0, (11)

N ×min(k, m) matrices Uk, k > 0, satisfy

U1 =
[
s0/

√
b0

]
, Uk+1U

T
k+1 = sks

T
k /bk + Vpk

UkU
T
k V T

pk
, 0 < k < m, (12)

Uk+1U
T
k+1 = sks

T
k /bk + Vpk

Uk

(
I − zkz

T
k /zT

k zk

)
UT

k V T
pk

, zk∈ Rm, k ≥ m, (13)

vectors pk, qk, k > 0, lie in range([Uk, sk]) and satisfy pT
k yk 6= 0, qT

k yk 6= 0, and
q0 = s0. Then there exists a number k̄ ≤ N with gk̄ = 0 and xk̄ = x∗.

5. Computational experiments

Our VM methods were tested, using the collection [5] of sparse, usually ill-
conditioned problems for large-scale nonlinear least squares (Test 15, 21 problems)
with N =500 and 1000, m=10, ζ given by (9) and the final precision ‖g(x?)‖∞≤10−5.

N = 500 N = 1000
ηp Corr-0 Corr-1 Corr-2 Corr-q Corr-0 Corr-1 Corr-2 Corr-q

0.0 2-76916 32504 22626 24016 3-99957 1-58904 44608 1-47204
0.1 3-99032 36058 21839 35756 3-98270 1-54494 42649 1-47483
0.2 2-97170 29488 23732 29310 3-89898 1-52368 36178 1-44115
0.3 1-79978 28232 18388 18913 3-80087 47524 33076 38030
0.4 1-70460 24686 18098 17673 3-78498 44069 32403 34437
0.5 60947 22532 17440 17181 3-88918 41558 32808 31874
0.6 56612 21240 17800 17164 2-76264 38805 31854 30784
0.7 52465 20289 17421 17021 2-72626 39860 32345 30802
0.8 51613 20623 17682 17076 1-69807 37501 32292 32499
0.9 50877 20548 18102 17424 2-69802 38641 32926 31385
1.0 49672 20500 18109 17913 1-68603 38510 33539 32456
1.1 52395 20994 18694 18470 1-65676 41284 35103 33053
1.2 51270 21444 19230 18372 1-68711 41332 35649 34028
1.5 1-51094 22808 20487 20060 2-66220 42906 36775 36323
2.0 1-50776 24318 21710 21639 2-66594 46139 40279 39199

BNS 18444 33131

Tab. 1: Comparison of various correction methods.
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Results of these experiments are given in two tables, where ηp = λ2 is the value
of parameter η of the Broyden class used to determine parameter p by (4) and ηq is
the value of this parameter used in Lemma 2.4 to determine parameter q = s− σy.

In Table 1 we compare the method described in [2] (BNS) with our new family,
using various values of ηp and the following correction methods: Corr-0 – the
adding of matrix ζI to H̄+, Corr-1 – correction (8), Corr-2 – correction from Section 3.
We use ηq = 1 (i.e. q = s) in columns Corr-0, Corr-1 and Corr-2 and ηq given by (10)
in columns Corr-q together with correction from Section 3. We present the total
numbers of function and also gradient evaluations (over all problems), preceded by
the minus-sign with the number of problems (if any occurred) which were not solved
successfully (the number of evaluations reached its limit 19000 evaluations).

ηp , N = 500 ηp , N = 1000
ηq 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 -343 -394 -967 -813 -538 32 141 1916 -912 -681 -876 -119 -744 116
0.1 211 -1154 -1028 -1100 -880 -585 -188 1052 -732 -974 -1647 -1043 -1215 320
0.2 2424 1902 1759 2088 1869 2268 2746 903 -187 -1669 -1708 -1219 -28 -567
0.3 -492 -1064 -1136 -992 -1036 -901 -939 793 -363 -975 -1731 -289 360 -484
0.4 -599 -1069 -718 -1160 -668 -934 -512 925 -1398 -1708 -1554 -1184 -498 -482
0.5 -493 -722 -727 -665 -487 -516 -399 -757 -644 -965 -1729 -1380 -926 -207
0.6 -251 -648 -798 -965 -750 -176 -371 1 -1396 -1291 -835 -1044 -767 190
0.7 -342 -764 -441 -320 -474 -749 -284 -195 -901 -356 -1019 -1482 -398 -454
0.8 -481 -706 -857 -579 -449 -497 -606 -770 -690 -1763 -886 -1009 -256 -977
0.9 -872 -759 -370 -559 -820 275 -135 8 -821 -939 -674 -696 -764 657
1.0 -346 -1004 -644 -1023 -762 -342 -335 -728 -323 -1277 -786 -839 -205 408
1.1 1939 1265 2326 791 2444 1958 1910 -773 115 183 48 -411 -619 736
1.2 1024 700 719 1452 967 1479 1982 269 155 -670 295 -649 -113 647
1.5 -596 -436 -912 -937 -770 -285 307 377 -181 -29 908 1323 441 1310
2.0 150 -396 85 259 336 222 684 2164 767 994 2035 2577 2869 3036
(10) -771 -1263 -1280 -1423 -1368 -1020 -531 1306 -1257 -2347 -2329 -632 -1746 -675

Tab. 2: Comparison with BNS for various ηp, ηq.

In Table 2 we give the differences np,q − nBNS, where np,q is the total number
of function and also gradient evaluations (over all problems) for selected values of
ηp and ηq with correction from Section 3 and nBNS is the number of evaluations for
method BNS (negative values indicate that our method is better than BNS). In the
last row, we present this difference for ηq given by (10).

For a better comparison with method BNS, we performed additional tests with
problems from the widely used CUTE collection [1] with various dimensions N
and the final precision ‖g(x?)‖∞ ≤ 10−6. In Table 3 we give the values of (np,q −
nBNS)/(np,q + nBNS) ∗ 100 for ηp = ηq = 0.5 (all the others are the same as above).

Our limited numerical experiments indicate that methods from our new family
can compete with the well-known BNS method.
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Problem N % Problem N % Problem N %
ARWHEAD 5000 =0 BDQRTIC 5000 16 BROWNAL 500 =0
BROYDN7D 2000 -3 BRYBND 5000 -2 CHAINWOO 1000 -0
COSINE 5000 22 CRAGGLVY 5000 =0 CURLY10 1000 -5
CURLY20 1000 -9 CURLY30 1000 -3 DIXMAANA 3000 4
DIXMAANB 3000 21 DIXMAANC 3000 10 DIXMAAND 3000 12
DIXMAANE 3000 23 DIXMAANF 3000 28 DIXMAANG 3000 30
DIXMAANH 3000 22 DIXMAANI 3000 50 DIXMAANJ 3000 38
DIXMAANK 3000 27 DIXMAANL 3000 41 DQRTIC 5000 59
EDENSCH 5000 -2 EG2 1000 =0 ENGVAL1 5000 7
EXTROSNB 5000 -3 FLETCBV2 1000 3 FLETCHCR 1000 11
FMINSRF2 1024 9 FMINSURF 1024 4 FREUROTH 5000 19
GENHUMPS 1000 9 GENROSE 1000 -4 LIARWHD 1000 2
MOREBV 5000 =0 MSQRTALS 529 3 NCB20 510 20
NCB20B 1010 12 NONCVXU2 1000 -19 NONCVXUN 1000 <−35
NONDIA 5000 -22 NONDQUAR 5000 64 PENALTY1 1000 -2
PENALTY3 100 -1 POWELLSG 5000 11 POWER 1000 64
QUARTC 5000 61 SCHMVETT 5000 -6 SINQUAD 5000 7
SPARSINE 1000 -2 SPARSQUR 1000 -2 SPMSRTLS 4999 -4
SROSENBR 5000 -10 TOINTGSS 5000 -8 TQUARTIC 5000 -9
VARDIM 1000 1 VAREIGVL 1000 -8 WOODS 4000 11

Tab. 3: Comparison with BNS for CUTE.
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