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Abstract

We describe a parallel implementation of the Balancing Domain Decomposition by
Constraints (BDDC) method enhanced by an adaptive construction of coarse problem.
The method is designed for numerically difficult problems, where standard choice of
continuity of arithmetic averages across faces and edges of subdomains fails to main-
tain the low condition number of the preconditioned system. Problems of elastic-
ity analysis of bodies consisting of different materials with rapidly changing stiffness
may represent one class of such challenging problems. The adaptive selection of con-
straints is shown to significantly increase the robustness of the method for this class
of problems. However, since the cost of the set-up of the preconditioner with adaptive
constraints is considerably larger than for the standard choices, computational feasi-
bility of the presented implementation is obtained only for large contrasts of material
coefficients.

1. Introduction

The Balancing Domain Decomposition by Constraints (BDDC) was developed by
Dohrmann [3] as a primal alternative to the Finite Element Tearing and Intercon-
necting - Dual, Primal (FETI-DP) by Farhat et al. [4]. Both methods use constraints
to impose equality of new coarse variables on substructure interfaces, such as values
at substructure corners or averages over edges and faces.

FETI-DP and BDDC are quite robust. However, the condition number may
deteriorate in certain situations of practical importance. Typical difficulties include
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rough interfaces of subdomains introduced by automatic partitioning of the mesh, or
problems with strong discontinuities of coefficients. A recent comprehensive study
of problems from the last group is presented in [10, 11]. It is shown there, that
while some configurations of jumps do not present problems for robustness of the
method, other configurations may lead to very poor performance. Such a troublesome
configuration is typically faced when the domain of considerably different coefficient
cuts through the faces of subdomains. For such complicated problems, a better
selection of constraints is desirable. Enriching the coarse space so that the iterations
run in a subspace devoid of ‘difficult’ modes has been a successful trick in earlier
iterative substructuring methods as well as multigrid methods. For BDDC and
FETI-DP, the adaptive enrichment was first proposed in [8]. In [9], generalization
to three-dimensional problems formulated in terms of BDDC operators was given.

Here, we build on top of our results in [9]. We focus on study of the behaviour of
the adaptive method for problems with jumps in coefficients. We consider a model
problem of nonlinear elasticity analysis of a cube containing rods of much larger
stiffness. Moreover, some of these rods are punching through faces of subdomains.
It is shown, that performance of the standard BDDC method deteriorates quite
fast with increasing contrast, that corresponds to the ratio of the coefficients. On
the other hand, adaptive constraints reduce the condition number considerably and
thus significantly improve the robustness of the method with respect to jumps in
coefficients. We study the cost of this approach in connection with our current
implementation of BDDC method. As the cost of computing these averages keeps
rather large, it is shown that regarding computational time, this advanced selection
of constraints is beneficial only for quite large contrasts compared to the standard
BDDC method, provided the latter converge. It is also demonstrated, that the
enhanced method is able to produce a solution also for such difficult cases, for which
standard BDDC does not converge at all.

2. Iterative substructuring

As the main purpose of this contribution is to report on experience with using of
adaptive BDDC rather than to provide a self contained description of the method,
iterative substructuring and BDDC are only briefly recalled in this and the next
section, respectively. Reader is kindly referred to [9] for details. We follow the
notation introduced in that paper throughout this contribution.

Consider an elliptic boundary value problem defined on a bounded domain Ω⊂R3

and discretized by conforming finite elements. The domain Ω is decomposed into N
nonoverlapping subdomains Ωi, i = 1, . . . N , also called substructures. The nodes
contained in more than one substructure are called the interface, denoted by Γ,
and Γi = Γ ∩ Ωi is the interface of substructure Ωi. The interface Γ may also be
classified as the union of three different types of nonoverlapping sets: faces, edges,
and corners. A face contains all nodes shared solely by one pair of subdomains,

254



an edge contains all nodes shared by same set of more than two subdomains, and
a corner is a degenerate edge with only one node.

We identify finite element functions with the vectors of their coefficients in the
standard finite element basis. These coefficients are also called variables or degrees
of freedom. We also identify linear operators with their matrices, in bases that will
be clear from the context.

The space of all finite element functions on subdomain Ωi is denoted by Wi, and
let

W = W1 × · · · ×WN . (1)

The space W is equipped with the standard Rn basis and the Euclidean inner product
〈w, v〉 = wTv. For a symmetric positive semidefinite matrix M , 〈u, v〉M = 〈Mu, v〉,
and ‖u‖M = 〈Mu, u〉1/2.

Let Ai : Wi → Wi be the local substructure stiffness matrix, obtained by the sub-
assembly of element matrices only in substructure Ωi. The matrices Ai are symmetric
positive semidefinite for an elliptic problem. We can write vectors and matrices in
the block form

w =

 w1
...
wN

 , w ∈ W, A =

A1

. . .

AN

 : W → W. (2)

Now let U ⊂ W be the space of all functions from W that are continuous across
substructure interfaces. We are interested in solving the problem

u ∈ U : 〈Au, v〉 = 〈f, v〉, ∀ v ∈ U , (3)

where f ∈ W is a given right-hand side. This problem corresponds to the standard
solution of an elliptic partial differential equation discretized by the finite element
method.

Remark 1. Let matrix R be the global-to-local mapping that restricts the global
vectors of degrees of freedom to local degrees of freedom on each Ωi. Then RTAR is
the global stiffness matrix, and (3) is equivalent to the assembled system

RTARu = RTf, (4)

where u is the coefficient vector satisfying u = Ru.

Denote by UI ⊂ W the space of all (vectors of) finite element functions with
nonzero values only in the interiors of substructures Ωi. Then UI ⊂ U , and the
space W is decomposed as the A-orthogonal direct sum

W = UI ⊕WH , UI ⊥A WH , (5)
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where the functions from WH are called discrete harmonic. The A-orthogonal pro-
jection onto UI is denoted by

P : W → UI . (6)

The space of all discrete harmonic functions from W that are continuous at interface
is denoted by Ŵ . We have

Ŵ = WH ∩ U = (I − P )U, (7)

and the A-orthogonal decomposition

U = UI ⊕ Ŵ , UI ⊥A Ŵ . (8)

The solution u ∈ U of problem (3) is split as

u = uI + w, uI ∈ UI , w ∈ Ŵ . (9)

Solving for the interior component uI ∈ UI decomposes into N independent Dirichlet
problems. We are interested in finding the discrete harmonic component w ∈ Ŵ ,
which is the solution of the reduced problem

w ∈ Ŵ : 〈Aw, z〉 = 〈f, z〉 , ∀z ∈ Ŵ . (10)

Problem (10) is solved by a Krylov subspace method, e.g. preconditioned conjugate
gradient method (PCG) in the case of symmetric positive definite matrix, and the
BDDC serves as a preconditioner for this method.

Let us briefly summarize the main steps of iterative substructuring, details may
be found e.g. in [14].

Algorithm 1. (Iterative substructuring). Problem (3) is solved indirectly by the
following steps:

1. Prepare reduced problem (10), i.e. factorize the matrices of local Dirichlet
problems on each subdomain. This formally corresponds to construction of
Schur complement and reduced right-hand side with respect to the interface Γ
except that the former is not constructed explicitly. This step is inherently
parallel.

2. Solve problem (10) by a Krylov subspace method.

3. Reconstruct the whole solution of problem (3) on each subdomain by solving the
local Dirichlet problems. This step is inherently parallel.
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3. Balancing domain decomposition by constraints

Let us further define an averaging operator

E : W → U, (11)

which is a projection from W onto U . Then the operator

(I − P )E : W → Ŵ (12)

is a projection from W onto Ŵ . Its evaluation consists of averaging between the
substructures, followed by the discrete harmonic extension from the substructure
boundaries. Note that

(I − (I − P )E)w = (I − P ) (I − E)w, ∀w ∈ WH , (13)

since Pw = 0 if w ∈ WH .
Proper weights (e.g. proportional to the substructure stiffness) in the averaging

given by E are important for the performance of BDDC (as well as other iterative
substructuring methods) independent of different stiffness of substructures [5, 7].
The scaled operator E takes care of the case of jumps of coefficients, when these are
constant on each subdomain. A detailed discussion of construction of the averaging
operator E can be found in [1].

The BDDC preconditioner is characterized by a selection of coarse degrees of
freedom, such as values at corners and averages over edges or faces. We are mainly
interested in construction of efficient weighted averages on faces of subdomains in the
rest of this paper. For selection of corners, we use the face-based algorithm described
in [12] and we use arithmetic averages on edges.

The action of the BDDC preconditioner is then defined in the space given by the
requirement that the coarse degrees of freedom on adjacent substructures coincide,
which is enforced in the algorithm by constraints. So, the design of the BDDC
preconditioner is characterized by a selection of an intermediate space W̃ satisfying
these constraints,

Ŵ ⊂ W̃ ⊂ WH . (14)

We formally define the space W̃ by enforcing the constraints on continuity weakly
by a matrix D, in which each row defines one constraint,

W̃ = {w ∈ WH : Dw = 0} . (15)

An application of BDDC preconditioner can be described as solving the original
variational problem in the space W̃ .

MBDDC : r 7→ u = (I − P )Ew, w ∈ W̃ : 〈Aw, z〉 = 〈r, (I − P )Ez〉 , ∀z ∈ W̃ ,
(16)

where r is the residual in the PCG method.
The following condition number bound for BDDC will play an essential role in

our design of the adaptive method.
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Theorem 1. ([7]). The eigenvalues of the preconditioned operator of the BDDC
method satisfy 1 ≤ λ ≤ ωBDDC, where

ωBDDC = sup
w∈W̃

‖(I − (I − P )E)w‖2A
‖w‖2A

. (17)

4. Adaptive selection of constraints

The condition number bound ωBDDC from Theorem 1. equals to the maximum
eigenvalue λ1 of the associated generalized eigenvalue problem

w ∈ W̃ : 〈(I − (I − P )E)w, (I − (I − P )E) z〉A = λ 〈w, z〉A , ∀z ∈ W̃ . (18)

Since the bilinear form on the left-hand side of (18) is symmetric positive semi-
definite and the bilinear form on the right-hand side is symmetric positive definite,
application of the Courant-Fisher-Weyl minimax principle (cf. e.g. [2, Theorem 5.2])
leads to the following theorem.

Theorem 2.. The generalized eigenvalue problem (18) has eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn ≥ 0. Denote the corresponding eigenvectors w`. Then, for any k =
1, . . . , n− 1, and any linear functionals L` on W , ` = 1, . . . , k,

max

{
‖(I − (I − P )E)w‖2A

‖w‖2A
: w ∈ W̃ , L` (w) = 0, ∀` = 1, . . . , k

}
≥ λk+1, (19)

with equality if

L` (w) = 〈(I − (I − P )E)w`, (I − (I − P )E)w〉A . (20)

It follows that the optimal decrease of the condition number bound (17) can be
achieved by adding the rows dT` defined by dT` w = L` (w) to the constraint matrix D

in the definition of W̃ (15). However, solving the global eigenvalue problem (18)
would be prohibitively expensive. For this reason, we replace (18) by a collection of
local problems, each defined by considering only two adjacent subdomains Ωi and Ωj

at a time. Subdomains are considered adjacent if they share an edge in 2D, or a face
in 3D. All quantities associated with such pair will be denoted by the subscript ij.
Using also (13), the local generalized eigenvalue problem (18) becomes

wij ∈ W̃ij :

〈(I − Pij) (I − Eij)wij, (I − Pij) (I − Eij) zij〉Aij
= λ 〈wij, zij〉Aij

,∀zij ∈ W̃ij.
(21)

The space W̃ij is constructed with respect to an initial set of constraints on continuity
between subdomains i and j. The starting point used in this paper is continuity at
corners and of arithmetic averages on edges. We assume that initial constraints
are already sufficient to prevent relative rigid body motions of any pair of adjacent
substructures. The maximal eigenvalue of (21) is denoted ωij = λij,1.

258



Definition 1. (Condition number indicator). The heuristic condition number indi-
cator ω̃ is defined as

ω̃ = max {ωij : Ωi and Ωj are adjacent} . (22)

Considering two adjacent subdomains Ωi and Ωj only, we construct the added
constraints L` (w) = 0 from (20) as

〈(I − Pij) (I − Eij)wij,`, (I − Pij) (I − Eij)w〉Aij
= 0, ∀` = 1, . . . , kij, (23)

where wij,` are the eigenvectors corresponding to the kij largest eigenvalues from (21).
These constraints then form additional rows of matrix D.

Algorithm 2. (Adaptive BDDC). Find the smallest kij for each pair of adjacent
substructures Ωi and Ωj to guarantee that λij,kij+1 ≤ τ , where τ is a given tolerance,

and add the constraints (23) to the definition of W̃ .

Remark 2. The adaptive BDDC method assures that the condition number indicator
ω̃ ≤ τ with the minimum number of added constraints. However, our theory does
not cover the correspondence between the indicator ω̃ and actual condition number of
the preconditioned operator ωBDDC (due to the localization of the global eigenvalue
problem). In [13], it has been shown on a number of experiments that the indicator
agrees very well with the global eigenvalue. It is a subsequent goal also of this paper
to study their relation on experiments.

5. Parallel implementation

In this section, we describe some details of the approach to the parallel implemen-
tation of the adaptive selection of constraints, as it has been recently implemented
as an optional feature of our publicly available solver based on BDDC method, the
BDDCML1 package. This package is written in Fortran 95 programming language
and parallelized using Message Passing Interface (MPI) library.

As was described in the previous section, the main additional work compared to
the standard BDDC method comprises solving a large number of generalized eigen-
problems (21), one for each pair of subdomains sharing a face. From the point of view
of parallel computing, this immediately presents a complication, because the layout
of pairs can be quite different from the natural layout of parallel domain decompo-
sition computation based on distribution by subdomains. This issue is addressed in
the implementation by a separate assignment of eigenproblems to processors, which
is independent of distribution of subdomains.

Note further, that computing the energy scalar products on both sides of prob-
lem (21) corresponds (note the space of discrete harmonic functions) to computing
with Schur complement formed by assembling the Schur complements of subdo-
mains i and j, the Sij. The responsibility of computing with these two components

1http://www.math.cas.cz/∼sistek/software/bddcml.html
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Figure 1: An example of a possible parallel layout of local eigenproblems with com-
munication pattern marked for two of them.

is clearly on the processes which hold subdomains i and j. However, not only that
we do not want to send these dense matrices to the process responsible for the
ij–eigenproblem via network, but these Schur complements are not available explic-
itly. Instead, only multiplication of a vector by them is prepared in the form of
local Dirichlet problems on subdomains i and j. This in turn implies that we need
a method for solving generalized eigenproblems which requires only applications of
the operators on both the left- and right- hand sides on vectors. A recent algorithm
that meets these requirement is the LOBPCG method [6], and its C implementation
is available in the BLOPEX package.

Thus, the process responsible for computing a local ij–eigenproblem sends parts
of the vector for multiplication to processes responsible for subdomains i and j,
which formally multiply these vectors by Si and Sj by solving respective Dirichlet
problems, and then send the results back to initial process. This scheme may lead
to quite complicated communication pattern for general situations (see Figure 1 for
a rather simple example). To somewhat simplify this pattern, the eigenproblems are
solved in turns. In each turn, at most as many eigenproblems are solved as is the
number of available processors. In the beginning of each turn, a new communication
pattern is determined, so that each process knows if it is responsible for an eigen-
value computation and for which other processes it will compute the applications
of local Schur complements. Then, the iterative solution is started. Although some
eigenproblems may require lower number of iterations than others, no other eigen-
problem is solved until all problems in the turn are finished, after which a new group
of eigenproblems is set-up and processed.

The purpose of Adaptive BDDC method is enhancing the robustness of BDDC for
numerically complicated problems. However, it has turned out that for these prob-
lems, convergence of LOBPCG may be very slow without preconditioning. Thus,
we apply a preconditioner for the LOBPCG method, which is nothing else than
the BDDC preconditioner localized to the ij–pair. This preconditioner is build on top
of existing components of BDDC on each subdomain and follows the same commu-
nication pattern as the multiplication by local Schur complements described above,
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thus does not present much overhead. This strategy was suggested and studied in [13]
on number of experiments.

The LOBPCG method computes only selected number of dominant eigenval-
ues and corresponding eigenvectors. As the computational cost quickly grows with
adding these vectors, we have limited their value to 10 or 15 in our computations.
Maximum number of LOBPCG iterations was limited to 15 and tolerance on residual
set to 10−9. See [13] for details of generation of adaptive constraints.

The BDDCML solver employs the serial MUMPS solver for factorizations of
both subdomain problems (corresponding to Dirichlet problem and the saddle-point
Neumann problem, see e.g. [3]). A parallel instance of the MUMPS solver is then
applied to solution of the explicit global coarse problem.

6. Numerical results

To study robustness of the adaptive BDDC method, we have selected a model
problem of elasticity analysis of a unit cube made of soft material with Young modu-
lus E1 which contains nine stiff rods with Young modulus E2. We study the behaviour
of the BDDC method with respect to value of ‘contrast’ of coefficients, which is de-
fined here as the ratio E2/E1. In our test, we keep E2 = 2.1 · 1011 fixed and compute
E1 based on the desired contrast.

The nonlinear elasticity model with St. Venant–Kirchhoff constitutive law is used.
The considered loading of the problem was small enough so that a single nonlinear
iteration was sufficient to converge to the final solution. A linearized problem (of
one nonlinear iteration) is symmetric positive definite and is passed to the BDDCML
solver.

The cube if fixed at one face orthogonal to the stiff rods and loaded by its own
weight. The domain is discretized by 323, 643, and 1283 tri-linear cubic elements.
Regular divisions into 23 and 43 subdomains are used. This leads to the following
four tested cases: (i) 8 subdomains, H/h = 16, (ii) 8 subdomains, H/h = 32,
(iii) 64 subdomains, H/h = 16, (iv) 64 subdomains, H/h = 32. Due to the set-up,
four stiff rods are punching through faces, which creates one of the least favourable
situations from the point of view of the BDDC or FETI-DP method [11]. Other four
stiff rods are attached to faces and one rod is placed along edges of subdomains in
the centre of the cube.

Figure 2 shows a division of the cube into 8 subdomains and an example of a de-
formed shape of the cube with contrast 10. Presented computations were performed
on the SGI Altix UV machine in the supercomputing centre in Prague. One core of
a CPU was used per subdomain.

For all four tested configurations, we investigate dependence of convergence on
the contrast of coefficients E2/E1. Dependence of condition number is presented in
Figure 3, dependence of number of iterations is presented in Figure 4, and finally
computational times are presented in Figure 5. Each of the cases was computed
using standard BDDC with arithmetic averages on all edges and faces, and adaptive

261



Figure 2: Example of division of the cube into 8 subdomains (left) and (magnified)
deformed shape for contrast E2/E1 = 10 coloured by magnitude of displacement
(right).

BDDC with arithmetic averages on edges. Maximum number of adaptive constraints
on a face was set to 10 and 15 and tolerance τ in Algorithm 2. was set to 1.5.

The condition numbers reported in Fig. 3 are estimates from the Lanczos se-
quence in conjugate gradients. We can see how fast the condition number of the
standard BDDC method grows with contrast–the growth is asymptotically linear
with unit slope. The adaptive approach improves the condition number significantly.
However the tolerance applies only for contrast around 103 (10 constraints limit) or
104 (15 constraints limit). Around this point, the adaptive algorithm saturates the
limit of number of constraints on a face for all faces and, consequently, is unable
to keep the condition number low. Until this point, the curves have a plateau, but
tend to grow quickly when reaching the ‘saturation point’. It is interesting to no-
tice that while the indicator of condition number ω̃ (see (22)) approximately follows
the estimated resulting condition number for case of eight subdomains, these curves
departure for the case of 64 subdomains, the indicator being too pessimistic for
10 constraints, and too optimistic for 15. This effect is probably related to different
positioning of the nine stiff rods with respect to the interface.

Similar conclusions can be done based on Fig. 4 with numbers of iterations. Adap-
tive method is able to keep these numbers independent up to the ‘saturation point’,
from which a (delayed) growth begins, being milder for the case of 64 subdomains.

Perhaps the most interesting graphs are those for computational time presented
in Fig. 5. Here we can see the typical behaviour of the standard BDDC method
on this type of problems - while having a very cheap set-up of the preconditioner,
the overall time is determined by the time spent in PCG iterations and grows hand
in hand with this number. It is also worth noting, that we reached stagnation of
PCG for contrast larger than 108 and 105 for 8 and 64 subdomains, respectively.
The situations looks very different for the adaptive BDDC: we pay a large fixed
cost when solving the local eigenproblems as part of the set-up. As the number of
iterations in adaptive BDDC is kept quite low compared to the standard BDDC,
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Figure 3: Estimated condition number with respect to contrast of coefficients;
323 elements, H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 ele-
ments, H/h = 32 (bottom left); 1283 elements, H/h = 32 (bottom right); ‘av.’ =
averages, ‘10 eigv.’ = at most 10 eigenvectors are used per face, ‘15 eigv.’ = at most
15 eigenvectors are used per face, ‘indicator for adapt.’ stands for the predicted
condition number based on adaptivity indicator ω̃ from (22).

the overall time spent by adaptive BDDC is clearly dominated by the set-up phase,
regardless of the contrast. In fact, the cost slightly decreases for increasing contrast
which is probably related to faster convergence of LOBPCG method. We can also
see, that for 15 constraints, the set-up is yet significantly more expensive than for
10 constraints, without a rewarding improvement of number of iterations. We can
conclude a general statement, that while adaptive BDDC is far too costly for simple
problems at lower contrast, there is a break-point, from which it becomes faster
than the standard BDDC method. This break-point is around contrast 105–106 in
presented computations. It should be also emphasised, that for higher contrasts, we
were only able to obtain results by adaptive BDDC.

7. Conclusion

We have presented a description of a parallel implementation of the Adaptive
BDDC method and a study of its robustness with respect to jumps in material
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Figure 4: Number of iterations with respect to contrast of coefficients; 323 elements,
H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 elements, H/h = 32
(bottom left); 1283 elements, H/h = 32 (bottom right).

parameters. The parallel implementation faces some difficulties related mainly to
the fact, that parallel layout of the faces among subdomains generally differs from
the natural layout in domain decomposition with subdomains distributed among
processors. This fact complicates an efficient parallel solution of local generalized
eigenproblems used for construction of weighted averages as constraints in BDDC,
and this part typically dominates the whole computational time of the method.

Nevertheless, despite its high cost, it has been shown on a model problem, that
the method significantly improves robustness of the BDDC method, allowing for
solution of problems with much larger contrasts than are manageable by the standard
BDDC with arithmetic averages. For all tested problems, there has been a limiting
contrast, from which computing by standard BDDC was either not possible, or was
more expensive than computing by adaptive BDDC.

It has been shown, that while application of the adaptive BDDC to problems with
low contrasts would be very inefficient and standard BDDC should be preferred, the
method offers an interesting and competitive approach to handle problems with very
large contrasts of coefficients.
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Figure 5: Computational time with respect to contrast of coefficients; 323 elements,
H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 elements, H/h = 32
(bottom left); 1283 elements, H/h = 32 (bottom right); ‘ad. av.’ = adaptive aver-
ages, ‘arith. av.’ = arithmetic averages, ‘10 eigv.’ = at most 10 eigenvectors are
used per face, ‘15 eigv.’ = at most 15 eigenvectors are used per face.
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