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Abstract

We study a numerical method for the diffusion of an age-structured population
in a spatial environment. We extend the method proposed in [2] for linear diffusion
problem, to the nonlinear case, where the diffusion coefficients depend on the total
population. We integrate separately the age and time variables by finite differences
and we discretize the space variable by finite elements. We provide stability and
convergence results and we illustrate our approach with some numerical result.

1. Introduction

The mathematical problem describing the spatial dispersal of an age-structured
population in a region Ω consists in a reaction-diffusion equation for the population
density, together with a given initial condition, an integral condition at age a = 0,
giving the newborns rate, and boundary conditions on ∂Ω depending on specific
features of the population and of the environment. An almost complete review
of the results concerning existence, uniqueness and asymptotic behaviour of the
solution of age-structured diffusion models can be found in the book by A. Okubo
and S. A. Levin ([10], Sec.10.8).

The earliest age-structured models did not include a spatial distribution of the
population density (see e.g. [5]). Under the hypothesis of space homogeneity, the
problem reduces to a pure first order hyperbolic partial differential equation, which
was naturally solved by integration along characteristics in age and time (see for
instance [6, 7, 9]). This integration method entails the use of the same discretization
step in age and time. However, the presence of different time scales in the dynamics
(which is typically the case when space is involved) suggests the use of different
steps in the discretization of time and age. This was the approach followed by
A. de Roos in [3], and B. Ayati et al. in [1], where an approximation space in age
is built by discontinuous piecewise polynomials moving along characteristic lines.
In [2] a new approach was introduced for the linear diffusion case, where the age and
time variables are decoupled and discretized separately by finite differences, while

88



the space variable is discretized by finite elements. The problem is advanced in time
by semi-implicit scheme, while a parabolic problem in age and space is solved within
the single time step.

In plenty of application of practical interest, the diffusion coefficient depends on
the total population itself, and the associated problem is nonlinear (see, e.g. [8]). In
this paper we present the extension of the method introduced in [2] to the case of
nonlinear diffusion coefficients.

The paper is organized as follows. In Section 2 we describe the nonlinear model
we are dealing with. In Sections 3 through 5 we present the finite dimensional
approximation, and in Section 6 we outline the algorithmic aspects of the procedure.
In Section 7 we state the stability and convergence analysis of the method, and in
Section 8 we present some numerical results to illustrate our method.

2. Setting of the problem

We consider an age-structured population diffusing in a bounded spatial domain
Ω ⊂ Rd, d = 1, 2, 3, with boundary ∂Ω ∈ C2. We denote by ρ(t, a, x) the density
per unit space and age of the population at time t, where a ∈ [0, a†] and x ∈ Ω. The
population at time t in a given location x ∈ Ω, and the total population at time t
are thus given by

p(t, x) =

∫ a†

0

ρ(t, a, x) da, P (t) =

∫
Ω

p(t, x) dx. (1)

We assume the diffusion process to be density- and age-driven, namely the diffusion
coefficient in (t, x) depends on the population p(t, x) at the corresponding location
in space and time, and on the age of the individuals.

Given a final time T > 0, the population density ρ(t, a, x) ∈ C(0, T ;L2

(0, a†;H
1(Ω))) satisfies the nonlinear model problem

ρt + ρa − div (k(p(t, x), a)∇ρ) = f(t, x)− µ(a) ρ in (0, T )× (0, a†)× Ω ,

ρ(0, a, x) = ρ0(a, x) in (0, a†)× Ω ,

ρ(t, 0, x) =

∫ a†

0

β(a) ρ(t, a, x) da in (0, T )× Ω ,

k(p(t, x))n · ∇p = 0 on (0, T )× (0, a†)× ∂Ω ,

(2)

where p(t, x) is given in (1), the operators div(·) and∇(·) are the standard divergence
and gradient operators in Ω, and ~n is the unit vector normal to ∂Ω pointing outwards.

The coefficients µ(a) and β(a) represent the age-specific mortality and the age-
specific fertility, respectively, which are supposed to be non-negative functions of age
only. In (2), ρ0 is the given non-negative initial age distribution, while the integral
condition is the so-called renewal condition, providing the newborns rate. Finally, we
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consider an isolated environment by choosing a zero-flux boundary condition, which
reflects the absence of both immigration and emigration, but other boundary con-
ditions can be considered as well (for instance, an homogeneous Dirichlet boundary
condition would model an hostile habitat at the boundary of Ω). We refer to [10] for
issues concerning existence and uniqueness of a nonnegative solution of (2).

We impose standard conditions on the diffusion coefficient to ensure ellipticity of
the associated bilinear form.

k ∈ L∞(R+ × (0, a†)), 0 < k0 ≤ k(p, a) ≤ k+, (3)

and we assume that the age-specific fertility β(·) is measurable and essentialy bounded,
namely there exists a constant β+ such that

0 ≤ β(a) ≤ β+. (4)

Finally, we assume the age-specific mortality µ(·) to be a measurable function, sat-
isfying ∫ a†

0

µ(σ)dσ = +∞, (5)

in order to guarantee that the probability for an individual to survive at age a, which
is defined as

π(a) = exp

(
−
∫ a

0

µ(σ)dσ

)
, (6)

vanishes at the maximum age a†. The numerical issues arising from the unbounded
coefficient µ(a) can be avoided by performing a standard change of variable.

We let ρ(t, a, x) = π(a)u(t, a, x), and we reduce ourselves to the problem of finding
u(t, a, x) ∈ C(0, T ;L2(0, a†;H

1(Ω))) such that

ut + ua − div (k(p(t, x), a)∇u) = f(t, x) in (0, T )× (0, a†)× Ω ,

p(t, x) =

∫ a†

0

π(a)u(t, a, x) da in (0, T )× Ω ,

u(0, a, x) = u0(a, x) in (0, a†)× Ω

u(t, 0, x) =

∫ a†

0

m(a)u(t, a, x) da in (0, T )× Ω ,

k(a, x)n · ∇u = 0 on (0, T )× (0, a†)× ∂Ω ,

(7)

where now u0(a, x) = ρ0(a,x)
π(a)

, while m(a) = β(a)
π(a)

is the so called maternity function.

Notice that m ∈ L∞(0, a) as for all a ∈ (0, a) we have m(a) ≤ β+.
We focus here on the numerical treatment of the problem and we assume through-

out the paper existence and uniqueness of smooth, nonnegative solutions [10].

3. Time discretization

Let tn = n∆t (n = 0, 1, . . . , Nt) be a partition of the interval (0, T ) into Nt subin-
tervals (for simplicity we consider an uniform discretization, adaptivity in time being
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beyond the scope of this paper). We denote with un(a, x) and pn(x) the approxi-
mations of u(tn, a, x) and p(tn, x), respectively, and we advance in time equation (7)
by means of a semi-implicit scheme, where both the initial condition in age and the
diffusion coefficient are computed at the previous time step. Moving from tn−1 to tn

we solve the following parabolic problem in age and space.

Find un ∈ L2(0, a†;H
1(Ω)) such that for all v ∈ H1(Ω)

d

da
〈un, v〉+ A(pn−1; a; un, v) +

1

∆t
(un, v) = (f, v) +

1

∆t
(un−1, v)

un(0, x) =

∫ a†

0

m(a)un−1(a, x) da, pn(x) =

∫ a†

0

π(a)un(a, x) da,

(8)

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and H−1(Ω), and where
A(pn−1; a; ·, ·) is the bilinear form given by

A(pn−1; a; w, v) =

∫
Ω

k(pn−1(x), a)∇w · ∇v dx.

By standard coercivity arguments one can prove existence and uniqueness for the
solution of (8).

Remark 3.1 The coercivity and the continuity of the bilinear form A(pn−1; a; ·, ·) +
1

∆t
(·, ·) are straightforward. Moreover the fact that the maternity function m ∈

L∞(0, a†) guarantees that un(0, x) ∈ L2(Ω) as long as un−1 ∈ L2([0, a†]× Ω).

4. Space discretization

We discretize in space equation (8) by means of finite elements (see [11] for
an introduction to finite element methods). Let then Ω =

⋃N
j=1Kj, where each

Kj = TKj
(E) is an element of the triangulation, E is the reference simplex and TKj

is an invertible affine map. The associated finite element space is then

Vh =
{
ϕh ∈ C0(Ω) |ϕh|Kj

◦ TKj
∈ Pk(E)

}
,

where Pk(E) is the space of polynomials of degree at most k on E. A semi-discrete
problem in space is then obtained by applying a Galerkin procedure to (8) and
choosing a finite element basis for Vh. Letting {ϕj}j=1,..,Nh

be the nodal basis of the
finite element space Vh, the semi-discrete solution unh(a, x) is given by

unh(a, x) =

Nh∑
j=1

unj (a)ϕj(x).
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By denoting with unh(a) = (un1 (a), . . . , unNh
(a))T , since the finite element basis func-

tions depend only on space, we can rewrite problem (8) as

M
dunh
da

+A(n−1)(a)unh +
1

∆t
Munh = fn +

1

∆t
Mun−1

h ,

unh(0) =

∫ a†

0

m(a)un−1
h (a) da, pnh =

∫ a†

0

π(a)unh(a) da,

(9)

where M is the mass matrix (Mij =
∫

Ω
ϕjϕi dx) and A(n−1) is the stiffness matrix

associated to the bilinear form A(pn−1
h ; a; ·, ·), (

[
A(n−1)(a)

]
ij

= A(pn−1
h ; a;ϕj, ϕi)).

5. Age discretization

We advance in age the differential problem in (9) by means of the θ-method
(see [11]). Let then am = m∆a (m = 0, 1, . . . , Na) be a partition of the age inter-
val [0, a†] into Na subintervals of uniform amplitude. For j = 1, .., Nh, we let un,mj
denote the approximation of unj (am), and the approximation to u(tn, am, x) is then
given by

un,mh (x) =

Nh∑
j=1

un,mj ϕj(x).

We denote by un,mh = (un,m1 , . . . , un,mNh
)T the unknown vector at time tn and age am,

and we advance from age level am to am+1 by the θ-method, which reads, for 0 ≤
θ ≤ 1,

M
un,mh − un,m−1

h

∆a
+ θ

(
A(n−1)
m un,mh +

1

∆t
Mun,mh

)
+

(1− θ)
(
A(n−1)
m−1 un,m−1

h +
1

∆t
Mun,m−1

h

)
=

θ

(
fn,m +

1

∆t
Mun−1,m

h

)
+ (1− θ)

(
fn,m−1 +

1

∆t
Mun−1,m−1

h

)
,

(10)

where A(n−1)
m = A(n−1)(am). If θ = 0 we have the Forward Euler method (fully

explicit in age), if θ = 1 we have the Backward Euler method (fully implicit in age),
while θ = 1/2 corresponds to the Crank-Nicholson method [11].

Finally, the values of un,0h and pnh will be computed by replacing the integrals
in (9) with suitable quadrature rules. In the numerical result section, we us in both
cases a second order Simpson quadrature rule over two adjacent intervals.

6. Stability and convergence

Denoting by Un
h = (un,0h ,un,1h , . . . ,un,Na

h ) the approximate solution at time t = tn,
we define the discrete L1(0, a†;L

2(Ω)) norm as

‖Un
h‖L1(0,a†;L2(Ω)) =

Na∑
m=0

∆a ‖un,mh ‖0 ,
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where ‖ · ‖0 is the standard L2(Ω) norm. Under some mild assumption on the exact
solution, the following stability and convergence results for the proposed scheme
(with θ = 1) hold.

Proposition 6.1 (Stability) For any n = 1, . . . , Nt, the following estimate holds:

‖Un
h‖L1(0,a†;L2(Ω)) ≤

(
1 + ea†β

2
+T
) ∥∥U0

h

∥∥
L1(0,a†;L2(Ω))

,

where β+ is the one in (4). �

Proposition 6.2 (Convergence) Let Th be a regular family of triangulations on Ω.
Assume that the solution u(t, a, x) of the continuous problem is such that, for all

t ∈ (0, T ),
∂u

∂a
(t, ·, ·),

∂u

∂t
(t, ·, ·) ∈ L1(0, a†;H

1(Ω)), and
∂2u

∂a2
(t, ·, ·), ∂

2u

∂t2
(t, ·, ·) ∈

L1(0, a†;L
2(Ω)). Then, using linear finite elements, the following estimate holds

‖u(tn, ·, ·)−Un
h‖L1(0,a†;L2(Ω)) ≤

∥∥U0
h − Πhu0

∥∥
L1(0,a†;L2(Ω))

+ Ch ‖u(tn, ·, ·)‖L1(0,a†;H1(Ω)) + Ch

∫ tn

0

∥∥∥∥∂u∂t (t, ·, ·)
∥∥∥∥
L1(0,a†;H1(Ω))

dt

+ Ch
n∑
p=0

∆t

∥∥∥∥∂u∂a (tp, ·, ·)
∥∥∥∥
L1(0,a†;H1(Ω))

+ C ∆t

∫ tn

0

∥∥∥∥∂2u

∂t2
(t, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

dt

+ C ∆a
n∑
p=0

∆t

∥∥∥∥∂2u

∂a2
(tp, ·, ·)

∥∥∥∥
L1(0,a†;L2(Ω))

,

(11)
where the constant C > 0 is independent of h, ∆a, and ∆t. �

Proofs of the above propositions follow from a generalization of the results in [2],
and will be detailed in a forthcoming paper [4].

7. Algorithm

Given u0,m
h (m = 1, . . . , Na), and p0

h, for n = 1, . . . , Nt:

1. Compute the initial value un,0h from the previous time step via a Simpson
quadrature rule over two adjacent age intervals

un,0h =

Na/2∑
l=1

∆a

6

[
m(a2(l−1))u

n−1,2(l−1)
h + 4m(a2l−1)un−1,2l−1

h +m(a2l)un−1,2l
h

]
.

2. For m = 1, . . . , Na
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Figure 1: Maternity function (left) and age-space initial profile (right).

(a) Assemble the stiffness matrix A(n)
m from the population at previous time

step [
A(n)
m

]
ij

= A(pn−1
h : am;ϕj, ϕi) ,

(b) solve[
(∆t+ θ∆a)M + θ∆t∆aA(n)

m

]
un,mh

= θ∆aM un−1,m
h +

[
(∆t− (1− θ)∆a)M − (1− θ)∆t∆aA(n)

m−1

]
un,m−1
h

+ (1− θ)∆aM un−1,m−1
h + ∆t∆a

[
θ fn,m + (1− θ) fn,m−1

]
.

3. Update the total population pnh via a Simpson quadrature rule over two adja-
cent age intervals

pnh =

Na/2∑
l=1

∆a

6

[
π(a2(l−1))u

n,2(l−1)
h + 4 π(a2l−1)un,2l−1

h +m(a2l)un,2lh

]
.

8. Numerical results

We present in this section some numerical results to show the effectivity of the
method. The spatial domain is Ω = (0, 1), the age interval is [0, 100], and we choose
as maximal time T = 10. The computational domain is discretized by a uniform
mesh in space, time and age, and we choose θ = 1. The numerical simulations are
run on a self developed code in Matlab R© 7.8.

We consider a non-symmetric initial distribution of population (with respect to
both space and age) given by

u0(x, a) = e
−
(

(a−30)2

200
+100(x−0.4)2

)
,
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Figure 2: Diffusion coefficients: kp(p) (left) and ka(a) (right).

and we choose the mortality and fertility function as

µ(a) =
1

a† − a
, β(a) =


0 if a ≤ a1

β(a− a1)α−1e−
(a−a1)

ϑ

ϑαΓ(α)
if a1 < a < a2

0 if a ≥ a2,

where we set a1 = 17, a2 = 70, β = 7, α = 5, and ϑ = 3. We plot in Figure 1 the
resulting maternity function and the initial profile of the problem.

We consider a diffusion coefficient k(p(t, x), a) = kp(p)× ka(a), where we assume
kp(p) to be a monotonic function of the total population p(t, x). The rationale behind
this choice is that the population is more keen to move in areas where a lower level
of individuals is present, but a different behavior can be easily implemented. We
choose in the tests

kp(p) = 1− 1

1 + exp
(
−
(
p
5
− 5
)) ka(a) = 0.5 + 0.5× exp

(
−(a− 30)2

a

)
,

that we plot in Figure 2. With this choice of ka(a), youngster and old individuals
are less mobile.
We investigate numerically the spatial convergence of the method. We consider
diffusion coefficients depending on both population and age (k = kp × ka), and
population only (k = kp): we plot in Figure 3 the corresponding diffusion coefficients

in space and age at the initial time t = 0. We analyze the relative error
‖u(tn,·,·)−Un

h ‖
‖u(tn,·,·)‖

in the discrete L1(0, a†;L
2(Ω)) norm, with respect to a reference solution computed

using a very fine grid in both age and time with ∆a = 2∆t = 0.1 and h = 1/1000.
In Figure 4 we show the work precision in h, for a uniform grid in age and time with
∆a = 2∆t = 0.2 for both the case of a density dependent diffusion (left) and density
and age dependent diffusion (right). Convergence appears to be robust with respect
to the diffusion coefficients. In Figure 5 we plot, for k = kp × ka, the age profile at
x = 0.4 for different times, and the age-space contours at time T = 5.
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Figure 3: Diffusion coefficients at time t = 0. Left: k = kp × ka. Right: k = kp.
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9. Conclusions

We proposed a Galerkin type method for the numerical approximation of a density
dependent diffusion dynamics of an age-structured population. The method is based
on a finite elements discretization in space, on a semi-implicit discretization in time,
and on the θ-method in age. The separate discretization of time and age, naturally
allows for separate adaptivity, which can be necessary when dealing with practical
ecological problems. Numerical results showed the effectiveness of the method, that
will be analyzed in a more comprehensive way in a forthcoming paper [4].
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