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Abstract

In this article, the attention is paid to Fourier, wavelet and Radon transforms.
A short description of them is given. Their application in signal processing especially
for repairing sound and reconstructing image is outlined together with several simple
examples.

1. Introduction

In this survey paper we will deal with such integral transforms that are used in the
image or sound processing. The transforms, we will speak about, were defined already
long time ago. Joseph Fourier approximated 2π periodic functions by trigonometric
series in 1778. The first wavelet basis – Haar wavelets – was proposed as an example
of a countable orthonormal system in L2(R) in 1909. Johann Radon described the
reconstruction of a function from its line integral values in his article in 1917. The
entry of computers amplified the importance of these transforms in the second half of
the past century, because the above named transforms became the theoretical base
of algorithms that are used in signal processing or in computer tomography. In such
a way they give possibilities to remove noise from the sound or visual recordings, to
compress the image data before their transmission, to find the trend in given time
series or to identify malignant tumors in a human body.

The outline of this article is as follows. Some basic information about the defini-
tion and construction of the Fourier transform together with examples is presented
in Section 2. The wavelet transform is described and applied on the given data in
Section 3. The Radon transform and its usage in medicine is discussed in Section 4.

2. Fourier transform

For f ∈ L1(R), the relation

F (ω) =
∫ ∞
−∞

f(x)e2πiωx dx, ω ∈ R, (1)
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represents the continuous Fourier transform (FT) of a function f. The integral trans-
form

F−1(x) =
∫ ∞
−∞

F (ω)e−2πiωx dω, x ∈ R, (2)

is the inverse Fourier transform.
The discrete analogies of the relations (1) and (2) are suitable for computer imple-

mentation. If sampled values f0, . . . , fN−1 of a function f are given, the components
of the discrete Fourier transform (DFT) are defined by

Fk =
N−1∑
j=0

fje
2πijk
N , k = 0, . . . , N − 1, (3)

and the components of the discrete inverse Fourier transform (DIFT)

fj =
1

N

N−1∑
k=0

Fke
−2πijk
N , j = 0, . . . , N − 1. (4)

The number of operations that are used for calculation of the DFT by relation (3)
has the order O(N2). But there is an effective numerical algorithm of fast Fourier
tramsform (FFT) that allows to reduce the number of used operations. This al-
gorithm is based on the properties of exponential functions and on an ingenious
arrangement of computation that is given in the next lemma (see [5]).

Lemma 1 (Danielson-Lanczos, 1942) Let N be even. Then

Fk = F 0
k +W kF 1

k , k = 0, . . . , N − 1, (5)

where F 0
k =

∑N
2
−1

j=0 W jkf2j, F
1
k =

∑N
2
−1

j=0 W jkf2j+1, W = e
2πi
N and W jk = e

2πijk
N .

Lemma 1 can be applied recurrentlyM times ifN = 2M . The FFT in the following
way reduces the order of the number of operations that are necessary to compute the
Fourier coefficients from O(N2) to O(N logN). Note that the schematic expression
of the computation that is generated by relation (5) looks like a butterfly. This is
the reason, why the name “butterfly” is used for one loop of the FFT process.

Example 1 The function f(x) = sin 1500x is impaired by random noise. The
DFT for N = 200 values is computed and expressed in Figure 2.
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Figure 1: The original signal
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Figure 2: The signal after the FT
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The signal is a quantity that depends on one or more variables. For example,
a sound is a one dimensional signal that depends on time and a digital photograph
is two dimensional signal over a matrix of pixels. While a signal gives information
about variability with respect to independent variables, its FT gives information
about frequencies that occur in the given signal. The knowledge of the frequency
spectrum of a signal is important, because it helps to analyze this signal. The low
frequencies are important for identification of the signal. The higher frequencies
often represent the noise.

In the signal processing, the DFT is applied on the given data at first. This way
the time depending function changes on the frequency depending function. Then,
the received Fourier coeficients can be modified according to monitored aims. For
instance, the noise can be removed from the given signal if the Fourier coefficients
with frequency higher than the given treshold λ are put to zero. A signal is com-
primed when the majority of Fourier coefficients is neglected. The DIFT is applied
on the rest of the Fourier coefficients in the end.

The real part of the FT – the discrete cosine transform (DCT)

Ckm =
N−1∑
j=0

P−1∑
l=0

fjl cos
2πijk

N
cos

2πilm

P
, k = 0, . . . , N − 1, m = 0, . . . , P − 1, (6)

is the proper tool if some real 2D data are processed. For instance, the DCT is used
for compression of an image in the JPEG format.

Example 2 Removing noise from the given data by hard tresholding (λ=0.5).
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Figure 3: The noised data
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Figure 4: The DCT of
the noised data
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Figure 5: The data with
removed noise

When the DFT is applied to data, the information about the frequency is received
but the information about the time is lost. It means that the DFT is suitable for
an analysis of stationary signals and it does not detect the jump changes and the
trends that occur in non-stationary signals. The time localization of the signal can
be reached if the short time Fourier transform (STFT) is used. The STFT is defined
by

F (ω, t) =
∫ ∞
−∞

f(x)wr

(
x− t
r

)
e−iωx dx, (7)

where wr(x) = w(x
r
) is a window (a function smooth enough that is compactly

supported). The parameter r allows to adjust the length of the analyzed signal
segment. The size is the same for all windows in the discrete version of STFT.
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3. Wavelet transform

Let f be in L2(R) and ψ be the wavelet (i.e. a function that can be imagined like
a small wave that decreases quickly to 0 in ±∞). The wavelet transform is defined
by

Wψ(a, b) =
1

|a|

∫ ∞
−∞

f(x)ψ

(
x− b
a

)
dx. (8)

Here a is a scale1 and b is a translation. If a ∈ R and b ∈ R we speak about the
continuous wavelet transform (CWT).

Example 3 The CWT of the given signal using the Mexican hat wavelet ψ(x) =
2√
3
π−1/4(1−x2)e−x2/2 is done. The corresponding scalogram (i.e. the graph in which

the density of energy E(a, b) = |(Wψf)(a, b)|2 for the scale a and for the position b is
expressed) is given in Figure 7. Here, large absolute values of the wavelet coefficients
are shown darker.

0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.5

0.5

1.0
f HxL

Figure 6: The original signal
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Figure 7: The scalogram

If a and b are discrete values we speak about the discrete wavelet transform
(DWT). The diadic dilatation a = 2j and the translation b = k, where j, k ∈ Z, are
used for the sake of the computation effectivity. The DWT has then the form

Wj,k = 2
j
2

∫ ∞
−∞

f(x)ψ(2jx− k) dx. (9)

The discrete reconstruction is realized by

f(x) =
∑
j∈Z

∑
k∈Z

2
j
2Wj,kψ(2jx− k). (10)

But the system 2
j
2ψ(2jx− k) does not need to be orthonormal for general func-

tions ψ. One of possibilities how to receive an orthonormal basis in L2(R) is to use
the multiresolution analysis (MRA)2, where the spaces Vj ⊂ L2(R) (j ∈ Z) that
satisfy

Vj ⊂ Vj+1;
⋂
j∈Z

Vj = {0};
⋃
j∈Z

Vj = L2(R);

1Scales and the frequencies are connected: Higher scales correspond to lower frequencies.
2The construction of waveles by means of the MRA based on the existence of a scale function ϕ

was proposed by Mallat in 1988.
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∃ϕ ∈ V0 : {ϕ(x− k)}k∈Z is a complete orthogonal set in L2(R);

f ∈ V0 ⇔ f(2jx) ∈ Vj
are constructed.

It follows from the properties of the spaces Vj given above that there exist the
subspaces Wj orthogonal to Vj such that Vj+1 = Vj ⊕Wj.

If {Vj} is the MRA and ϕ is the scaling function that satisfies the dilatation
equation

ϕ(x) =
√

2
∑
k∈Z

ukϕ(2x− k), (11)

then
ψ(x) =

√
2
∑
k∈Z

vkϕ(2x− k), where vk = (−1)k−1u1−k (12)

is the associated wavelet correspondig to the MRA.
The spaces Vj resp. Wj are generated by functions that are dilatations and

translations of the scaling function and the associated wavelet function3

Vj = span{ϕj,k}j,k∈Z , where ϕj,k(x) = 2j/2ϕ(2jx− k), (13)

Wj = span{ψj,k}j,k∈Z , where ψj,k(x) = 2j/2ψ(2jx− k). (14)

The space Vj+1 can be interpreted as an approximation space in L2(R) and Vj+1 =
V0⊕W0⊕W1⊕ · · · ⊕Wj. It means that every function f ∈ L2(R) can be written as

f(x) =
∑
k∈Z

a0,kϕ0,k(x) +
∑
j≥0

∑
k∈Z

bj,kψj,k(x), (15)

where a0,k are the scaling coefficients and bj,k are the wavelet coefficients of f on the
level j.

Let 〈f, g〉 be the inner product in L2(R). In what follow, we will denote the
vectors of wavelet coefficients of f on the level j by

bj = (bj,k)k∈Z , where bjk = 〈f, ψj,k〉, (16)

and the vectors of scaling coefficients of f on the level j as

aj = (aj,k)k∈Z , where aj,k = 〈f, ϕj,k〉. (17)

Computation of wavelet coefficients is divided in two parts in the Mallat algorithm
(see [3]).

3Note that multivariable wavelets are constructed in the form of the tensor product. For instance,
a 2D MRA on the first level can be constructed from a decomposition

V 1
1 ⊕ V 2

1 =
(
V 1
0 ⊗ V 2

0

)
⊕
(
V 1
0 ⊗W 2

0

)
⊕
(
W 1

0 ⊗ V 2
0

)
⊕
(
W 1

0 ⊗W 2
0

)
and the wavelet basis is given by {ϕ0,k ⊗ ϕ0,l}l∈Z ∪ {ϕ0,k ⊗ ψ0,l, ψ0,k ⊗ ϕ0,l, ψ0,k ⊗ ψ0,l}l∈Z .
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In the first one – decompositon, the wavelet coefficients are computed from the
given data: The vector am of the scaling coefficients of function f is given for m ∈ Z
large enough. The wavelet transform bm−1, . . . ,bm−l, am−l of f is computed for
a chosen l ∈ N in the following way:

bj = D(aj+1 ∗ ṽ), aj = D(aj+1 ∗ ũ), j = m− 1, . . . ,m− l, (18)

where D(zn) = z2n is the downsampling operator, z̃n = z−n is the operator of
conjugated reflexion and bj+1 ∗ ũ is the convolution of the vector bj+1 with the
vector ũ.

In the second part – reconstruction, the vector am is constructed from the received
set bm−1, . . . ,bm−l, am−l in the following way:

aj+1 = (U(aj)) ∗ u + (U(bj)) ∗ v, j = m− l, . . . ,m− 1, (19)

where U(zn) = zn/2 for n even and zero while for n odd it is the operator of upsam-
pling.

This process is realized by using proper quadratic mirror filters in signal process-
ing. The given vector of values that represents a signal goes through the lowpass
filter and highpass filter in the first phases of computation. The approximation coef-
ficients aj and detail coefficients bj are received. Note that the approximation coeffi-
cients belong to low frequencies that represent trends and the details belong to high
frequencies that can be interpreted as noise. The received outputs are downsampled
and they can be filtered again. It is possible to express this process graphically in the
form of the completing wavelet tree. In the second phasis the received approximation
and details are upsampled and then they are filtered by conjugate filters.

Before reconstruction it is possible to modify the wavelet coefficients. For exam-
ple, noise is removed from the given signal, if the wavelet coefficients bi,j that have
smaller frequecy than the chosen treshold λ are set to zero. Also the soft threshold-

ing with the modified cofficients b̃j,k =

{
0 if bj,k < λ,

sgn bj,k |bj,k − λ| in other cases
can be

used.

Example 4 Removing noise from the given data by means of the wavelet trans-
form. Here, the Daubechies wavelet Db4 was used.
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Figure 8: The noised data
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Figure 9: The data with
removed noise
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If a 2D visual signal has to be compressed, it is decomposed into horizontal,
vertical, diagonal and approximation coefficients in the beginning. Only the approx-
imation coefficients are used for the next decomposition, because only they hold the
important information. The received details are cut on asked level. The DWT with
the hard tresholding is used in the JPEG2000 format.

Example 5 The wavelet transform of the given image.

Figure 10: The original image
Figure 11: The decomposition of the
image up to refinement level 2

4. Radon transform

Generally, the Radon transform4 of a function f from the Schwartz space S(Rn)
is the integral transform

g(t, θ) =
∫

x·θ=t

f(x) dm(x), (20)

where {x ∈ Rn : x · θ = t} is a hyperplane for a fixed t ∈ R and θ ∈ Sn−1,
Sn−1 = {x ∈ Rn : ‖x‖ = 1} is a sphere, and dm is the Lebesgue measure.

At the beginning of the last century, the Austrian mathematician J. F. Radon
found the way how to reconstruct the function f from the values g. If n = 3 the
inverse Radon transform has the form

f(x) = − 1

8π2
∆x

∫
S3

g(〈x, θ〉, θ) dS3
θ (21)

and if n = 2 the inverse Radon transform (IRT) is

f(x) =
1

4π2

∫
S2

v.p.

∞∫
−∞

g′t(t, θ)

x · θ − t
dt dS2

θ , (22)

4Note that the Radon transform is closely connected to the Fourier transform. The nD Fourier
transform of f is the composition of the Radon transform of f and 1D Fourier transform.
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where “v.p.” means “within the meaning of the Cauchy principal value”. The Radon
transform (RT) of a function f ∈ L2(R2) is given by the line integral

g(t, ϕ) =
∫

〈x,θ〉=t

f(x) dx, θ = (cosϕ, sinϕ)T . (23)

The inverse Radon transform (IRT) by

f(x) =
1

4π2

2π∫
0

v.p.

∞∫
−∞

g′t(t, ϕ)

x · θ − t
dt dϕ. (24)

The relations (23) and (24) became the theoretical basis of the computer tomo-
graphy with the following basic idea: If a body is irradiated by X-rays or other
type of waves, the intensity of the radiation I changes depending on the density
distribution f of substances through which it passes. When the the initial intensity
of radiation is I0 and l(x, θ) is a line which the ray goes along, this change can be
expressed as

ln
I0
I

=
∫

l(x,θ)

f(x) dx. (25)

It means that the value ln I0
I

is equal to the Radon transform of f. When measure-
ments for different directions of rays are realized, the inverse Radon transform can
be used to determine the density distribution f in the studied plane.

The received results can be demonstrated graphically. The measured values for
each ray are represented by the corresponding gray’s shade. This allows to express
graphically the density of distribution in the planar section. The space image arises
by composition of the images from different planar sections.

Example 6 The Radon transform in R2 of the given picture is done. Its graphical
expression – sinogram – is given in Figure 13. Here, lighter color is assigned to higher
values of the RT.

Figure 12: The original image Figure 13: The sinogram
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In practice, all measurements and evaluation are realized on the tomograph that
consists of a scanner, computer and monitor. A program for the evaluation of the
data provided by scanner is built in the computer. This program is based on a numer-
ical algorithm. There are three basic types of algorithms in computer tomography
that are used for reconstruction – convolution algorithms, algebraic algorithms and
Fourier reconstruction. We focus only on one of the convolution algorithms that is
used in medicine.

The formula (24) for inverse Radon transform is the base for the convolution
reconstruction algorithms in the plane. But the form of algorithm depends on the
design of the scanner (the formulas for parallel-ray geometry and divergent-ray geo-
metry see [5]). Recent tomographic scanners are equipped with the 4th generation
of detectors placed around the circumference of a circle that moves along the source
sending divergent rays.
Denote
D – the distance of the source from the origin of the coordinate system,
L – the distance of the reconstructed point (ρ, ψ) from the source,
β – the angular position of the source,
γ – the angle that gives the location of a ray within a fan,
γ′ – the angle of the ray that passes through the reconstructed point (ρ, ψ) (see
Figure 14).

Figure 14: Measurement of data

The formula for the inverse Radon transform is converted into the form

f(ρ, ψ) =
D

2

2π∫
0

∞∫
−∞

v(L sin(γ′ − γ)) g(β, γ) cos γ dγ dβ. (26)

The derivation can be found in [2].
If the source is rotated p times about the same angle ∆β = 2π

p
and it always

sends 2q rays that form an equal angle ∆γ = π
2q
, the values g(βj, γl) are received.
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Now, the integral in equation (26) can be calculated by the trapezoidal rule

f(ρ, ψ) ∼ D

2
∆β∆γ

p−1∑
j=0

q∑
l=−q

v(L sin(γk − γl))g(βj, γl) cos γl. (27)

The reconstruction of the function f is divided into two phases. First, the convolution
of functions v and g (i.e. the sum inside the formula (27)) is calculated and, second,
the back projection is performed.

5. Conclusion

The Fourier transform and the wavelet transform are used in signal processing,
they allow to extract information from many different kinds of data, they can help
to analyze voice or to compress pictures, they can also serve to analyze variability,
to remove noise or to detect significant moments in the time series that are used in
economy.

Also the tomographic methods have broad application. We can meet them not
only in medical diagnostics, but they are also used in studying structure of materials
(the study of composite materials), in prospecting (mapping oil deposits, the ocean
floor), in pyrometry (temperature in the blast furnace) or in astronomy.
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[1] Jeĺınek, J., Segeth, K., Overton, T. R.: Three-dimensional reconstruction from
projections. Apl. Mat. 30 (1985), 92–109.

[2] Kak, A. C., Slaney, M.: Principles of computerized tomographic imaging. Society
of Industrial and Applied Mathematics, IEEE Press New York 1988.
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