
ApplMath 2013

Tomáš Vejchodský
A direct solver for finite element matrices requiring O(N logN) memory places

In: Jan Brandts and Sergej Korotov and Michal Křížek and Jakub Šístek and Tomáš Vejchodský (eds.): Applications
of Mathematics 2013, In honor of the 70th birthday of Karel Segeth, Proceedings. Prague, May 15-17, 2013.
Institute of Mathematics AS CR, Prague, 2013. pp. 225–239.

Persistent URL: http://dml.cz/dmlcz/702950

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702950
http://dml.cz

Conference Applications of Mathematics 2013

in honor of the 70th birthday of Karel Segeth.

Jan Brandts, Sergey Korotov, Michal Kř́ıžek,
Jakub Š́ıstek, and Tomáš Vejchodský (Eds.),
Institute of Mathematics ASCR,Prague2013

A DIRECT SOLVER FOR FINITE ELEMENT MATRICES

REQUIRING O(N logN) MEMORY PLACES

Tomáš Vejchodský

Institute of Mathematics, Academy of Sciences
Žitná 25, CZ-115 61 Prague 1, Czech Republic

vejchod@math.cas.cz

Abstract

We present a method that in certain sense stores the inverse of the stiffness ma-
trix in O(N logN) memory places, where N is the number of degrees of freedom and
hence the matrix size. The setup of this storage format requires O(N3/2) arithmetic
operations. However, once the setup is done, the multiplication of the inverse matrix
and a vector can be performed with O(N logN) operations. This approach applies
to the first order finite element discretization of linear elliptic and parabolic problems
in triangular domains, but it can be generalized to higher-order elements, variety of
problems, and general domains. The method is based on a special hierarchical enu-
meration of vertices and on a hierarchical elimination of suitable degrees of freedom.
Therefore, we call it hierarchical condensation of degrees of freedom.

1. Introduction

This paper is devoted to Prof Karel Segeth on the occasion of his 70th birthday.
Karel stood at the very beginning of my scientific career as the supervisor of my
Master thesis and since then we have continued to work together as collaborators
and good friends until today. I am thankfull to him for many things he taught me,
for a lot of help and constant support. Karel has been interested in several topics
during his professional career. Efficient solution of large and sparse linear algebraic
systems, which is the topic of this paper, is one of them [2, 14, 15, 18]. In addition,
Karel studied the method of lines [13, 16, 19], higher-order finite elements [21], and
hierarchical approaches [17, 20]. These techniques are utilized below as well.

Solvers of large and sparse linear algebraic systems stemming from discretiza-
tions of partial differential equations are considered as the bottleneck of scientific
computing. Therefore, the efficiency of these solvers is of paramount importance.
In this contribution we concentrate on the lowest-order triangular finite element dis-
cretization [3, 23], which is one of the most often used discretization methods that
naturally yields large and sparse systems of linear algebraic equations. The sparse
direct solvers and preconditioned iterative methods are two principal approaches how
to solve such systems. The literature on this subject is vast. The interested reader
can consult books [4, 5, 6, 10, 11, 12] and references therein.

225

In this contribution, we present a method that can be classified as a direct sparse
solver. The idea is based on hierarchically applied static condensation of internal
degrees of freedom (DOFs). The static condensation is often used in higher-order
finite element methods [21], where so-called internal (or bubble) DOFs appear. These
DOFs can be easily eliminated from the system in such a way that the resulting
Schur complement system is of smaller dimension, better conditioned, and it keeps
the original sparsity structure. See e.g. [25] for more details.

In this paper we consider the lowest-order finite element methods, where no
internal DOFs exist. However, we propose to construct a hierarchy of nested meshes
and consider certain DOFs of the finest mesh as internal with respect to elements
of the coarser (parental) mesh. These internal DOFs can be eliminated out by the
static condensation of internal DOFs. The remaining DOFs are associated with
the parental mesh. Considering this mesh as the finest one, the same elimination
procedure is repeated. We call this process the hierarchical condensation of DOFs.

During the hierarchical condensation certain auxiliary matrices are created. These
matrices can be used to solve the original system with O(N logN) arithmetic oper-
ations. However, the setup of these auxiliary matrices has complexity O(N3/2). On
the other hand, they can be stored in asymptotically O(N logN) memory places. For
these reasons, the hierarchical condensation of DOFs is especially useful for solving
a sequence of systems with the same matrix and many different right-hand sides. For
example, in the case of parabolic problems discretized in time by implicit methods.

For the sake of simplicity we present the approach using linear and symmetric
parabolic problem. However, generalizations to other type of problems are possible.
Generalizations to nonsymmetric, elliptic, Helmholtz, Maxwell, and similar type of
problems are especially straightforward. Further, in order to simplify the description
of the method, we consider triangular domains. However, generalization to arbitrary
domains is not difficult. It suffices to consider an initial (coarse) mesh of the domain
and apply the hierarchical condensation procedure to all triangular elements of the
coarse mesh. Finally, let us note that this approach is especially advantageous in
two spatial dimensions. In principal, it can be used in three and more spatial dimen-
sions, but the resulting matrices are denser and both the memory requirements and
computational complexity grow with the dimension.

The rest of this paper is organized as follows. A linear parabolic model problem
is introduced in Section 2. Section 3 describes the hierarchical meshes and a spe-
cial enumeration of DOFs. Section 4 forms the core of this paper and presents
the hierarchical condensation of DOFs. Section 5 provides the algorithm and Sec-
tion 6 computes its asymptotic complexity and memory requirements. Numerical
experiments that compare the performance of various standard approaches and the
hierarchical condensation of DOFs is presented in Section 7. Finally, Section 8 draws
the conclusions.

226

2. Model problem

Let Ω ⊂ R
2 be a triangle and let T > 0 be fixed. We consider the following

linear parabolic problem in Ω with homogeneous Dirichlet boundary conditions. Find
u = u(t, x) such that

∂u/∂t −∆u = f in (0, T)× Ω,

u(t, x) = 0 for t ∈ [0, T) and x ∈ ∂Ω, (1)

u(0, x) = u0(x) for x ∈ Ω.

In order to define the weak formulation of problem (1), we introduce the Sobolev
space V = H1

0 (Ω) and assume f ∈ L2(Ω) and u0 ∈ V . The weak solution u ∈
C([0, T], V) has the distributional time derivative u̇ = du/dt in C([0, T], L2(Ω)) and
it satisfies

∫

Ω

u̇v dx+

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V, t ∈ (0, T), (2)

and u(0, x) = u0(x) for a.a. x ∈ Ω.

We discretize (2) by the method of lines, see e.g. [13, 16, 19] for the works of
Karel Segeth on this topic. We use the usual first-order (piecewise linear) triangular
finite elements for the space discretization. Hence, we consider a triangulation Th of
the domain Ω and we define a subspace Vh ⊂ V of piecewise linear functions on Th

by

Vh = {vh ∈ V : vh|K ∈ P 1(K) for all K ∈ Th},

where P 1(K) is the three-dimensional space of linear functions in a triangle K ∈ Th.
Notice that all functions vh ∈ Vh are continuous in Ω.

The semidiscrete solution of (2) uh ∈ C1([0, T], Vh) is given by

∫

Ω

u̇hvh dx+

∫

Ω

∇uh · ∇vh dx =

∫

Ω

fvh dx ∀vh ∈ Vh, t ∈ (0, T), (3)

and uh(0, x) = u0,h(x) for x ∈ Ω, where u0,h ∈ Vh is a suitable projection of the
initial condition u0.

Equality (3) yields a system of linear ordinary differential equations. Indeed, let
us define the standard finite element hat functions ϕ1, ϕ2, . . . , ϕN [21, 23], where
N = dim Vh. Each hat function ϕj ∈ Vh equals to one at a vertex xj of the mesh Th

and vanishes at all the other vertices. If we expand the semidiscrete solution as
uh(t, x) =

∑N
j=1 yj(t)ϕj(x) then the expansion coefficients y = (y1, y2, . . . , yN)

T are
determined by the system of linear differential equations

Mẏ + Ay = F, y(0) = y0, (4)

227

T 0

h T 1

h T 2

h

Figure 1: Triangulations of level 0, 1, and 2.

where the vector y0 of the initial condition is determined by the expansion u0,h =
∑N

i=1 y0,iϕi of u0,h into the basis of Vh. Further, the mass matrix M ∈ R
N×N , the

stiffness matrix A ∈ R
N×N , and the load vector F ∈ R

N have entries

Mij =

∫

Ω

ϕiϕj dx, Aij =

∫

Ω

∇ϕi · ∇ϕj dx, and Fi =

∫

Ω

fϕi dx.

Solving system (4) by a suitable method for systems of ordinary differential equa-
tions, we finally arrive at a fully-discrete solution to (1). In this paper we use so-called
θ-method [7, 9] with a fixed time step τ > 0. This method yields a system of linear
algebraic equations

Syk+1 = bk (5)

for the approximation yk+1 of y at time t = (k + 1)τ , k = 0, 1, 2, The matrix S
and the right-hand side vector bk are given as

S = M + τθA, bk = τF + (M − τ(1− θ)A)yk, k = 0, 1, 2, . . . ,

where θ ∈ [0, 1] is arbitrary and fixed. Let us note that the choices θ = 0, θ = 1/2,
and θ = 1 correspond to the explicit Euler method, Crank-Nicolson method, and
implicit Euler method, respectively.

In the subsequent parts of the paper we will concentrate on the hierarchical
condensation of DOFs, which is an efficient method for solving the sequence of linear
algebraic problems (5). Let us emphasize that we restrict ourselves to the case of
simple model problem (1) for the reason of clarity only. The hierarchical condensation
of DOFs can be applied to a wide class of much more general problems.

3. Mesh construction and enumeration of DOFs

The hierarchical condensation of DOFs is based on a hierarchy of successively
refined and nested triangular meshes. In this section we define the triangulation,
introduce its hierarchical structure represented by levels, and present a special enu-
meration of vertices of the triangulation (and the corresponding DOFs) that enables
relatively simple implementation of the method.

228

Edges

level 0
level 1
level 2
level 3
level 4

Figure 2: Levels of edges in the triangulation T 4
h of level 4.

The triangulation Th of the triangle Ω is constructed hierarchically using levels.
Triangulation T 0

h of level 0 consists of the single triangle Ω. Triangulation T ℓ
h of

level ℓ is obtained by splitting all triangles in T ℓ−1
h into four similar subtriangles, see

Figure 1. From now on we denote by L > 0 the fixed number of levels and we set
n = 2L the number of subedges on an edge of Ω. The triangulation Th = T L

h has n2

elements, it contains (n + 2)(n + 1)/2 vertices from which 3n lay on the boundary
∂Ω and (n − 1)(n − 2)/2 lay in the interior of Ω. Thus, the number of DOFs is
N = dim Vh = (n− 1)(n− 2)/2, because we consider Dirichlet boundary conditions.

In order to describe the special enumeration of vertices we introduce a level of
an edge. An edge in Th = T L

h is of level ℓ = 0, 1, 2, . . . , L if it lays on an edge of T ℓ
h

but not on any edge of T ℓ−1
h , T ℓ−2

h , . . . , T 0
h . For example, edges of level 0 are those

edges of Th which lay on the boundary ∂Ω. Levels of edges are indicated in Figure 2.

Level of a vertex is the smallest level of edges meeting at this vertex. Notice that
any interior vertex of level ℓ = 1, 2, . . . , L−1 lays on two edges of level ℓ and on four
edges of a higher level. Simply, all vertices of level ℓ lay on all edges of level ℓ. Since
vertices correspond to the finite element basis functions and consequently to DOFs,
we will naturally speak about levels of basis functions and DOFs.

The enumeration of vertices goes by levels. Since there are no vertices of level L,
we first enumerate vertices of level L−1, then vertices of level L−2, etc. Finally, we
enumerate vertices of level 1. Vertices of level 0 lay on the boundary of ∂Ω, where
we consider Dirichlet boundary conditions and hence there are no DOFs. Moreover,
the enumeration of vertices of level ℓ = L − 1, L − 2, . . . , 1 goes in natural order.
Precisely, there are always three interior edges of level ℓ in every element of T ℓ−1

h .
The enumeration of vertices of level ℓ goes by elements of T ℓ−1

h . We first enumerate
vertices of level ℓ on edges of level ℓ in the interior of the first element of T ℓ−1

h and
then we proceed to enumerate in the same way vertices inside the second element
of T ℓ−1

h , etc. Figure 3 presents an example of enumeration of vertices for L = 3. The
algorithm is as follows:

229

1 2

3

4

5

6

7

8 9

10

11

1213

14

15 16

17

18

192021

Figure 3: Triangulations T 3
h and enumeration of vertices. The vertices of level 2

are enumerated first (indices 1,2,. . . ,12), then vertices of level 1 are enumerated
(13,14,. . . ,21). Notice that triplets of basis functions with indices 1,2,3; 4,5,6; 7,8,9;
and 10,11,12 form bubbles in elements of triangulation T 1

h .

for ℓ = L− 1, L− 2, . . . , 1 do
for all elements K in T ℓ−1

h do
enumerate all vertices lying on the three interior edges of level ℓ in K
(there are 2L−ℓ − 1 vertices on each such edge and all are of level ℓ)

end (loop through elements)
end (loop through levels)

4. Hierarchical condensation of DOFs

To describe the hierarchical condensation of DOFs, we introduce the notion of
bubble functions or shortly bubbles. A function is called a bubble in element K if it
is supported solely in K. The basis functions of level L−1 form bubbles in elements
of T L−2

h . We use the static condensation to eliminate these bubbles, i.e., we eliminate
all DOFs of level L− 1. In the remaining (Schur complement) system, the DOFs of
level L − 2 correspond to bubbles in elements of T L−3

h and they can be eliminated
in the same way. This procedure continues until we traverse the whole hierarchy of
meshes.

Now, we describe details of this procedure. The goal is to solve linear system

S(0)y(0) = b(0), (6)

where S(0) = S, y(0) = yk, and b(0) = bk come from (5) for a fixed k. Recall that the
number of DOFs (i.e. the size of this system) is N(0) = N = (n− 2)(n− 1)/2. The
algorithm goes in L− 2 steps for m = 1, 2, . . . , L− 2.

Step 1: (m = 1) In this step we eliminate DOFs of level L−1, which form bubbles in

elements of triangulation T L−2
h . The triangulation T L−2

h consists of (n/4)2 = 22(L−2)

230

elements and there are three vertices of level L−1 inside of all these elements. Thus,
there are M(0) = 3 · 22(L−2) vertices of level L− 1. The DOFs corresponding to these
vertices were enumerated first and therefore their indices are 1, 2, . . . ,M(0). This
yields the following block structure of S(0) ∈ R

N(0)×N(0), y(0) ∈ R
N(0), and b(0) ∈ R

N(0) :

S(0) =

(

A(1) BT
(1)

B(1) D(1)

)

, y(0) =

(

x(1)

y(1)

)

, and b(0) =

(

F(1)

G(1)

)

, (7)

where A(1) ∈ R
M(0)×M(0) , B(1) ∈ R

(N(0)−M(0))×M(0) , D(1) ∈ R
(N(0)−M(0))×(N(0)−M(0)),

F(1) ∈ R
M(0), and G(1) ∈ R

N(0)−M(0). The matrix A(1) corresponds to bubble functions
and therefore it is blockdiagonal, consisting of (n/4)2 = 22(L−2) blocks of size 3× 3.

The bubble DOFs, i.e. the unknowns x(1), can be efficiently eliminated. The
remaining DOFs, i.e. the unknowns y(1), are then given by a Schur complement
system. To be more specific, we compute the block-wise inverse A−1

(1) and use it to
obtain the Schur complement S(1) and the complement load b(1) as

S(1) = D(1) − B(1)A
−1
(1)B

T
(1) and b(1) = G(1) − B(1)A

−1
(1)F(1).

The two components of the coefficient vector y(0) = (x(1), y(1))
T are then given by

S(1)y(1) = b(1) and x(1) = A−1
(1)(F(1) − BT

(1)y(1)).

Thus, as soon as the vector y(1) is known, the vector x(1) can be easily and
efficiently computed. In order to compute y(1), we have to solve a system with
matrix S(1). The Schur complement S(1) has a similar structure as the original
matrix S(0) in the sense that vertices of level L − 2 correspond to bubbles in the
triangulation T L−3

h . Consequently, DOFs of level L− 2 can be eliminated from S(1)

in the same way as DOFs of level L − 1 were eliminated from S(0). As a result,
we obtain a Schur complement S(2) and the whole procedure can be repeated. In
general, the m-th step of the algorithm is as follows.

Step m: (Elimination of DOFs of level L − m.) Put N(m−1) = N(m−2) − M(m−2)

and set M(m−1) = 3(2m − 1)(n/2m+1)2 = 3(2m − 1)22(L−m−1). The matrix S(m−1) is
of size N(m−1) ×N(m−1) and the coefficient vector y(m−1) and the load vector b(m−1)

are of length N(m−1). There is M(m−1) bubble functions corresponding to vertices of
level L−m. Thanks to the special enumeration of vertices from Section 3 the DOFs
corresponding to these bubble functions have indices 1, 2, . . . ,M(m−1) with respect
to S(m−1). This naturally introduces the block structure

S(m−1) =

(

A(m) BT
(m)

B(m) D(m)

)

, y(m−1) =

(

x(m)

y(m)

)

, b(m−1) =

(

F(m)

G(m)

)

, (8)

where A(m) ∈ R
M(m−1)×M(m−1) , B(m) ∈ R

(N(m−1)−M(m−1))×M(m−1) , etc. The matrix A(m)

corresponds to bubble DOFs and it is block diagonal with (n/2m+1)2 = 22(L−m−1)

231

blocks of size 3(2m − 1) × 3(2m − 1). We invert A(m) and compute the Schur com-
plement as well as the complement load as

S(m) = D(m) − B(m)A
−1
(m)B

T
(m) and b(m) = G(m) − B(m)A

−1
(m)F(m). (9)

The components of the coefficient vector y(m−1) = (x(m), y(m))
T are determined by

S(m)y(m) = b(m) and x(m) = A−1
(m)(F(m) −BT

(m)y(m)).

Step L− 1: After L− 2 steps (for m = 1, 2, . . . , L− 2), we are left with system

S(L−2)y(L−2) = b(L−2) (10)

with fully populated matrix S(L−2) ∈ R
3(n/2−1)×3(n/2−1). We can solve this system by

a standard approach such as the Cholesky decomposition for instance. As a result,
we obtain the coefficients y(L−2) and we can compute the remaining ones by backward
substitution.

Backward substitution: The remaining vectors of unknowns x(m), m = L − 2,
L− 3, . . . , 1, are easily computed as

x(m) = A−1
(m)(F(m) − BT

(m)y(m)) and y(m−1) =

(

x(m)

y(m)

)

. (11)

Once the matrix S(0) is hierarchically decomposed by the above algorithm, the
next linear system with matrix S(0) and a different right-hand side b(0) can be
solved very efficiently. It suffices to store matrices Q(m) = B(m)A

−1
(m), A−1

(m), for

m = 1, 2, . . . , L− 2, and S−1
(L−2). The given right-hand side b(0) is then hierarchically

split into vectors F(m), m = 1, 2, . . . , L − 2, and vector b(L−2) using matrices Q(m),
see (9). The final Schur complement system (10) is then solved using the stored
matrix S−1

(L−2). Finally, the backward substitution (11) is performed utilizing matri-

ces A−1
(m) and QT

(m) for m = L− 2, L− 1, . . . , 1.
Let us note that storing matrices Q(m) instead of B(m) increases the efficiency

of the entire procedure significantly. On the other hand the matrix Q(m) has more
nonzero entries than B(m) and its storage requires more memory. However, the
difference is not large and asymptotically both these matrices have O(N) nonzero
entries. For details see Section 6 below.

5. Algorithm

In this section we rigorously describe the algorithm of hierarchical static con-
densation of DOFs with the emphasis on many linear algebraic systems with the
same matrix and different right-hand side vectors. The rigorous formulation of the
algorithm will be utilized in Section 6 to compute its complexity and memory re-
quirements.

232

The algorithm consists of setup and solve phases. We consider the enumeration
of DOFs from Section 3 and use M(m−1) = 3(2m − 1)2L−m−1 to denote the number
of bubble DOFs of level L−m, m = 1, 2, . . . , L− 2.

First, we describe the setup phase. Its input is the matrix S(0) ∈ R
N(0)×N(0) that

comes from the finite element discretization, see (6). The output consists of matri-
ces Q(m), A

−1
(m) for m = 1, 2, . . . , L−2, and S−1

(L−2) that are needed in the solve phase.

Setup phase:

1. For m = 1, 2, . . . , L− 2 do the following:

(a) Split the matrix S(m−1) into blocks A(m), B(m), and D(m) as in (8).

(b) Matrix A(m) is block-diagonal with 2L−m−1 blocks of size 3(2m − 1) ×
3(2m − 1). Use block-wise inversion to compute A−1

(m).

(c) Perform the sparse matrix multiplication Q(m) = B(m)A
−1
(m).

(d) Compute the Schur complement matrix S(m) = D(m) −Q(m)B
T
(m), see (9).

(e) Update N(m) = N(m−1) −M(m−1).

2. Compute the inverse S−1
(L−2) of the fully populated matrix S(L−2).

3. Output matrices Q(m), A
−1
(m) for m = 1, 2, . . . , L− 2, and S−1

(L−2).

Second, we present the solve phase. Its input data consist of a vector b(0) ∈ R
N(0) ,

matrices Q(m), A
−1
(m) for m = 1, 2, . . . , L− 2, and matrix S−1

(L−2). The output is a vec-

tor y(0) that solves system (6).

Solve phase:

1. For m = 1, 2, . . . , L− 2 do the following:

(a) Split vector b(m−1) into two blocks F(m) and G(m) as in (8).

(b) Compute b(m) = G(m) −Q(m)F(m), see (9).

(c) Update N(m) = N(m−1) −M(m−1).

2. Solve the Schur complement problem: y(L−2) = S−1
(L−2)b(L−2).

3. Perform the backward substitution. Form = L−2, L−3, . . . , 1 do the following:

(a) Compute x(m) = A−1
(m)F(m) −QT

(m)y(m).

(b) Update y(m−1) = (x(m), y(m))
T .

4. Output vector y(0).

233

6. Computational complexity and memory requirements

In this section we compute the complexity and the memory requirements of the
setup and the solve phase of the algorithm from Section 5. By the complexity we
understand the asymptotic number of arithmetic operations need to perform the
algorithm. The memory requirements are represented by the asymptotic number of
memory places needed to store the data structures. We recall that L stands for the
fixed number of levels, n = 2L denotes the number of mesh-edges on one edge of Ω,
and N = (n− 2)(n− 1)/2 is the number of DOFs (the size of matrix S).

Theorem 1. The complexity of the setup phase is O(N3/2).

Proof. For each m = 1, 2, . . . , L − 2 we invert the block diagonal matrix A(m).
The number of arithmetic operations needed to invert a block diagonal matrix is
proportional to the number of blocks multiplied by the size of each block cubed:

Nop

(

A−1
(m)

)

≈ 22(L−m−1) · [3(2m − 1)]3. Further, we have to invert a dense ma-

trix S(L−2). This requires Nop

(

S−1
(L−2)

)

≈ [3(2L−1 − 1)]3 operations. The number of

arithmetic operations needed for the other steps of the setup phase is asymptotically

minor with respect to Nop

(

A−1
(m)

)

and Nop

(

S−1
(L−2)

)

. Thus, the complexity of the

setup phase is

Nop

(

S−1
(L−2)

)

+
L−2
∑

m=1

Nop

(

A−1
(m)

)

≈ (2L)3 = n3 ≈ N3/2.

Theorem 2. The complexity of the solve phase is O(N logN).

Proof. The most significant operation in step 1 of the solve phase is the matrix-
vector multiplication Q(m)F(m). This multiplication requires a number of operations
proportional to the number of nonzero entries in Q(m). It is at most twice the number
of vertices of levels less then L−m times the number of vertices of level L−m inside
one element of mesh T L−m−1

h . Thus, this number can in general reach the value up
to

NNZ

(

Q(m)

)

= 2× (N(m−1) −M(m−1))× 3(2m − 1), (12)

where N(m−1) = 3(2m − 1)2L−m−1(2L−m − 1) is the number of vertices of levels less
than or equal to L−m and M(m−1) = 3(2m − 1)22(L−m−1) is the number of vertices
of level L − m. Consequently, N(m−1) − M(m−1) = 3(2m − 1)(22(L−m−1) − 2L−m−1).
Since the matrix-vector multiplication Q(m)F(m) is performed for m = 1, 2, . . . , L−2,
the complexity of step 1 is proportional to

L−2
∑

m=1

NNZ

(

Q(m)

)

=
L−2
∑

m=1

18(2m − 1)2
(

22(L−m−1) − 2L−m−1
)

= (9L− 42)22L−1

+ (18L+ 9)2L + 12 =
n2

2
(9 log2 n− 42) + n(18 log2 n+ 9) + 12 ≈ N logN. (13)

234

In step 2 we multiply the vector b(L−2) by the fully populated matrix S−1
(L−2) of

size 3(2L−1 − 1)× 3(2L−1 − 1). The complexity of this operation is

32(2L−1 − 1)2 ≈ n2 ≈ N.

In step 3 we perform matrix-vector multiplications with matrices A−1
(m) and QT

(m)

for m = L − 2, L − 3, . . . , 1. The complexity of multiplication by matrix A−1
(m) is

proportional to the number of its nonzero entries, which is less than the number
of nonzero entries of QT

(m). Multiplications by the matrices QT
(m) and Q(m) are of

the same complexity proportional to NNZ

(

Q(m)

)

, see (12). Thus, the complexity of
step 3 is proportional to N logN as in step 1. Consequently, the total complexity of
the solve phase is O(N logN).

Theorem 3. The memory requirements to store matrices Q(m), A−1
(m) for m =

1, 2, . . . , L− 2, and matrix S−1
(L−2) are O(N logN).

Proof. The fully populated matrix S−1
(L−2) contains NNZ

(

S−1
(L−2)

)

= (3(n/2 − 1))2 =

9/4n2 − 9n + 9 entries. The number of nonzero entries in matrix A−1
(m) is equal to

the number of its blocks times the size of the block squared, i.e. NNZ

(

A−1
(m)

)

=

22(L−m−1)[3(2m − 1)]2. Thus, for all m = 1, 2, . . . , L− 2 we have

NNZ

(

A−1
)

=
L−2
∑

m=1

NNZ

(

A−1
(m)

)

= 22L−2(9L− 33) + 18 · 2L − 12

=
n2

4
(9 log2 n− 33) + 18n− 12.

The total number of nonzero entries in all matrices Q(m) for m = 1, 2, . . . , L− 2 was
computed above, see (13). Hence, we can conclude that the total amount of memory
places needed to store matrices Q(m), A

−1
(m) for m = 1, 2, . . . , L−2, and matrix S−1

(L−2)

is asymptotically proportional to N logN .

Let us note that the original stiffness matrix S(0) contains NNZ

(

S(0)

)

= 7(n− 2)
(n−1)/2−6(n−2) = (7n2−33n+38)/2 nonzero entries. Making rough estimates and
considering a sufficiently high number of levels L, we may say that the total memory
requirements to store matrices Q(m), A

−1
(m) for m = 1, 2, . . . , L − 2, and S−1

(L−2) are

about 2(L− 4) times higher than NNZ

(

S(0)

)

.

7. Numerical experiments

In this section we compare the performance of the above described hierarchical
condensation of DOFs with standard methods. The numerical tests are done in
Matlab and the hierarchical condensation is compared with standard Matlab im-
plementations of fully populated matrix inversion, sparse Cholesky factorization,

235

conjugate gradients (CG) preconditioned by the incomplete Cholesky factorization
and an optimized direct sparse solver (backslash command in Matlab).

We consider the parabolic problem (1) in a triangle Ω with vertices [0, 0], [1, 0],
and [0.7, 0.8] for t ∈ (0, 100). The right-hand side and the initial conditions are chosen
as f = 1 and u0 = λ4

1λ2λ3, where λ1, λ2, λ3 are barycentric coordinates in Ω. This
problem is discretized as described in Section 2. We use the time step τ = 0.1 and the
Crank-Nicolson method (θ = 1/2) for time discretization. The space discretization
is done on a sequence of uniform and successively refined meshes. We construct the
meshes as described in Section 3 for the number of levels L = 4, 5, . . . , 10.

During the time evolution, it is necessary to solve system (5) in total 1000 times
(the final time is T = 100 and the time step is τ = 0.1). Before the first system (5)
is solved, we perform a setup phase for the given matrix S, store the necessary data,
and then we run the solve phase 1000 times.

The first of the tested methods is to compute the fully populated matrix inverse
in the setup phase, store the inverse, and then just multiply the right-hand side by
this inverse in the solve phases. This method is very inappropriate for the presented
problem, because it ignores the sparsity of matrix S. We include it in the test in
order to illustrate the magnitude of this inappropriateness.

The second method is a sparse Cholesky factorization with the approximate min-
imum degree permutation trying to minimize the fill-in. A suitable permutation and
the Cholesky factor of permuted S are computed in the setup phase. The stored
permutation and the Cholesky factor are then used in the solve phases.

The third method is the CG method preconditioned by incomplete Cholesky
factorization with no fill-in. In the setup phase we construct the preconditioner,
store it, and use it in the solve phases. The initial approximation is taken from the
previous time step and the CG iterations are stopped as soon as the relative residual
decreases below 10−6. This was always happening in a few iterations.

The fourth method is the backlash command of Matlab. It is a highly optimized
procedure combining various sparse direct solvers for various types and sizes of ma-
trices. We perform no setup phase and use the backslash command directly in the
solve phases. Finally, the fifth method is the hierarchical condensation of DOFs as
described above.

Figure 4 presents the CPU-times required to perform the setup phase (left panel)
and the CPU-times for 1000 solve phases (right panel). We see that the hierarchical
condensation has the fastest solve phase of all tested methods. It is more than two
times faster than the sparse Cholesky factorization. The setup phase of the hier-
archical condensation is the second fastest after the sparse Cholesky factorization.
However, the asymptotic complexity of the setup phases of the hierarchical conden-
sation and sparse Cholesky factorization seems to be the same in this example. The
other methods are not competitive with the exception of the preconditioned CG. Its
performance during the solve phase is relatively improving with growing number of
DOFs, however the complexity of its setup phase is considerably higher than the
complexity of the setup phase of both sparse Cholesky factorization and hierarchi-

236

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of DOFs

se
co

nd
s

Setup time

full inverse
sparse Cholesky
ILU−PCG
backslash
hierarchical conden.

10
2

10
3

10
4

10
5

10
610

−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of DOFs

se
co

nd
s

Solve time

full inverse
sparse Cholesky
ILU−PCG
backslash
hierarchical conden.

Figure 4: CPU-times for the setup phase (left) and for the 1000 of solve phases
(right). Notice the logarithmic scales and zero setup time for the backslash solver.

cal condensation. Let us note that the full-inverse approach runs over the available
memory starting from the number of levels L = 8.

Further, let us note that no special effort was made to optimize the Matlab code of
hierarchical condensation for speed. The code is relatively simple, it contains a few
short for-cycles and the majority of CPU-time is spent by various sparse matrix
operations. Therefore, we assume that the differences due to the compiled codes (in-
version, Cholesky factorization, and backlash) and interpreted codes (preconditioned
CG and hierarchical condensation) are not fundamental.

8. Conclusions

In this paper we presented a hierarchical condensation of DOFs, which is a direct
sparse method for solving linear algebraic systems. We prove that the setup phase
requires O(N3/2) arithmetic operations, the resulting data are stored in O(N logN)
memory places, and the solve phase takes O(N logN) operations, where N stands
for the number of DOFs.

The method was presented using a simple model problem, a triangular domain,
and the lowest-order finite element method. However, generalizations to more general
problems and domains are straightforward as well as generalization to higher-order
finite elements. Generalizations to higher spatial dimensions are possible as well.

A clear bottleneck of this approach is the setup phase which has a suboptimal
complexity, because the expected optimal complexity would be O(N), see e.g. multi-
grid approaches [1, 24] or optimal methods in special domains [8, 22].

Nevertheless, the hierarchical condensation of DOFs provides an insight into the
structure of the inverse of the finite element matrices. We believe that this insight
can be fruitful if it enables to modify the setup phase such that it is performed
approximately and fast. This approximate inverse can then serve as an efficient and
hopefully optimal preconditioner.

237

References

[1] Briggs, W.L., Henson, V.E., and McCormick, S. F.: A multigrid tutorial, 2nd
ed. SIAM, Philadelphia, PA, 2000.

[2] Červ, V. and Segeth, K.: A comparison of the accuracy of the finite-difference
solution to boundary value problems for the Helmholtz equation obtained by
direct and iterative methods. Apl. Mat. 27 (1982), 375–390.

[3] Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland
Publishing Co., Amsterdam, 1978.

[4] Duff, I., Erisman, A., and Reid, J.: Direct methods for sparse matrices. Claren-
don Press, Oxford, 1986.

[5] Greenbaum, A.: Iterative methods for solving linear systems. SIAM, Philadel-
phia, PA, 1997.

[6] Hackbusch, W.: Iterative solution of large sparse systems of equations. Transl.
from the German. Springer-Verlag, New York, NY, 1994.

[7] Hairer, E. and Wanner, G.: Solving ordinary differential equations. II: Stiff and
differential-algebraic problems. 2nd rev. ed. Springer, Berlin, 1996.

[8] Hockney, R.: A fast direct solution of Poisson’s equation using Fourier analysis.
J. Assoc. Comput. Mach. 12 (1965), 95–113.

[9] Lambert, J.: Numerical methods for ordinary differential systems: the initial
value problem. John Wiley & Sons, Chichester, 1991.

[10] Meurant, G.: Computer solution of large linear systems. Elsevier, Amsterdam,
1999.

[11] Osterby, O. and Zlatev, Z.: Direct methods for sparse matrices. Springer-Verlag,
Berlin, 1983.

[12] Saad, Y.: Iterative methods for sparse linear systems, 2nd ed. SIAM, Philadel-
phia, PA, 2003.

[13] Segeth, K.: A posteriori error estimation with the finite element method of lines
for a nonlinear parabolic equation in one space dimension. Numer. Math. 83
(1999), 455–475.

[14] Segeth, K.: On the choice of iteration parameters in the Stone incomplete fac-
torization. Apl. Mat. 28 (1983), 295–306.

238

[15] Segeth, K.: Numerical experiments with the Stone incomplete triangular de-
composition. In: Mathematical models in physics and chemistry and numerical
methods of their realization (Visegrád, 1982), Teubner-Texte Math., vol. 61,
pp. 226–236. Teubner, Leipzig, 1984.

[16] Segeth, K.: A posteriori error estimates for parabolic differential systems solved
by the finite element method of lines. Appl. Math. 39 (1994), 415–443.

[17] Šoĺın, P. and Segeth, K.: A new sequence of hierarchic prismatic elements satis-
fying de Rham diagram on hybrid meshes. J. Numer. Math. 13 (2005), 295–317.

[18] Šoĺın, P. and Segeth, K.: Performance of various ODE solvers on FV-
semidiscretized nonstationary compressible Euler equations. Acta Tech. CSAV
47 (2002), 47–66.

[19] Šoĺın, P. and Segeth, K.: Application of the method of lines to unsteady com-
pressible Euler equations. Internat. J. Numer. Methods Fluids 41 (2003), 519–
535.

[20] Šoĺın, P. and Segeth, K.: Hierarchic higher-order Hermite elements on hybrid
triangular/quadrilateral meshes. Math. Comput. Simulation 76 (2007), 198–
204.

[21] Šoĺın, P., Segeth, K., and Doležel, I.: Higher-order finite element methods. Stud-
ies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[22] Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the
FACR algorithm for the discrete solution of Poisson’s equation on a rectangle.
SIAM Rev. 19 (1977), 490–501.

[23] Szabó, B. and Babuška, I.: Finite element analysis. A Wiley-Interscience Pub-
lication, John Wiley & Sons Inc., New York, 1991.

[24] Trottenberg, U., Oosterlee, C.W., and Schüller, A.: Multigrid. with guest con-
tributions by A. Brandt, P. Oswald, K. Stüben. Academic Press, Orlando, FL,
2001.

[25] Vejchodský, T. and Šoĺın, P.: Static condensation, partial orthogonalization of
basis functions, and ILU preconditioning in the hp-FEM. J. Comput. Appl.
Math. 218 (2008), 192–200.

239

		webmaster@dml.cz
	2017-03-20T13:07:25+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

