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Abstract: A new method is proposed for the numerical solution of linear

mixed Volterra-Fredholm integral equations in one space variable. The pro-

posed numerical algorithm combines the trapezoidal rule, for the integration

in time, with piecewise polynomial approximation, for the space discretization.

We extend the method to nonlinear mixed Volterra-Fredholm integral equa-

tions. Finally, the method is tested on a number of problems and numerical

results are given.
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1. Introduction

In this paper, we are concerned with the numerical solution of the linear mixed
Volterra-Fredholm integral equations of the form

u(x, t) = f(x, t) +

∫ t

0

∫ a

0

K(x, t, y, z)u(y, z)dydz, 0 ≤ x, y ≤ a, 0 ≤ z ≤ t ≤ T,

(1)
where f(x, t) and K(x, t, y, z) are given continuous real-valued functions defined on
[0, a]× [0, T ] and {(x, t, y, z) : x, y ∈ [0, a], 0 ≤ z ≤ t ≤ T}, respectively, and u(x, t)
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is the unknown function to be determined. With this purpose, space discretisation
is introduced, using a basis of hybrid Legendre functions, while time integration
is performed using the trapezoidal rule. We will also consider an extension of the
proposed method to nonlinear equations of the form

u(x, t) = f(x, t) +

∫ t

0

∫ a

0

K(x, t, y, z)g(y, z, u(y, z))dydz,

0 ≤ x, y ≤ a, 0 ≤ z ≤ t ≤ T, (2)

where g is nonlinear in u.
Various problems in physics, mechanics and biology lead to nonlinear mixed type

Volterra-Fredholm integral equations. In particular, such equations appear in mod-
eling of the spatio-temporal development of an epidemic, theory of parabolic initial-
boundary value problems, population dynamics, and Fourier problems [2, 4, 8].

In its general form, a mixed Volterra-Fredholm integral equation can be written
as

u(x, t) = f(x, t) +

∫ t

0

∫

Ω

K(x, t,y, z, u(y, z))dydz, (3)

where u(x, t) is an unknown real-valued function defined on D = Ω × [0, T ] and Ω
is a closed subset of Rn, n = 1, 2, 3. The functions f(x, t) and K(x, t,y, z, u) are
given functions defined on D and S = {(x, t,y, z, u) : x,y ∈ Ω, 0 ≤ z ≤ t ≤ T},
respectively [2].

Different numerical methods have been applied to approximate the solution of
equation (3) (see for example [1, 3, 5]).

In this paper we use hybrid Legendre and block-pulse functions to solve equations
of the forms (1) and (2). Hybrid Legendre functions have been applied extensively
for solving differential and integral equations and systems, and proved to be a useful
mathematical tool. In [6], a basis of shifted Legendre functions has been applied to
the numerical solution of nonlinear two-dimensional Volterra integral equations.

In comparison with the methods used previously to solve equation (3), the ad-
vantage of the present method is the high convergence rate, specially with respect
to the space variable, which allows to obtain accurate results using small matrices
and with a low computational effort (see numerical examples in Section 5). Together
with its simple implementation, this makes the present algorithm an efficient tool
for the solution of this type of equations.

The organization of the rest of the paper is as follows: In Section 2 hybrid Legen-
dre functions and their basic properties are described. In Section 3 we describe the
numerical method used to solve equation (1). In Section 4, the method is extended
to solve a class of nonlinear mixed Volterra-Fredholm integral equations. Numerical
results are reported in Section 5 and conclusions are presented in Section 6.
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2. Properties of hybrid Legendre functions

2.1. Definition and function approximation

Hybrid functions bij(x), for i = 1, 2, . . . , k, j = 0, 1, . . . ,M and h = a/k are
defined on the interval [0, a) as

bij(x) =







Lj(2x/h− 2i+ 1), (i− 1)h ≤ x < ih,

0, otherwise.

Here, Lj(x) denotes a Legendre polynomial of order j . Hybrid functions are orthog-
onal, since

∫ a

0

bij(x)bmn(x) =







h/(2j + 1), i = m and j = n,

0, otherwise.
(4)

Suppose that V = L2[0, a] and {b10(x), b11(x), . . . , bkM(x)} ⊂ V is the set of
hybrid Legendre functions and

B = span{b10(x), b11(x), . . . , b1M(x), . . . , bk0(x), bk1(x), . . . , bkM(x)},

and p(x) is an arbitrary element in V . Since B is a finite dimensional vector space,
p(x) has a unique best approximation pk,M ∈ B, such that

∀b ∈ B, ‖p− pk,M‖2 ≤ ‖p− b‖2.

Since pk,M ∈ B, there exist unique coefficients p10, p11, . . . , pkM such that

p(x) ≃ pk,M(x) =

k
∑

i=1

M
∑

j=0

pijbij(x) = P Tψ(x), (5)

where

P = [p10, . . . , p1M , p20, . . . , p2M , . . . , pk0, . . . , pkM ]T , (6)

and

ψ(x) = [b10(x), . . . , b1M (x), b20(x), . . . , b2M(x), . . . , bk0(x), . . . , bkM(x)]T . (7)

The hybrid coefficients pij, i = 1, 2, . . . , k, j = 0, 1, . . . ,M are obtained as

pij =
2j + 1

h

∫ ih

(i−1)h

p(x)bij(x)dx.

We now briefly describe a technique that will be used to integrate hybrid Legendre
functions.
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2.2. Operational matrix of dual

The integration of the product of two hybrid vectors satisfies [7]:

∫ a

0

ψ(x)ψT (x)dx = D, (8)

where D is a k(M + 1)× k(M + 1) matrix of the form

D =















d O O . . . O
O d O . . . O
O O d . . . O
...

...
...

...
O O O . . . d















,

in which O is the zero matrix of order M + 1 and

d = h















1 0 0 . . . 0
0 1/3 0 . . . 0
0 0 1/5 . . . 0
...

...
...

...
0 0 0 . . . 1/(2M + 1)















.

3. Numerical method

In this section we apply a numerical method using hybrid Legendre functions to
the numerical solution of mixed Volterra-Fredholm integral equations of the form (1).
With this purpose, we consider the time step size τ as

τ =
T

N
.

Then the mesh nodes are defined by

t0 = 0, tn = tn−1 + τ, n = 1, 2, . . . , N.

Collocating equation (1) in tn, n = 0, 1, . . . , N , yields:

u(x, tn) = f(x, tn) +

∫ tn

0

∫ a

0

K(x, tn, y, z)u(y, z)dydz. (9)

Considering the notations un(x) = u(x, tn) and f
n(x) = f(x, tn) in (9), we have

u0(x) = f 0(x),

un(x) = fn(x) +

∫ tn

0

∫ a

0

K(x, tn, y, z)u(y, z)dydz, n = 1, 2, . . . , N. (10)
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Using the trapezoidal rule to perform the integration on z in (10) we obtain the
approximation

un(x) ≃ fn(x) +
tn
2n

∫ a

0

(

K(x, tn, y, t0)u
0(y) +K(x, tn, y, tn)u

n(y)+

+ 2

n−1
∑

i=1

K(x, tn, y, ti)u
i(y)

)

dy. (11)

Introducing the notation Kn,i(x, y) = K(x, tn, y, ti) in (11), yields:

un(x) = fn(x)+
tn
2n

∫ a

0

(

Kn,0(x, y)u0(y)+Kn,n(x, y)un(y)+2
n−1
∑

i=1

Kn,i(x, y)ui(y)
)

dy.

(12)
We approximate the functions in (12) using the method described in the previous
section as

ui(x) ≃ uik,M(x) = UT
i ψ(x) = ψT (x)Ui, (13)

fn(x) ≃ fn
k,M(x) = F T

n ψ(x) = ψT (x)Fn (14)

Kn,i(x, y) ≃ Kn,i

k,M(x, y) = ψT (x)κn,iψ(y), (15)

where Un, n = 1, 2, . . . , N , in (13) is the unknown vector, of order k(M + 1).
Substituting approximations (13)–(15) into equation (12) and using the operational
matrix of dual, we obtain

Un = Fn +
tn
2n

[

κn,0DU0 + κn,nDUn + 2
n−1
∑

i=1

κn,iDUi

]

,

which can be rewritten as

(I −
tn
2n
κn,nD)Un = Fn +

tn
2n

[

κn,0DU0 + 2
n−1
∑

i=1

κn,iDUi

]

, n = 1, . . . , N. (16)

Equations (16) form a system of k(M + 1) linear equations in each step and can be
solved easily using direct methods.
Therefore Un, n = 1, 2, . . . , N can be computed via the recursive equation (16) using
the initial value U0 = F0.

4. Numerical solution of nonlinear mixed Volterra-Fredholm integral equa-
tions

In this section we extend our numerical method to solve nonlinear mixed Volterra-
Fredholm integral equations of the form (2).
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Considering the same partition and notations as in Section 3 and collocating
equation (2) in t = tn yields:

un(x) = fn(x) +

∫ tn

0

∫ a

0

K(x, tn, y, z)g(y, z, u(y, z))dydz. (17)

Using the composite trapezoidal integration rule for the integral part of (17) leads
to:

un(x) = fn(x) +
tn
2n

∫ a

0

(

Kn,0(x, y)g(y, t0, u
0(y)) +Kn,n(x, y)g(y, tn, u

n(y))+

+ 2
n−1
∑

i=1

Kn,i(x, y)g(y, ti, u
i(y))

)

dy. (18)

Introducing the notation gi(y) = g(y, ti, u
i(y)) equation (18) can be written as

un(x) = fn(x)+
tn
2n

∫ a

0

(

Kn,0(x, y)g0(y)+Kn,n(x, y)gn(y)+2

n−1
∑

i=1

Kn,i(x, y)gi(y)
)

dy.

(19)
We approximate the functions ui(x), fn(x) and Kn,i(x, y) in equation (19) using
(13)–(15) and replace gi(y) with

gi(y) ≃ gik,M(x) = GT
i ψ(x) = ψT (x)Gi, (20)

where Ui and Gi are unknown vectors of dimension k(M + 1). Then, substituting
these approximations and using the operational matrix of dual in (19) yields:

Un = Fn +
tn
2n

[

κn,0DG0 + κn,nDGn + 2
n−1
∑

i=1

κn,iDGi

]

, (21)

which forms a system of k(M + 1) linear algebraic equations in terms of 2k(M + 1)
unknowns. In order to obtain a uniquely solvable system, we need k(M+1) additional
equations. For this purpose consider k(M + 1) collocation points defined by

xi,j =
h

2
(xj + 2i− 1), i = 1, 2, . . . , k, j = 0, 1, . . . ,M,

where xj , j = 0, 1, . . . ,M are the roots of Legendre polynomial of degree M + 1.
Collocating the equation g(x, tn, U

T
n ψ(x)) = GT

nψ(x) in xi,j, we obtain

g(xi,j, tn, U
T
n ψ(xi,j))−G

T
nψ(xi,j) = 0, for i = 1, 2, . . . , k, j = 0, 1, . . . ,M, (22)

which is a system of k(M +1) nonlinear equations in terms of the unknown elements
of the vectors Un and Gn. Finally, systems (21) and (22) together form a system of
2k(M + 1) equations and can be solved in terms of Un and Gn using the Newton’s
iterative method. In the case t = 0, we have U0 = F0, and G0 is obtained using the
approximation of the function g(x, 0, UT

0 ψ(x)) (which is a known function) by the
hybrid Legendre functions.
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5. Numerical examples

In this section, the results of two numerical experiments are presented to vali-
date accuracy, applicability and convergence of the proposed methods. In order to
investigate the error of the method we introduce the following notations. The error
norm is denoted by

en(x) = |un(x)− ũn(x)|,

Ek,M,N(tn) = ‖en(x)‖2,

where un(x) and ũn(x) are the exact solution and the computed solution by the pre-
sented method at t = tn with selected k,M and N , respectively. For the convergence
order, with respect to h, we use the estimate:

ρk(tn) = log2 (Ek,M,N/E2k,M,N);

and for the convergence order, with respect to τ , we write

̺N (tn) = log2 (Ek,M,N/Ek,M,2N).

When using different meshes in space (time), the stepsize h (resp. τ) of each subse-
quent mesh is twice smaller.

Example 1: Consider the following linear mixed Volterra-Fredholm integral equa-
tion as discussed in [5]

u(x, t) = f(x, t) +

∫ t

0

∫ 2

0

K(x, t, y, z)u(y, z)dydz, 0 ≤ t ≤ 1, (23)

where

f(x, t) = e−t

(

cos(x) + t cos(x) +
1

2
t cos(x− 2) sin(2)

)

,

K(x, t, y, z) = − cos(x− y)e−(t−z),

with the exact solution u(x, t) = e−t cos(x). After multiplying the exact solution by
the kernel K we observe that the integrand function on the right-hand side of (23)
does not depend on z. Therefore, the outer integral can be computed exactly and
the final error of the numerical solution does not depend on τ . This is why in our
tests we only check the convergence of the method, as h → 0. We have applied the
described numerical method with M = 3 and M = 6. In both cases, we have taken
N = 100 and used three different meshes in space, with k = 2, 4, 8. The numerical
results are given in Tables 1–2. They present 4-th order convergence in the case
M = 3 and 7-th order convergence in the case M = 6.

Example 2: Consider the following nonlinear mixed Volterra-Fredholm integral
equation, which arises in the mathematical modeling of the development of an epi-
demic [1, 3]:

u(x, t) = f(x, t) +

∫ t

0

∫ 1

0

K(x, t, y, z)(1− e−u(y,z))dydz 0 ≤ t ≤ 1, (24)
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t E2,3,100 E4,3,100 ρ2 E8,3,100 ρ4
0.1 1.5659× 10−4 1.0029× 10−5 3.96 6.3032× 10−7 3.99
0.2 1.4168× 10−4 9.0747× 10−6 3.96 5.7034× 10−7 3.99
0.3 1.2820× 10−4 8.2111× 10−6 3.96 5.1606× 10−7 3.99
0.4 1.1600× 10−4 7.4297× 10−6 3.96 4.6695× 10−7 3.99
0.5 1.0496× 10−4 6.7227× 10−6 3.96 4.2252× 10−7 3.99
0.6 9.4976× 10−5 6.0829× 10−6 3.96 3.8231× 10−7 3.99
0.7 8.5938× 10−5 5.5040× 10−6 3.96 3.4593× 10−7 3.99
0.8 7.7760× 10−5 4.9803× 10−6 3.96 3.1301× 10−7 3.99
0.9 7.0360× 10−5 4.5063× 10−6 3.96 2.8322× 10−7 3.99
1.0 6.3664× 10−5 4.0775× 10−6 3.96 2.5627× 10−7 3.99

Table 1: Numerical results for Example 1

t E2,6,100 E4,6,100 ρ2 E8,6,100 ρ4
0.1 1.4847× 10−8 1.1527× 10−10 7.00 8.9936× 10−13 7.00
0.2 1.3434× 10−8 1.0430× 10−10 7.00 8.1378× 10−13 7.00
0.3 1.2156× 10−8 9.4374× 10−11 7.00 7.3634× 10−13 7.00
0.4 1.0999× 10−8 8.5393× 10−11 7.00 6.6626× 10−13 7.00
0.5 9.9528× 10−9 7.7267× 10−11 7.00 6.0286× 10−13 7.00
0.6 9.0056× 10−9 6.9914× 10−11 7.00 5.4549× 10−13 7.00
0.7 8.1486× 10−9 6.3261× 10−11 7.00 4.9358× 10−13 7.00
0.8 7.3732× 10−9 5.7241× 10−11 7.00 4.4661× 10−13 7.00
0.9 6.6715× 10−9 5.1794× 10−11 7.00 4.0411× 10−13 7.00
1.0 6.0366× 10−9 4.6865× 10−11 7.00 3.6565× 10−13 7.00

Table 2: Numerical results for Example 1

where

f(x, t) = − ln

(

1 +
xt

1 + t2

)

+
xt2

8(1 + t)(1 + t2)
,

K(x, t, y, z) =
x(1 − y2)

(1 + t)(1 + z2)
.

Its exact solution is u(x, t) = − ln(1 + xt/(1 + t2)). The results of the numerical
experiments with this example are displayed in Tables 3–4. In Table 3, τ is kept
constant, with N = 1000, and M = 2 (quadratic polynomials). Note that with
such value of N resulting from the time discretization is negligible when compared
with the final error, so we can again investigate the dependence of the error on h.
The error norms on three different meshes (k = 2,k = 4, and k = 8) show that the
discretization error depends on h as O(h3). Finally, we have investigated the depen-
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t E2,2,1000 E4,2,1000 ρ2 E8,2,1000 ρ4
0.1 6.6527× 10−7 8.3258× 10−8 2.99 1.0430× 10−8 2.99
0.2 4.3442× 10−6 5.4526× 10−7 2.99 6.8263× 10−8 2.99
0.3 1.1613× 10−5 1.4632× 10−6 2.98 1.8332× 10−7 2.99
0.4 2.1268× 10−5 2.6906× 10−6 2.98 3.3741× 10−7 2.99
0.5 3.1480× 10−5 3.9972× 10−6 2.97 5.0173× 10−7 2.99
0.6 4.0666× 10−5 5.1791× 10−6 2.97 6.5060× 10−7 2.99
0.7 4.7867× 10−5 6.1096× 10−6 2.97 7.6794× 10−7 2.99
0.8 5.2746× 10−5 6.7421× 10−6 2.96 8.4777× 10−7 2.99
0.9 5.5411× 10−5 7.0882× 10−6 2.96 8.9148× 10−7 2.99
1.0 5.6206× 10−5 7.1916× 10−6 2.96 9.0452× 10−7 2.99

Table 3: Numerical results for Example 2

t E16,2,20 E16,2,40 ̺20 E16,2,80 ̺40
0.1 1.6164× 10−6 4.0346× 10−7 2.00 1.0083× 10−7 2.00
0.2 5.5511× 10−6 1.3861× 10−6 2.00 3.4654× 10−7 1.99
0.3 1.0347× 10−5 2.5844× 10−6 2.00 6.4635× 10−7 1.99
0.4 1.4797× 10−5 3.6966× 10−6 2.00 9.2489× 10−7 1.99
0.5 1.8199× 10−5 4.5474× 10−6 2.00 1.1383× 10−6 1.99
0.6 2.0349× 10−5 5.0854× 10−6 2.00 1.2736× 10−6 1.99
0.7 2.1372× 10−5 5.3413× 10−6 2.00 1.3384× 10−6 1.99
0.8 2.1534× 10−5 5.3825× 10−6 2.00 1.3494× 10−6 1.99
0.9 2.1122× 10−5 5.2798× 10−6 2.00 1.3242× 10−6 1.99
1.0 2.0371× 10−5 5.0923× 10−6 2.00 1.2777× 10−6 1.99

Table 4: Numerical results for Example 2

dence of the error on τ . With this purpose, we have used three different stepsizes
in time corresponding to N = 20, N = 40 and N = 80, keeping the stepsize h fixed
(k = 16). For such stepsizes, the error resulting from the space discretization is much
smaller than the component depending on τ . In this case, the results displayed in
Table 4 show clearly that the error behaves as τ 2.

6. Conclusion

A new method is proposed for the numerical solution of linear and nonlinear
mixed Volterra-Fredholm integral equations. The numerical scheme combines the
trapezoidal rule, for integration in time, and piecewise polynomial approximation,
for space discretisation. The hybrid Legendre functions and the operational matrix of
dual are applied to reduce the problem to an algebraic system of nonlinear equations,
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which is solved by the Newton method. The computational method was tested
using a sample of numerical examples, including an equation arising in the modeling
of spatio-temporal development of an epidemic (Example 2), which was formerly
analysed by other authors [1, 3]. Our results for this example (see Tables 3–4)
have the same degree of accuracy (6 digits) as the results presented in [3], obtained
by means of a collocation scheme with Gaussian points, both in time and space.
The numerical experiments suggest that the convergence order is O(hM+1) +O(τ 2),
which is in agreement with the known properties of methods based on piecewise
polynomial collocation and trapezoidal rule. We leave as a future work the analysis
of convergence.
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