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Abstract: The design of an experiment, e.g., the setting of initial condi-
tions, strongly influences the accuracy of the process of determining model
parameters from data. The key concept relies on the analysis of the sensitiv-
ity of the measured output with respect to the model parameters. Based on
this approach we optimize an experimental design factor, the initial condition
for an inverse problem of a model parameter estimation. Our approach, al-
though case independent, is illustrated at the FRAP (Fluorescence Recovery
After Photobleaching) experimental technique. The core idea resides in the
maximization of a sensitivity measure, which depends on the initial condition.
Numerical experiments show that the discretized optimal initial condition at-
tains only two values. The number of jumps between these values is inversely
proportional to the value of a diffusion coefficient D (characterizing the bio-
physical and numerical process). The smaller value of D is, the larger number
of jumps occurs.

Keywords: FRAP, sensitivity analysis, optimal experimental design, param-
eter estimation, finite differences
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1. Introduction

Image processing is one of the fastest growing areas in informatics and applied
mathematics. However, it is not a rare case that a large amount of data, e.g., spatio-
temporal FRAP (Fluorescence Recovery After Photobleaching) images, is routinely
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generated without a clear idea about further data processing. The FRAP technique is
based on measuring the fluorescence intensity (proportional to non-bleached particles
concentration) in a region of interest (being usually an Euclidian 2D domain) in
response to a high-intensity laser pulse. The laser pulse (the so-called bleach) causes
an irreversible loss in fluorescence of some particles residing originally in the bleached
area, without any damage to intracellular structures. After the bleach, we observe
the change in fluorescence intensity in a monitored region reflecting the diffusive
transport of fluorescent particles from the area outside the bleach [9].

The aim of this paper is to establish the link between experimental conditions
(protocol) and the accuracy of the results. The idea is presented in a simplified
case study of FRAP data processing [8], [3]. It serves as a paradigmatic example
of the inverse problem of the diffusion parameter estimation from spatio-temporal
measurements of fluorescent particle concentration. A natural question is how the
experimental settings influence the accuracy of resulting parameter estimates. There
are many rather empirical recommendations related to the design of a photobleaching
experiment, e.g., the bleach spot shape and size, the region of interest (its location
and size), or the total time of measurement, see [9]. However, we should have a more
rigorous tool for the choice of experimental design factors. This goal can be achieved
through a reliable process model, i.e., the Fickian diffusion equation, and through
performing the subsequent sensitivity analysis with respect to the model parameters.
Thus, we can define an optimization problem as the maximization of the sensitivity
measure described in Section 2. The special focus of this paper concerns the search
for the optimal initial condition that in its discretized form represents the bleaching
pattern [2], [5].

The paper is organized as follows. In Section 2, we define the sensitivity measure
and formulate the optimization problem. Section 3 describes a numerical approach
to reach the optimal initial condition. In Section 4, we provide a numerical example
to show that the features of the optimal initial condition strongly depend on the
diffusion coefficient. Finally, some conclusions are presented in Section 5.

2. Problem formulation

We consider the Fickian diffusion problem with a constant diffusion coefficient
D > 0 and assume a spatially radially symmetric observation domain, i.e., the data
are observed on a cylinder with the radius R and height T . In FRAP, the sim-
plest governing equation for the spatio-temporal distribution of fluorescent particle
concentration u(r, t) is the diffusion equation as follows1

∂u

∂t
= D

(

∂2u

∂r2
+

1

r

∂u

∂r

)

, (1)

1We consider the diffusion equation in polar coordinates since both the whole boundary value
problem and the bleaching pattern used in the FRAP experiment have the rotational (axial) sym-
metry. In our preceding papers [8], [4], we employed the Cartesian coordinate system.
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where r ∈ (0, R], t ∈ [0, T ], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(R, t) = 0. (2)

The main issue in FRAP and related estimation problems is to find the value of
the diffusion coefficient D from spatio-temporal measurements of the concentra-
tion u(r, t), see [7], [8].

Obviously, the measured data are discrete and each data entry quantifies the
variable u at a particular spatio-temporal point (r, t) in a finite domain, i.e.,

u(ri, tj), i = 0 . . . n, j = 0 . . .m,

where i is the spatial index uniquely identifying the pixel position where the value
of fluorescence intensity u is measured and j is the time index (the initial condition
corresponds to j = 0). Usually, the data points are uniformly distributed both in
time (the time interval ∆t between two consecutive measurements is constant) and
space, i.e., on an equidistant mesh with the step-size ∆r, see [4].

Given the data as above, the diffusion coefficient D can be computed numerically
by solving the inverse problem to (1)–(2). Because of unavoidable noise in the data,
one obtains an estimated value D which reasonably well approximates the true D. It
can be shown [1], [4], that for our case of single scalar parameter estimation and white
noise as data error assumed, the expected relative error in D depends on the data
noise and a factor, which we call the global semi-relative squared sensitivity SGRS ,
as follows

E

(

∣

∣

∣

∣

D −D

D

∣

∣

∣

∣

2
)

∼
σ2

SGRS

, (3)

where E is the expected value and σ2 denotes the variance of the additive Gaussian
noise. The sensitivity measure SGRS, that depends on the initial condition, is defined
on a spatio-temporal mesh by

SGRS = D2
n
∑

i=0

m
∑

j=1

[

∂

∂D
u(ri, tj)

]2

, (4)

where ∂
∂D

u(ri, tj) is the usual sensitivity of the model output at the spatio-temporal
point (ri, tj) with respect to the parameter D. It is obvious from this estimate that
if the noise level is fixed, the estimation of D can only be improved by switching to
an experimental design with a higher sensitivity.

The sensitivity measure (4) involves several design parameters. If all the above
parameters R, T,∆r,∆t are fixed, there is only one way to maximize the sensitivity
measure SGRS : to consider the initial condition u0 in (2) as the experimental de-
sign parameter. In the discretized problem, the aim is to find the initial condition
(u0(r0), . . . , u0(rn))

T ∈ Rn+1 such that SGRS is maximized and hence the expected
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error in D is minimized. In order to do so, we establish the bounds where the initial
condition is considered: u0 ≤ u0 ≤ u0, where u0, u0 ∈ R, u0 < u0. The optimization
problem can be formulated as follows

uopt
0 = arg max

u0∈R
n+1

SGRS(u0) subject to u0 ≤ u0 ≤ u0, (5)

where, for brevity, u0 is interpreted as a vector.

3. Optimization of the initial condition

Based on the parameters R, T , it is convenient to introduce the following scaling
of the space and time coordinates and to define a scaled diffusion coefficient δ

r̃ :=
r

R
, t̃ :=

t

T
, δ :=

DT

R2
. (6)

The concentration u in the scaled coordinates r̃, t̃ then satisfies the equation

∂u

∂t̃
= δ

(

∂2u

∂r̃2
+

1

r̃

∂u

∂r̃

)

, (7)

where r̃ ∈ [0, 1], t̃ ∈ [0, 1], with initial and Neumann boundary conditions

u(r̃, 0) = u0(r̃),
∂u

∂r̃
(1, t̃) = 0. (8)

Let us fix n + 1 as a number of spatial points and m as a number of time mea-
surements. Consider a spatio-temporal grid {r̃i, t̃j}, i = 0 . . . n, j = 0 . . .m, where
r̃0 = 0, r̃n = 1, t̃0 = 0, t̃m = 1, with corresponding spatial and time steps ∆r̃ = 1

n

and ∆t̃ = 1
m
, respectively. Consequently, u(r̃i, 0) = u0(r̃i), i = 0 . . . n, represent

the initial condition (evaluated at discrete points r̃i) and
∂u
∂r̃
(1, t̃j) = 0, j = 1 . . .m,

represent the Neumann boundary condition.
We will use a finite difference Crank-Nicolson scheme to compute a numerical

solution ui,j := u(r̃i, t̃j), i = 0 . . . n − 1, j = 1 . . .m, of the initial boundary value
problem (7)–(8). After some algebraic manipulation [10] we arrive at a linear system

Au.,j = g (9)

for (u0,j, . . . , un−1,j)
T with a three-diagonal symmetric positive definite matrix

A =



















1
4
γ+ −hs0

−hs0 γ+ −hs1
−hs1 2γ+ −hs2

. . .
. . .

. . .

−hsn−3 (n− 2)γ+ −hsn−2

−hsn−2 (n− 1)γ+ − hsn−1


















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and a right-hand side

g0 = 1
4
γ−u0,j−1 + hs0u1,j−1,

gi = hsi−1ui−1,j−1 + i γ−ui,j−1 + hsiui+1,j−1, i = 1, . . . , n− 2,

gn−1 = hsn−2un−2,j−1 + ((n− 1)γ− + hsn−1)un−1,j−1.

The Neumann boundary condition implies that un,j = un−1,j. Here

h =
∆t̃

∆r̃
, γ+ =

∆r̃

δ
+ h, γ− =

∆r̃

δ
− h, sk =

2k + 1

4
, k = 0, . . . , n− 1.

The formula (4) for SGRS involves the derivative of the solution u(r, t) of (1)–(2)
with respect to the diffusion parameter D. Taking the scaled variables (6) and using
the derivative of a composite function, we find that

D
∂u

∂D
= D

∂u

∂δ

∂δ

∂D
=

DT

R2

∂u

∂δ
= δ

∂u

∂δ
= δ

∂u

∂t̃

∂t̃

∂δ
= −

Dt

δR2

∂u

∂t̃
= −t̃

∂u

∂t̃
. (10)

Thus the scaled sensitivity measure (4) has the form

SGRS = δ2
n
∑

i=0

m
∑

j=1

[

∂

∂δ
u(r̃i, t̃j)

]2

=
n
∑

i=0

m
∑

j=1

[

t̃j
∂

∂t̃
u(r̃i, t̃j)

]2

. (11)

Replacing the derivative with a finite difference, and using the fact that t̃j = j∆t̃,
the sensitivity measure SGRS can be approximated as follows

SGRS ≈

n
∑

i=0

m
∑

j=1

[

j∆t̃
u(r̃i, t̃j)− u(r̃i, t̃j−1)

∆t̃

]2

=
m
∑

j=1

j2
n
∑

i=0

[ui,j − ui,j−1]
2 =: Sapp(u0(r̃)). (12)

The values ui,j are computed from ui,j−1 using (9), thus no extra work is necessary.
The problem (5) of finding the optimal initial condition u0 maximizing the sensitiv-
ity measure Sapp (the approximation of SGRS) can be formulated algorithmically as
follows.

Algorithm 1. Data: a cylinder radius R, height T , number of spatial points n+ 1,
time measurements m, and a diffusion coefficient D.

1. Perform the scaling of variables (6) to obtain the value δ.

2. Let an initial condition u0 ∈ Rn+1, u0 ∈ [u0, u0] be given.

3. Compute ui,j, i = 0 . . . n, by solving the linear system (9) for j = 1 . . .m.

4. Compute the value Sapp using (12).

5. Repeat steps 2-4 to find u0 such that Sapp is maximal.
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4. Numerical example

As an example to demonstrate the optimal configurations of the initial condition
let us choose parameters

R = 1, T = 1, n = 30, m = 200, u0 = 0, u0 = 1

and use Algorithm 1 to find such an initial condition (u0(r0), . . . , u0(rn))
T ∈ Rn+1

that maximizes Sapp (12) for 1/δ = 5, 10, . . . , 225 (notice the inverse values of δ).2

To solve the optimization problem (5), we used a global optimization method
from the UFO system [6]. This method uses local optimization methods for finding

local minima. Briefly speaking, we choose an initial u
(0)
0 = (1/2, . . . , 1/2)T and

for k = 0, 1, . . . , until the optimality conditions are satisfied, we update the next
iterate u

(k+1)
0 from uk

0 based on the function value Sapp(u
(k)
0 ) and its gradient.

Figure 1 shows the results. For each 1/δ we obtained a solution on the boundary
of the feasible region. Thus, uopt

0 (ri) ∈ {1, 0} is a binary-valued vector (there exist
non-zero components of uopt

0 ). As the components of uopt
0 attain only two values 1

and 0, the vertical lines indicate the non-zero components of uopt
0 . A small number

of jumps between 1 and 0 in uopt
0 occurs for large values of δ. When δ decreases

(1/δ increases), the number of jumps increases.

Figure 2 shows the time evolution of the solution ui,j computed using (9) with the
optimal initial condition uopt

0 in case of δ = 1/20, i.e., computed vectors u(ri, tj) for
j = 10, 20, . . . , 200 with u(ri, t0) = uopt

0 (ri), i = 0, . . . , n. For increasing time index
j → ∞ the solution tends to a steady-state solution.
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Figure 1: The result of optimization
problem (5): vertical lines indicate the
non-zero components of uopt
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Figure 2: Optimal uopt
0 for δ = 0.05 and

the time evolution of the solution ui,j

computed using (9).

2The corresponding original diffusion coefficient is D = δ, see (6).
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The following table shows the output from the UFO system for δ = 1/20, where
F denotes −Sapp and X denotes (uopt

0 (r0), . . . , u
opt
0 (rn))

T . The non-zero components of
the solution have indices i = 11, . . . , 24, i.e., two jumps between u0 = 0 and u0 = 1
occur (see Figure 1).

EXTREM 1 :

F = -0.2537705605D-01

X = 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 -0.1734723476D-17 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.1000000000D+01 0.1000000000D+01 0.1000000000D+01

0.1000000000D+01 0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

0.0000000000D+00 0.0000000000D+00 0.0000000000D+00

5. Conclusion

In this study, the problem of the optimal initial condition for further identifica-
tion of a constant diffusion coefficient was formulated. We set a sensitivity measure
SGRS as the optimality criterion to be maximized in order to have the expected er-
ror minimal, see (4). Afterwards, we used the finite difference scheme to discretize
both the scaled initial boundary value problem (7)–(8) and the sensitivity mea-
sure Sapp eqrefsgrs. Our numerical results indicate that there exists specific optimal
initial condition uopt

0 that maximizes the sensitivity measure Sapp and therefore min-
imizes the error in the model parameter estimate (diffusion coefficient D), see (3).
In discrete points r0, . . . , rn, the components of the vector uopt

0 attain only two values
(u0 and u0) and the number of jumps between these values depends on the diffusion
coefficient D. The smaller value of D is (i.e., the slower the particle mobility due
to the diffusion process is), the larger number of jumps occurs. These jumps in fact
represent the discontinuities leading to more complex bleaching patterns, see [5] for
more details.
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