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Abstract: Using the high order Trefftz finite element method for solving
partial differential equation requires numerical integration of oscillating func-
tions. This integration could be performed, instead of classic techniques, also
by the Levin method with some modifications. This paper shortly describes
both the Trefftz method and the Levin method with its modification.
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1. Introduction

The Trefftz finite element method is a method for solving boundary value prob-
lems applied already in the 1970. The integrals of oscillating functions often appear
during the solving procedure. These integrals can be calculated using the modified
Levin method. In this paper we briefly introduce the Trefftz and Levin methods
with its necessary modification to be applicable to the Trefftz finite element.

2. Trefftz finite element method

Trefftz finite elements are finite elements based on the usage of the auxiliary
unknown defined on the edges (faces) of elements that links together the primary
unknown defined on each element. This method is described in [1] or [5]. Description
of implementation aspect is in [6].

Here, let us briefly present the method on the following model problem. Consider
that we are seeking to find the solution of the Laplace equation in a domain Ω ⊂ R

2

endowed with the boundary conditions

∆u = 0 in Ω,

u = ū on Γu, (1)

∂u

∂n
= q̄ on Γq,

where ū, q̄ are known functions, and n is the normal to the boundary Γ = Γu ∩ Γq.
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Let the domain Ω be divided into elements; and over each element Ωe, we assume
the function u in the form

u =

M
∑

j=1

cj Nj on element Ωe,

where cj are unknown constants and Nj are known functions to be chosen such that

∆Nj = 0 in element Ωe, for j = 1, 2, . . . ,M.

It can be shown that this equation is satisfied by any of the following functions:

1, r cos θ, r sin θ, . . . , rm cosmθ, rm sinmθ, . . . , (2)

where r and θ are a pair of polar coordinates.
Let us introduce an auxiliary function ũ defined on element boundary only:

ũ =

N
∑

i=1

di Ñi,

where di stands for nodal displacement and Ñi are standard shape functions.
Let us denote q = ∂u

∂n
and q1 = ∂u

∂x1

, q2 = ∂u
∂x2

. Following the approach in [5], let
us introduce the functional Ψe,

Ψe =
1

2

∫

Ωe

q21 + q22 dΩ−

∫

Γe

q ũ dΓ +

∫

Γeq

q̄ ũ dΓ =

1

2

∫

Γe

q u dΓ−

∫

Γe

q ũ dΓ +

∫

Γeq

q̄ ũ dΓ, (3)

where Γe is the boundary of the element Ωe and Γeq = Γe ∩ Γq. The minimalization
of the variational functional Ψe for the all elements provides the solution of (1).

3. Levin method

The Levin method is an effective way for the numerical integration of rapidly
oscillating functions. It is described in [2] for one- and two-dimensional integrals;
more details, numerical examples, and error analysis are provided in [3], [4].

Let us briefly introduce this method. The integration problem is transformed into
an ordinary differential equation problem to be numerically solved by for example
the collocation method.

We consider integrals of the form

I =

∫ b

a

f t
· w dx, (4)
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where f is a vector of smooth and non-oscillating functions, f(x)=(f1(x),. . . ,fm(x))
t,

w is a vector of oscillating functions, w(x) = (w1(x), w2(x), . . . wm(x))
t, and a, b are

real and finite. We also assume that w satisfies

w′(x) = A(x)w(x),

where A is an m×m matrix of non-oscillating functions.
We would like to find the vector p(x) = (p1(x), p2(x), . . . pm(x))

t such that

(pt · w)′ = f t
· w.

Subsequently,

I =

∫ b

a

(

pt · w
)

′

dx =

∫ b

a

(p′)t · w + pt · w′ dx =

∫ b

a

(p′)t · w + pt · Aw dx =

∫ b

a

(

p′ + At p
)t
· w dx,

Hence, the vector p should satisfy

p′ + At p = f.

Then, the integral is computed as
∫ b

a

f t
· w dx = pt(b) · w(b)− pt(a) · w(a). (5)

Example As an example, let us compute the integral
∫ 2π

0

x2 cos (rx) dx =

∫ 2π

0

(

x2, 0
)

· (cos (rx), sin (rx)) dx,

where r∈
⊙

N. In the notation used above, f(x)=(x2, 0)
t
and w(x)=(cos (rx), sin (rx))t.

Then,

w′(x) =

[

cos (rx)
sin (rx)

]

′

=

[

0 −r

r 0

] [

cos (rx)
sin (rx)

]

= A(x)w(x).

We are looking for the vector p = (p1, p2) which satisfies

p′1 + rp2 = x2,

p′2 − rp1 = 0.

The general solutions are

p1(x) = C1 cos (rx) + C2 sin (rx) +
2x

r2
, (6)

p2(x) = C1 sin (rx)− C2 cos (rx) +
x2

r
−

2

r3
. (7)
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The formula (5) is valid for any solution of (6). We choose the solution for which
C1 = C2 = 0. Hence,

∫ 2π

0

x2 cos (rx) dx =

[(

2x

r2
,
x2

r
−

2

r3

)

· (cos (rx), sin (rx))t
]2π

0

=
4π

r2
.

4. Integration in the Trefftz method

Using functions (2) in functional (3) leads to line integrals of oscillating functions.
It depends on the implementation, but it is usual that only values of the integrated

function are accessible. In this content, it is obvious that success of Levin method
relies on rewriting w′ as Aw. In this situation, namely, when only values of w are
known, finding matrix A could be a problem.

The oscillating function w can be approximated by the trigonometric interpola-
tion polynomial

w(x)
.
= a0 +

n
∑

i=1

(ai cos (αix) + bi sin (αix)) ,

where the coefficients a0, ai, bi, i = 1 . . .N , can be effectively computed by the dis-
crete fast Fourier transform.

Then, the integral of the form (4) can be approximated by

I
.
=

∫ b

a

f a0 +

n
∑

i=1

f (ai cos (αix) + bi sin (αix)) dx =

a0

∫ b

a

f dx+

∫ b

a

n
∑

i=1

f (ai cos (αix) + bi sin (αix)) dx.

In this form, the integral is suitable for the Levin method.
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