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Abstract: In this contribution we propose a model of coupled heat and
moisture transport in variable saturated deformed porous media. Solution of
this model provides temperature, moisture content and strain as a function
of space and time. We present the detailed description of the model and
a numerical illustrative example.
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1. Introduction

Phenomena involving coupled transport processes in deformed porous media are
important in civil and transport engineering as well as agriculture and ecology. In
the past a considerable effort has been invested into developing a fully generalised
model describing these phenomena. For related models including thermal creep and
chemical deterioration of porous media at high temperatures and fire see e.g. [3]
and [5]. In this contribution we extend our work [1] and we propose a coupled
model describing moisture and heat transport in partially saturated deformed con-
crete. The presented model is based on mass and energy conservation law and it is
completed by appropriate equilibrium equations. In order to describe the interplay
between damage and the transport processes and the material elasticity degradation,
respectively, we adopt a straightforward damage model, using mechanical damage
parameter as well as thermal damage parameter.

2. Mathematical model

Let Ω be a bounded domain in R
2 with Lipschitz boundary Γ. Let Γ3 and Γ4 be

open disjoint subsets of Γ. Let ϑ ∈ (0,∞) be fixed throughout the text, I = (0, ϑ)
and Ωϑ = Ω × I denotes the space-time cylinder, Γϑ = Γ × I, Γ3ϑ = Γ3 × I and
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Γ4ϑ = Γ4 × I. Let us also mention that throughout the text we use the standard
Einstein summation convention. The mathematical model consists of the following
equations

∂θ(h)

∂t
= ∇ · (K(h, T,u)∇h) in Ωϑ, (1)

c(h, T )
∂T

∂t
= ∇ · (λ(h)∇T ) + cℓK(h, T,u)∇h · ∇T in Ωϑ, (2)

∂σij(h, T,u)

∂xj
+ bi = 0, i = 1, 2, in Ωϑ. (3)

Equation (1) represents the moisture balance law, equation (2) represents the energy
balance law and equation (3) is the equilibrium equation. In (1)–(3) θ [-] is the
moisture retention, h [m] is the pressure head, K [m s −1] the hydraulic conductivity,
T [◦C] denotes the temperature, u = [u1; u2] [m] is the vector of displacements,
c [Jm−3K−1] the volumetric heat capacity of the sample, λ [W m−1K−1] the thermal
conductivity, cℓ [J m−3K−1] the volumetric heat capacity of water, σ = σij [Pa] is
the symmetric elastic stress tensor and b = [b1; b2] [N m−3] is the volume force. The
model is completed by the appropriate boundary conditions

−K(h, T,u)∇h · n = αh(h− h∞) in Γϑ, (4)

−λ(h)∇T · n = αT (T − T∞) in Γϑ, (5)

−σijnj = ti, i = 1, 2, in Γ3ϑ, (6)

ui = ūi, i = 1, 2, in Γ4ϑ, (7)

and initial conditions

h = h0 in Ω, (8)

T = T0 in Ω, (9)

u = u0 in Ω. (10)

In (4)–(7) n = [n1;n2] denotes the outward unit normal vector, αh [s−1] is the
coefficient of moisture transfer, h∞ [m] is the ambient matric potential, αT [W m−2K]
the heat transfer coefficient, t = [t1; t2] [N m−1] is the surface forces vector and
ū = [ū1; ū2] [m] is the vector of prescribed displacement. In (8)–(10) h0 [m] is the
initial pressure head, T0 [◦C] is the initial temperature and u0 = [u01; u02] [m] is the
initial displacement.

3. Constitutive relations

In this section we will describe the constitutional relationships for moisture re-
tention, moisture and thermal fluxes and mechanical behavior of the model.
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Figure 1: The moisture retention (left) and the thermal conductivity (right) depen-
dance on the pressure head

3.1. Heat and moisture transport behavior

The moisture retention (see Figure 1) is given by van Genuchten relation [6]
θ(h) = θr + (θs − θr)(1 + |ξh|n)−m, where θr [-] is the residual retention, θs [-]
the saturated retention and ξ [m−1], m [-], n [-] are the empirical parameters of
the van Genuchten relation. This relation is applicable for the partially saturated
porous media, e.g. zones with negative pressure head. The thermal conductivity
(see Figure 1) is given by [4]

λ(h) = C1 + C2θ(h) − (C1 − C4)exp(−(C3θ(h))
C5), (11)

where C1, C2, C4 [Wm−1K−1] and C3, C5 [-] are the empirical parameters. The hy-
draulic conductivity is given by [2]

K(h, T,u) = K0(h)104(1−D(T,u)), (12)

where K0 [ms−1] is the initial permeability and D [-] the multiplicative thermo-
mechanical damage parameter. The initial permeability is given by [4] K0(h) =

ks

√

Se(h)
(

1 −
[

(1 − Se(h)
1/m)m

]2
)

, where ks [ms−1] is the saturated hydraulic con-

ductivity and Se(h) = (1 + |ξh|n)−m. The thermo mechanical damage parameter is
defined as D(T,u) = ω(T,u) + χ(T ) − ω(T,u)χ(T ), where ω [-] is the mechanical
damage parameter defined in (15) and χ [-] is the thermal damage parameter de-
fined in (16). The evaluation of the damage parameters is further discussed in the
Section 3.2.
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3.2. Mechanical strains and damage parameters

In order to analyze the interplay between the damage and the transport phenom-
ena we introduce a simple damage model taking into account the reduction of the
elastic stiffness. The elastic stress tensor is defined as

σij = [1 − ω(T,u)][(1 − χ(T )]Eijklǫ
e
kl, (13)

ǫeij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

− δijαǫ(T − T0), (14)

where Eijkl [Pa] is the symmetric tensor of initial elastic moduli, ǫeij [-] is the elastic
strain tensor. In order to evaluate the damage parameters ω [-] and χ [-] we follow [5].
The mechanical damage function ω is defined as

ω(T,u) = 1 −
κ0

κ(T,u)
exp [−γ(κ(T,u) − κ0)] , (15)

where γ [-] is the fracture release rate, its values for concrete varies around value 100.
Further in (15) κ [-] is the damage history parameter taking the maximum value
attained by the modified equivalent von Mises strain ǫ̃(T,u) (for details see [5, p. 722])
or threshold κ0 [-] which is defined as the ratio between the tensile strength and
the Young’s modulus (for details see [5, p. 723]). It follows from [5, pp. 723, 728]
that dealing with temperatures lower than 50◦C we may neglect the temperature
dependance of the threshold κ0 and the fracture release rate γ.

The thermal damage parameter χ [-] is defined as [2, equation (30)]

χ(T ) = ζ1(T − T0) − ζ2(T − T0)
2, (16)

where ζ1 = 2 × 10−3 K−1 and ζ2 = 10−6 K−2.

4. The approximate solution

In order to solve the problem (1)-(10) we formulate the variational form of the
stationary problem. Let 0 = ψ0 < ψ1 < · · · < ψM = ϑ be an equidistant parti-
tioning of the time interval [0;ϑ] with time step τ . We set a fixed integer n such
that 1 ≤ n ≤M . We denote f(x, ψn) by fn. The time discretization is accom-
plished through the semi-implicit scheme. Successively for n = 1, . . . ,M , for given
[hn−1, T n−1] ∈ L∞(Ω)∩W 1,2(Ω) and [un−1

1 , un−1
2 ] ∈ [ū1

n−1; ū2
n−1]+W 1,2

D (Ω) we search
[hn, T n] ∈ L∞(Ω) ∩W 1,2(Ω) and [un

1 , u
n
2 ] ∈ [ū1

n; ū2
n] + W

1,2
D (Ω), where by W

1,2
D (Ω)

we denote the space W 1,2(Ω) of functions with zero trace on Γ4, such that

∫

Ω

θ(hn) − θ(hn−1)

τ
φ1 dx+

∫

Ω

K(hn−1, T n−1,un−1)∇hn · ∇φ1 dx

+

∫

Γ

αh(h
n − hn

∞
)φ1 dx = 0, (17)
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∫

Ω

c(hn−1, T n−1)
T n − T n−1

τ
φ2 dx+

∫

Ω

λ(hn−1)∇T n ·∇φ2 dx+

∫

Γ

αT (T n−T n
∞

)φ2 dx

−

∫

Ω

cℓK(hn−1, T n−1,un−1)∇hn−1 · ∇T n−1φ2 dx = 0, (18)

∫

Ω

σn
1i

∂φ3

∂xi

dx+

∫

Ω

bn1φ3 dx+

∫

Γ3

tn1φ3 dx = 0, (19)

∫

Ω

σn
2i

∂φ4

∂xi
dx+

∫

Ω

bn2φ4 dx+

∫

Γ3

tn2φ4 dx = 0, (20)

holds for any [φ1, φ2, φ3, φ4] ∈W 1,2(Ω).

5. Numerical solution

The semi-implicit time discretization leads to the system of nonlinear equations

1

τ
Cn−1

(

Xn − Xn−1
)

+ Kn−1Xn + R
(

Xn
)

= Fn, (21)

where Xn = (hn, T n, un
1 , u

n
2) is the vector of unknown nodal values of matric poten-

tial, temperature and displacements in time ψn. The constant matrices Cn−1,Kn−1,Fn

and the nonlinear term R
(

Xn
)

consist of the element integral contributions related
to the local approximation. This system of equations is solved using the Newton
method in each time step. Let us denote

Φ(Xn) =
[

Cn−1 + τKn−1
]

Xn − τR
(

Xn
)

− Cn−1Xn−1 − τFn.

The solution in the (k + 1)-th iteration is

Xn
(k+1) = Xn

(k) − JΦ
−1(X

n
(k))Φ(Xn

(k)), (22)

where JΦ denotes the Jacobian matrix of Φ, containing partial derivatives “JΦ =
∇XΦ(Xn)”.

6. Numerical example

In this section we present a numerical example illustrating the applicability of the
presented model. For simplicity we assume the plane stress problem with a square
domain Ω representing the concrete retaining wall fixed at the bottom, holding the
mass of wet soil at the right side. The domain is exposed to an ambient temperature,
moisture retention (through an ambient matric potential, e.g. the wet fully saturated
soil) and surface forces, see Figure 2. In the Table 1 there are physical parameters.

The spacial discretization of the domain is carried out by means of the FE method
with triangular elements with piecewise linear approximation. The numerical proce-
dure has been implemented in Matlab. The time step is set τ = 240 s. In Figure 3
we can see the displacement u1 and the displacement u2 after 12 hours. In Figure 4
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x1

x2

h0 = -15m
T0 = 10◦C

ū1 = 0mm
ū2 = 0mm

αh = 10−20 s−1,h∞ = −1 m
αT = 10−20Wm−2K−1,T∞ = 50◦C

αh = 10−20 s−1

h∞ = −1m
αT = 10 Wm−2K−1

T∞ = 50◦C

αh = 10 s−1

h∞ = −1m
αT = 10−20 Wm−2K−1

T∞ = 50◦C
t1 = −300 kN m−1

αh = 10−20 s−1,h∞ = −1 m
αT = 10 Wm−2K−1,T∞ = 50◦C

t2 = −200 kN m−1

Figure 2: The domain Ω, the boundary and initial conditions
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Figure 3: The displacement u1 [mm] (left) and the displacement u2 [mm] (right)

we can see the moisture retention after 12 hours and the temperature distribution
after 2 hours.

The aim of this numerical example was to evaluate the damage influence on the
moisture transport processes. The damage is developing mostly due to mechanical
loads in the bottom corners of the domain, the temperature contribution to the dam-
age development here is negligible due to relatively low temperature changes during
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symbol value unit
volumetric heat capacity of the sample c 37.7 Jm−3K−1

volumetric heat capacity of water cℓ 19.9 Jm−3K−1

empirical parameter C1 0.55 Wm−1K−1

empirical parameter C2 0.8 Wm−1K−1

empirical parameter C3 3.07 -
empirical parameter C4 0.13 Wm−1K−1

empirical parameter C5 4 -
residual moisture retention θr 0.01 -
saturated moisture retention θs 0.11 -
empirical van Genuchten parameter m 0.2 -
empirical van Genuchten parameter n 1.48 -
empirical van Genuchten parameter ξ 1.11 m−1

saturated hydraulic conductivity ks 1 × 10−10 m s−1

thermal expansion coefficient αǫ 1 × 10−6 K−1

fracture release rate γ 100 -
Young’s modulus E 30 GPa
tensile strength ft 3 MPa
compressive strength fc 35 MPa
Poisson’s ratio ν 0.2 -

Table 1: Material properties for the illustrative example
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Figure 4: The moisture retention θ [-] (left) and temperature T [◦C] (right)

the time of exposure. In Figure 4 we can see the irregularities in the moisture reten-
tion field development in the bottom corners caused by this phenomenon. Taking
into account the hydraulic conductivity performance we expected the massive me-
chanical load influence on the transport processes, which has been confirmed by this
example.
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7. Conclusion

In this contribution we present the coupled thermo-hygro-mechanical model de-
scribing coupled transport processes in deformed porous media. The model allows
us to evaluate the impact of mechanical and thermal damage on the permeability
and mechanical behavior of the medium.

From the moisture retention field we can see the damage influence on the per-
meability. If we deal with relatively low temperatures the thermal influence on the
damage parameter increase (i.e. the permeability decrease) is neglectible. Although
imposing the sample to high temperatures (e.g. fire modeling) the thermal influence
could prevail over the mechanical one.
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