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Abstract: To improve the performance of the L-BFGS method for large scale
unconstrained optimization, repeating of some BFGS updates was proposed
e.g. in [1]. Since this can be time consuming, the extra updates need to be
selected carefully. We show that groups of these updates can be repeated
infinitely many times under some conditions, without a noticeable increase of
the computational time; the limit update is a block BFGS update [17]. It can
be obtained by solving of some Lyapunov matrix equation whose order can
be decreased by application of vector corrections for conjugacy [16]. Global
convergence of the proposed algorithm is established for convex and sufficiently
smooth functions. Numerical results indicate the efficiency of the new method.
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1. Introduction

In this contribution we assume that the problem function f : RN → R is diffe-
rentiable and propose a new limited-memory variable metric (VM) method for large
scale unconstrained optimization

min f(x) : x ∈ RN ,

based on the well known method [3] with the BFGS update, denoted by the BNS
method here, and on vector corrections for conjugacy [15], [16].

The best known limited-memory VM methods are the L-BFGS [8] (implemented
as subroutine PLIS in [9]) and BNS methods, described briefly in Section 2. Their
performance can be improved, e.g. using vector corrections for conjugacy. But since

DOI: 10.21136/panm.2018.19

177

http://dx.doi.org/10.21136/panm.2018.19


they can deteriorate stability and require extra arithmetic operations, the conditions
for its application are complicated.

Another way was proposed e.g. in [1], where some BFGS updates are computed
several times, which however can be time consuming. In Section 3 we will derive
a limit update formula for the infinitely many times repeated BNS update, which
can be written as the block BFGS update [17] and which can be obtained by solving
of some low-order Lyapunov matrix equation. For quadratic functions this update
represents the best improvement of convergence in some sense under some condi-
tions [16], [17]. Note that the relative increase in the computational time for one
iteration in comparison with the BNS update is very small for N large.

In Section 4 we show that the order of this equation can be decreased of unit
always, or more by application of vector corrections for conjugacy. Vice versa, the
combination of those methods with the repeated BNS update enables us to reduce
the number of correction vectors and to simplify the conditions for their choice.

In Section 5 we outline an efficient method for solving of the corresponding
low-order Lyapunov equations numerically. The application to the limited-memory
VM methods and the corresponding algorithm are presented in Section 6. Global
convergence is established in Section 7 and numerical results are reported in Section 8.

We refer to report [18] for details and proofs of assertions, here we briefly present
only the main results. We will denote by ‖ · ‖F the Frobenius matrix norm.

2. The standard BNS method

The BNS method belongs to the VM or quasi-Newton (QN) line search iterative
methods [12]. They start with an initial point x0 ∈ RN and generate iterations
xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where usually the
direction vector is dk = −Hkgk, matrix Hk ∈ RN×N is symmetric positive definite
and the stepsize tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk (1)

(the Wolfe line search conditions [14]), 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk) and
gk = ∇f(xk). Typically, H0 is a multiple of I and Hk+1 is obtained from Hk by
a VM update to satisfy the QN condition (secant equation)

Hk+1yk = sk, yk = gk+1 − gk (2)

(see [12]), k ≥ 0. To simplify the notation we frequently omit index k and replace
index k + 1 by symbol +, index k − 1 by symbol − and index k − 2 by symbol =.

Among VM methods, the BFGS method [12, 14] belongs to the most efficient;
the update preserves positive definite VM matrices and can be written in the form

H+ = (1/b)ssT +
(
I − (1/b)syT

)
H
(
I − (1/b)ysT

)
, b = sTy, (3)

where b > 0 by (1). The BNS and L-BFGS methods represent its well-known limited-
memory adaptations. In every iteration we choose HI

k ∈RN×N (usually HI
k = ζkI,
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ζk > 0) and recurrently update HI
k (without forming an approximation of the in-

verse Hessian matrix explicitly) by the BFGS method, using m couples of vectors
(sk−m̃, yk−m̃), . . . , (sk, yk) successively, where m̃ = min(k, m̂−1), m = m̃ + 1, k ≥ 0
and m̂>1 is a given parameter. In case of the BNS method, the update formula can
be expressed in the form [3]

H+ = SR−TDR−1ST +
(
I − SR−TY T

)
HI
(
I − Y R−1ST

)
, (4)

where Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], Dk = diag[bk−m̃, . . . , bk], (Rk)i,j =
(STk Yk)i,j for i≤j, (Rk)i,j =0 otherwise (an upper triangular matrix), k≥0.

3. The repeated BNS update

Repeating the standard BNS update (4) in the following way

H̄i+1 = SR−TDR−1ST +
(
I − SR−TY T

)
H̄i

(
I − Y R−1ST

)
, i = 0, 1, . . . (5)

for an arbitrary matrix H̄0, we will derive the infinitely many times repeated BNS
(RBNS) update and describe its properties and relations to various forms of the
discrete and continuous Lyapunov matrix equations, see e.g. [6].

Theorem 1. Let HI ∈ RN×N, A = STY , C= AR−1− I, H̄0 = HI and the sequence
{H̄i}∞i=1 be given by (5). If the spectral radius %(C)<1, then the matrices I + C, A
are nonsingular and the RBNS update H+ of HI defined by H+ = limi→∞ H̄i satisfies

H+ = SX∗ST +
(
I − SA−TY T

)
HI
(
I − Y A−1ST

)
, (6)

where X∗ is the unique and symmetric positive definite solution to the discrete Lya-
punov (or Stein) matrix equation

X∗ = CTX∗C +R−TDR−1. (7)

Moreover, if A is symmetric, then it is positive definite, X∗= A−1 and H+Y = S,
i.e. the QN conditions (2) with all stored difference vectors are satisfied.

The property H+Y = S for A symmetric indicates why we expect better results for
the repeated BNS update compared with the standard BNS update in case that A
is near to a symmetric positive definite matrix, e.g. close to a local minimum.

Most of the numerical methods to solve the discrete Lyapunov equation use some
transformation to the continuous Lyapunov equation [6]. Here we will suppose that
there is the unique factorization A = UL, where U is an upper triangular matrix with
nonzero diagonal entries and L a lower triangular matrix with unit diagonal entries.
We refer to report [18] for details and conditions for existence of this factorization.

Using this factorization, we can equivalently rewrite (7) as the Lyapunov equation

XZ + ZTX = 2W, X= UTX∗U, Z = 2U−1RL−1− I, W = L−TDL−1. (8)

The order of equation (8) can be always decreased, see Section 4. Some properties
of solutions to (8) are given by the following lemma.
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Theorem 2. Let %(C)< 1. Then X = UTX∗U is a unique and symmetric positive
definite solution to the Lyapunov equation (8). Moreover, let A be symmetric. Then
X= DU , where DU is a diagonal matrix with the same diagonal entries as U .

Note that the property X = DU for A symmetric is numerically advantageous e.g.
when the matrix A is almost symmetric.

4. Relations to methods based on vector corrections

The following theorem shows how the order of equation (8) can be decreased, if
some lower-right-corner principal submatrix of order µ ≥ 1 of A is diagonal, e.g. by
using vector corrections for conjugacy, see Section 4.1. Since every such submatrix
of order one can be considered to be diagonal, we can always decrease the order of
these equations and choose µ ≥ 1. Besides, we show how the assumption %(C)< 1
in Theorems 1– 3 can be equivalently written in another form. Note that we can
also always assume that µ < m, since the definitions of A in Theorem 1 and D,R
after (4) imply that D is the diagonal part and R upper triangular part of A and thus
for A=D (i.e. R = D = A) we have C=AR−1− I = 0, therefore X∗ = R−TDR−1

by (7) and update (6) is identical to (4).

Theorem 3. Let the matrices D,R, S, Y be given as in Section 2, W,X,Z by (8), DU

by Theorem 2, X∗ by (7), C=AR−1−I, C̃=R−1CR and suppose that A=STY =UL,
where U is an upper triangular matrix with nonzero diagonal entries and L a lower
triangular matrix with unit diagonal entries. Let A be partitioned in the form

A =

[
A11 A12

A21 A22

]
(9)

with A22∈Rµ×µ, 0<µ<m, and C̃,D, L, U,W,X,Z be partitioned in the same way.
If A22 =D22 then C̃12, C̃22 are null matrices and %(C)=%(C̃)=%(C̃11). Moreover, let
%(C)<1 and the columns of S be linearly independent. Then
(a) X12, X21 are null matrices and L22 =I,
(b) X22 =U22 =D22 and X11 is the unique solution to the Lyapunov equation

X11Z11 + ZT
11X11 = 2W11. (10)

4.1. Application of corrections for conjugacy

Our numerical experiments indicate that the RBNS update (6) can improve the
performance of the L-BFGS method and that this improvement can be increased if
we also use vector corrections for conjugacy. In [16] it was shown that correction
vectors from only two preceding iterations can be sufficient, considering that these
corrections can deteriorate stability and require additional arithmetic operations.
Since these corrections are performed before updating, we will consider all columns
of S, Y to be possibly corrected and write Sk = [s̃k−m̃, . . . , s̃k], Yk = [ỹk−m̃, . . . , ỹk],

b̃i= s̃Ti ỹi, where s̃i=si, ỹi=yi, k−m̃≤ i≤k, if the corrections are not used.
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In case of one correction vector from the preceding iteration and b̃− 6= 0 we set

s̃ = P T
1 s, ỹ = P1y, P1 = I − (1/b̃−)ỹ−s̃

T
− , (11)

which yields s̃Tỹ−= s̃T−ỹ = 0, for two correction vectors and b̃−b̃= 6=0 we set

s̃=P T
2 s, ỹ=P2y, P2 =I−(1/b̃−)ỹ−s̃

T
−−(1/b̃=)ỹ=s̃

T
=, (12)

which yields s̃Tỹ− = s̃Tỹ= = s̃T−ỹ = s̃T=ỹ = 0. In view of the assumption A22 =D22 of
Theorem 3 we use the projection P2 only if s̃T−ỹ= = s̃T=ỹ−=0 (if s̃−, ỹ− were corrected).

5. Solution to the Lyapunov equation

Denoting n = m−µ (the order of the Lyapunov equation (10)), we consider here
only the case 1 ≤ n < m, see the comments before Theorem 3. Many methods for
solving the Lyapunov equations can be found in [6]. Since we want to have rounding
errors small, we attempt to solve only linear systems whose order is maximally four
for m ≤ 5 (i.e. n ≤ 4) (the usual order is n(n + 1)/2 , i.e. 10 for n = 4). Thus
for n > 2 we generalize the idea used in [7] for special matrices Z,W . We choose
some block of entries of X11, calculate the remaining entries and then we obtain the
appropriate values of chosen entries as a solution to some linear system, see [18] for
details. Note that equation (10) can be solved directly for n≤2 .

6. Implementation

We assume that HI=ζI, ζ= sTy/yTy>0 and implement a modified BNS method,
which replaces some difference vectors s, y by the corrected vectors s̃, ỹ and then
some BNS updates (4) by the repeated BNS updates (6) with X∗ given by (8) and
Theorem 3. A more detailed description can be found in [18].

We use corrections for conjugacy when the value b̃ is sufficiently great, the devi-
ation of A from symmetry is small and if the values |s̃−|/|s−|, |ỹ−|/|y−| are not too
great. We do not use correction vectors from two preceding iterations, if the benefit
of the corrections would be too small (as an indicator, the ratio b/b̃ is used, see [16]).

We use the repeated BNS update if ‖R11C̃11R
−1
11 ‖F ≤ ρ < 1, if diagonal entries

of A, U are sufficiently great and if the deviation of A from symmetry is not too
great.

For the repeated BNS update with HI =ζI, the direction vector and an auxiliary
vector Y TH+g+, see below, can be calculated efficiently, similarly as in [3]. The
procedure for updating the basic matrices STY=A, Y TY is similar to the algorithm
given in [3] for updating the matrices D,R,Y TY in (4), see Procedure 6.2 in [18].
Since we need the whole matrix A, we use an auxiliary vector Y T

− s = −t Y T
−Hg

for computation of the last row of A to have the number of arithmetic operations
approximately the same.
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Algorithm 6.1 (simplified, without stopping criteria)

Data: A maximum number m̂, 1<m̂≤ 5, of columns S, Y , line search parameters
ε1, ε2 and the global convergence parameter ρ.

Step 0: Initiation. Choose starting point x0 ∈ RN , define the starting matrix H0 = I
and the direction vector d0 = −g0 and initiate the iteration counter k to zero.

Step 1: Line search. Compute xk+1=xk+tkdk, where tk satisfies (1), gk+1=∇f(xk+1),
sk = tkdk, yk = gk+1−gk, bk = sTk yk, ζk = bk/y

T
k yk, set m̃ := min(k, m̂−1),

m := m̃ + 1 and define HI
k := ζkI. If k = 0 set Sk := [sk], Yk := [yk],

STk Yk := [sTk yk], Y
T
k Yk := [yTk yk], compute STk gk+1, Y T

k gk+1, define Hk+1 by (4)
and go to Step 5.

Step 2: Corrections. If conditions for corrections are satisfied, see above, compute
s̃k, ỹk by (11) or (12), otherwise set s̃k :=sk, ỹk :=yk.

Step 3: Basic matrices update. Similarly as in [3] form the matrices Sk, Yk, S
T
k Yk,

Y T
k Yk and set Ak=STk Yk, b̃k := s̃Tk ỹk.

Step 4: VM update. If conditions for the RBNS update are satisfied, see above, solve
the Lyapunov equation (10) according to Section 5 and define update Hk+1

of HI
k by (6), otherwise define Hk+1 by (4).

Step 5: Direction vector. Compute dk+1 = −Hk+1gk+1 and an auxiliary vector
Y T
k Hk+1gk+1. Set k := k + 1. If k ≥ m̂ delete the first column of Sk−1,
Yk−1 and the first row and column of STk−1Yk−1, Y T

k−1Yk−1. Go to Step 1.

7. Global convergence

Assumption 1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Theorem 4. If the objective function f satisfies Assumption 1, Algorithm 6.1 ge-
nerates a sequence {gk} that either satisfies lim

k→∞
|gk|=0 or terminates with gk= 0 for

some k.

8. Numerical experiments

We compare our results with the results obtained by the L-BFGS method [8] and
by our two latest limited-memory methods [16, 17], all implemented in the system
UFO [13], using the following collections of test problems:

• Test 11 – 55 modified problems [11] from the CUTE collection [4] with various
dimensions N from 1000 to 5000 (prescribed for the given problem),

• Test 12 – 73 problems from collection [2], N= 10 000,

• Test 25 – 68 problems from collection [10], N=10 000.
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Test 11 Test 12 Test 25
Method NFV Time NFV Time NFV Time

L-BFGS 80539 10.494 119338 51.51 502966 438.58
Alg. 4.2 in [16] 63987 9.062 66244 30.15 309650 305.88
Alg. 1 in [17] 65228 8.745 96748 40.13 371830 345.88

Alg. 6.1 63162 9.080 66941 30.46 299736 323.95

Table 1: Comparison of the selected methods
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Figure 1: Comparison of ρM(τ) for Test 25 and various methods for NFV and TIME.

The source texts and the reports corresponding to test collections Test 11 and Test 25
can be downloaded from the web page www.cs.cas.cz/luksan/test.html.

We have chosen m̂= 5, ρ = 0.99, ε1 = 10−4, ε2 = 0.8 and the final precision
‖g(x?)‖∞≤10−6.

Table 1 contains the total number of function and also gradient evaluations
(NFV) and the total computational time in seconds (Time).

For Test 25, we also compare these methods by using performance profiles [5].
Value ρM(0) is the percentage of the test problems for which method M is the
best and value ρM(τ) for τ large enough is the percentage of the problems that
method M can solve. Performance profiles show the relative efficiency and reliability
of the methods: the higher is the particular curve, the better is the corresponding
method.

Figure 1, based on the results in Table 1, demonstrates the efficiency of our
method in comparison with the L-BFGS method. We can also see that the numerical
results for the new method and the results for our methods [16], [17] are comparable.

9. Conclusions

In this contribution, we derive the infinitely times repeated BNS update for gene-
ral functions, describe its properties and relations to various forms of the Lyapunov
matrix equations and show how the order of these equations can be decreased by
combination with methods [15, 16] based on vector corrections for conjugacy. Our
experiments indicate that this approach can improve unconstrained large-scale mi-
nimization results significantly compared with the frequently used L-BFGS method.
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[5] Dolan, E.D. and Moré, J.J.: Benchmarking optimization software with perfor-
mance profiles. Math. Program. 91 (2002), 201–213.
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