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Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic
marta.hlavova@fs.cvut.cz

Abstract: In this article, a method of cubic spline curve fitting to a set of
points passing at a prescribed distance from input points obtained by measure-
ment on a coordinate measuring machine is described. When reconstructing
the shape of measured object from the points obtained by real measurements,
it is always necessary to consider measurement uncertainty (tenths to tens
of micrometres). This uncertainty is not zero, therefore interpolation meth-
ods, where the resulting curve passes through the given points, do not lead
to acceptable results in practice. Also, conventional B-spline approximation
methods cannot be used because, for real distances between measured points
(tenths to units of millimetres), the distance of the input data from the result-
ing approximation curve is much greater than the measurement uncertainty
considered. The proposed reconstruction method allows to control the maxi-
mum distance of the resulting curve from the input data and thus to respect
the uncertainty with which the input data was obtained.
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1. Introduction

The coordinate measuring machine (CMM) is a device used for measuring specific
3D elements and their surfaces to inspect their declared properties. The result of
such procedure is a set of discrete points measured on a surface of an object with
a probe. Currently, the most commonly used probes are mechanical, optical, laser
and white light. Depending on the type of CMM, the probe position can be manually
controlled using a handbox with a joystick or it can be controlled by a computer.
Computer controlling is mostly used for calibration procedures and physical stan-
dards calibrations [3] and [6]. In this case, the position of the probe is constantly
compared with the Computer Aided Design (CAD) model and adjusted accordingly.
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This CAD model must be as accurate as possible to maintain a specified accuracy
of CMM that ranges from tenths to tens of µm. For example, data used in the
following computations was obtained by measuring on CMM Zeiss Xenos with the
length measurement error E0 = 0.3 + L/1000 µm, where L is the measured length
in m, [5] and [8]. Currently, CAD models of basic geometrical elements are Non-
Uniform B-Spline (NURBS) [4] representations of these surfaces – i.e. the CAD
model of a sphere is a NURBS representation of the sphere fitted to the measured
points by the least squares method (LSM). In the case of so-called freeform surfaces
(i.e. surfaces whose shapes do not belong to the group of fundamental geometrical
3D objects such as plane, sphere, cone, etc. and with very difficult analytical expres-
sion), this approach does not work. Currently, this task of dimensional metrology
is often solved with a technology called the reverse engineering (RE) that combines
methods of computer graphics, numerical mathematics and statistics. The result is
a CAD model of the measured surface where the shape sufficiently accurate with
respect to the application considered.

In this paper, 2D situation is considered – i.e. the process of shape fitting is
reduced to planar curves. In the following computations, let us consider planar
points [x, z] the points of intersection of a measured surface with the vertical plane.
Cartesian x- and z-coordinates of these points are the real measurands and the
y-coordinates are rounded as a constant. In Section 2, NURBS curves commonly
used in CAD systems are presented and one specific example shows their compar-
ison. Section 3 describes our new method of creating a new kind of CAD model
of the curve passing through the measured points in a prescribed distance. In Sec-
tion 4, two practical examples of this proposed method are demonstrated and their
comparison with approximation cubic curve widely used in CAD systems is pre-
sented. Section 5 summarizes achieved results and suggests possible applications
of this proposed method for shape reconstruction of the surface. All data used in
the following computations was obtained by measuring of Czech Metrology Institute
(CMI) freeform standard Hyperbolic paraboloid on CMM Zeiss Xenos [7].

2. Modelling of plane curve

For reconstructing the shape of a curve, two approaches can be considered. If we
know the kind of a curve (e.g. a line or a parabola) and this curve is not transcenden-
tal – i.e. it has a polynomial representation, we can use numerical LSM for computing
the required coefficients and the result is an approximation of these points by the
polynomial of a given degree. In the case of an unknown curve shape, this approach
is impossible and using well known computer graphics methods – approximation and
interpolation by a segmented spline cubic curve is more appropriate. Approxima-
tion by the clamped uniform B-spline cubic curve (clamped cubic) [1] is a classic
and simple approximation method usually used in CAD systems that are based on
NURBS representation and then require data in a form of control points. Using
another kind of approximation, open Coons B-spline cubic curve, is complicated,
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because this model is not implemented into CAD systems due to its user-unfriendly
features. The position of each knot point of this segmented curve (including the
starting point and the end point) depends on 3 control points – i.e. the system does
not start drawing the curve until the 3 points have been entered. The problem can
be solved as follows: Each segment of this open Coons cubic B-spline can be defined
as a Bézier curve, and because these segments are C2 continuous, this curve can
be considered a clamped cubic (with new computed control points) and can be dis-
played in CAD systems. The simplest solution is an interpolation of given points by
a segmented cubic curve. A widely used interpolation by the so called natural spline
cubic is formed by C2 continuous segments of Ferguson cubics. If the software works
with another type of an interpolation spline, such as the Rhinoceros used here, it
is necessary to convert this spline into the clamped cubic again as for the previous
Coons cubic B-spline.

Due to uncertainty of measurement, the situation becomes more difficult, because
we have to suppose that the given position of each point is not exact. The real point
lies in a circular surrounding of a measured point, where the value of the radius of
this circular surrounding is taken from E0 of CMM (0.3 µm in our case). The task
is to find such a CAD model of the curve that preserves this uncertainty in terms of
keeping the distance of the curve from the given points. All three curves mentioned
above are depicted in Fig. 1.

Figure 1: Interpolation cubic, clamped cubic and Coons cubic B-spline.

The interpolation curve goes exactly through the given points; both approximat-
ing curves copy the shape of the control polygon, but their distances from the control
points are too large. A specific example of 14 measured points is shown in Fig. 2,
the coordinates of these points are given in Table 1. The corresponding clamped
cubic and Coons cubic B-spline curves were modelled in Rhinoceros. A figure of
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the approximation curves is not included because the differences between these two
curves are not visible and both curves look like the interpolation curve (using the
same scale as in Fig. 2). The numerical values of basic statistics for the comparison
of these two curves are shown in Table 2. The distance between the curve and a point
is measured on a normal line to the curve passing through the given point. These
statistics were obtained from statistical analysis tools implemented in Rhinoceros.

Figure 2: Distribution of 14 measured points.

x 28.0146 24.0136 20.0130 16.0106 12.0058 8.0019 4.0018
z 28.9639 26.9577 25.4530 24.4476 23.9388 23.9376 24.4413

x 0.0046 -3.9951 -7.9970 -11.9979 -16.0016 -20.0030 -24.0063
z 25.4445 26.9470 28.9493 31.4450 34.4486 37.9510 41.9538

Table 1: Coordinates of 14 measured points (in mm).

Clamped cubic Coons B-spline
Average distance 0.0821 0.0758
Median distance 0.0808 0.0779
Standard deviation 0.0091 0.0077
Maximum distance 0.0162 0.0844
Minimum distance 0.0695 0.0606

Table 2: Basic statistics of distances obtained from Rhinoceros (in mm).
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3. Construction of a new approximation segmented cubic curve

In the new method, both approaches mentioned above are incorporated. Firstly,
measured points are interpolated by the segmented cubic spline. At each knot point
(i.e. each measured point), the normal line to this curve is computed and a new
pair of points on each normal line at the distance of 0.3 µm is constructed. Then,
the selection of one point from this pair is made as follows: The original points are
approximated with third-degree polynomial

P (t) = at3 + bt2 + ct+ d, t ∈ [x1, xn],

where n is the number of points and coefficients a, b, c, d are computed by LSM (the
use of the cubic curve is a sufficient solution of approximation in computer graphics
and it is also the simplest one). At each point [xi, zi], the value of P (xi) is compared
with zi. In the case when P (xi) > zi, the new point on the normal line with the
smaller z-coordinate is chosen; for P (xi) < zi the second point is chosen. Finally,
these new chosen points are interpolated by a spline segmented cubic curve, see
Fig. 3; the radius of all circular surroundings is increased to make them visible.

This is not the only solution, but this “close enough” (referred to as CE from now
on) curve certainly meets the required condition of the prescribed distance between
the points and the curve. Due to the way the new points are selected, this curve can
describe the detailed shape of a measured curve more precisely than an interpolation
curve.

Figure 3: Construction of CE curve.

4. Practical examples and comparisons of results

All calculations were computed by Maple software and all statistics were taken
from the software Rhinoceros.
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Considering the 14 measured points from Fig. 2, coefficients of the approximation
cubic curve given by LSM are presented in Table 3 and an illustrative image of CE
curve is shown in Fig. 4 (the circle surroundings are enlarged).

a b c d
0.00000088 0.01563206 -0.31291765 25.44435929

Table 3: Coefficients of the approximating polynomial P (t).

Figure 4: CE curve given by 14 points.

The results of the diagnostics of this CE curve and both classical approximation
curves are presented in Table 4. This CE curve fully complies with the condition of
uncertainty and is applicable as a detailed CAD model of the curve shape.

Clamped cubic Coons B-spline CE curve
Average distance 0.0821 0.0758 0.0003
Median distance 0.0808 0.0779 0.0003
Standard deviation 0.0091 0.0077 0.0000
Maximum distance 0.0162 0.0844 0.0003
Minimum distance 0.0695 0.0606 0.0003

Table 4: Basic statistics of distances obtained from Rhinoceros (in mm).

Shape reconstruction will be more accurate with more points available. However,
regarding the complexity of the mathematical model of a given surface, sometimes it
is necessary to reduce the number of the measured points used for the reconstruction.
Comparison of the properties of CE curves obtained by reduction of given points is
performed on the following model example. 57 measured points and CE 57 curve are
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Figure 5: CE curve given by 57 points.

Clamped 57 Clamped 29 Clamped 15
Average distance 0.0048 0.0193 0.0789
Median distance 0.0048 0.0196 0.0814
Standard deviation 0.0004 0.0016 0.0089
Maximum distance 0.0055 0.0217 0.0873
Minimum distance 0.0038 0.0135 0.0375

CE 57 CE 29 CE 15
Average distance 0.0003 0.0005 0.0024
Median distance 0.0003 0.0003 0.0007
Standard deviation 0.0000 0.0007 0.0044
Maximum distance 0.0003 0.0051 0.0175
Minimum distance 0.0003 0.0000 0.0000

Table 5: Basic statistics of distances obtained from Rhinoceros (in mm).

shown in Fig. 5. In the x-axis direction, the points are about 1 mm apart. CE 29
and CE 15 curves given by a reduced number of the points were computed, in the
case of CE 29, every second point was removed and in the case of CE 15, every fifth
point was retained. In all three cases, a clamped cubic curve was modelled and the
distances between the inner 55 points and curves were obtained from Rhinoceros.
Basic statistics of these distances are summarized in Table 5 and a detailed distance
distribution of the clamped cubic curves and CE curves are shown in Fig. 6 and Fig. 7.

The results obtained from CE 29 and CE 15 curves are not significant as from
CE 57 but an improvement could be made, for example, by adjusting the distance of
the new control points. Comparing these CE curves with clamped curves, CE curves
give better results than clamped curves, even when the number of the measured
points is reduced.
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Figure 6: Distribution of distances – clamped cubics.

Figure 7: Distribution of distances – CE curves.
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5. Conclusion

This contribution is focused on a detailed reconstruction of a planar curve from
a set of measured points considering the uncertainty of measurement. The method to
accomplish the required curve shape reconstruction including both the approximation
and the interpolation approach is described here. The case of a planar curve does not
have much use in metrological practice, but it is the first basic step to solve the same
problem concerning surfaces [2]. In future work, a procedure to obtain a detailed
CAD model of a surface from a set of measured points will be proposed. This method
will certainly find great use in the processes of calibration and measurements on
freeform surfaces.
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