
PANM 20

Alexej Kolcun; Stanislav Sysala
RTIN-based strategies for local mesh refinement

In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Miroslav Rozložník and Karel Segeth and Jakub Šístek (eds.):
Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Hejnice, June 21-26, 2020. Institute
of Mathematics CAS, Prague, 2021. pp. 59–68.

Persistent URL: http://dml.cz/dmlcz/703101

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/703101
http://dml.cz


Programs and Algorithms of Numerical Mathematics 20
J. Chleboun, P. Kůs, P. Přikryl, M. Rozložńık, K. Segeth, J. Š́ıstek (Eds.)
Institute of Mathematics of the Czech Academy of Sciences, Prague 2021

RTIN-BASED STRATEGIES FOR LOCAL MESH REFINEMENT

Alexej Kolcun, Stanislav Sysala

Institute of Geonics of the Czech Academy of Sciences
Studentská 1768, Ostrava, Czech Republic

alexej.kolcun@ugn.cas.cz, stanislav.sysala@ugn.cas.cz

Abstract: Longest-edge bisection algorithms are often used for local mesh
refinements within the finite element method in 2D. In this paper, we discuss
and describe their conforming variant. A particular attention is devoted to
the so-called Right-Triangulated Irregular Network (RTIN) based on isosceles
right triangles and its tranformation to more general domains. We suggest to
combine RTIN with a balanced quadrant tree (QuadTree) decomposition. This
combination does not produce hanging nodes within the mesh refinements and
could be extended to tetrahedral meshes in 3D.

Keywords: mesh refinement, longest-edge bisection, right-triangulated irreg-
ular network, balanced quadrant tree, homomorphic transformation

MSC: 65D17, 65D18

1. Introduction

Triangulation of an investigated domain is an essential part of the finite element
method. It splits the domain into a union of non-overlapping elements with simple
polygonal or polyhedral shapes and usually satisfies certain conformity conditions like
that two neighboring elements have common vertex, edge or face. We shall consider
the triangulation in 2D with the standard triangular finite elements Pk, k = 1, 2, . . .

The triangulation (the finite element mesh) could not contain triangles with too
sharp or obtuse angles in order for the finite element approximation of a problem to
be sufficiently accurate. Simple domains can be easily split into triangles with simi-
lar shapes and thus the mesh has a good quality. Mesh generation for complicated
domain is more challenging, see, e.g., [1, 6]. One can use the Delaunay mesh gen-
eration [1] based on maximization of the minimum angle. A strategy of minimizing
the maximum angle can be found in [4].

In practice, the original mesh has to be locally refined to achieve more accurate
numerical results. To this end, longest-edge n-section algorithms and their variants
are often used, see, e.g., [3, 7]. The longest-edge bisection algorithms are most known.

Our contribution is motivated by solution of slope, tunnel or foundation stability
problems where one of the aim is to determine possible failure zones causing collapse

DOI: 10.21136/panm.2020.06

59

http://dx.doi.org/10.21136/panm.2020.06


of a structure. This application requires a multiple usage of the local refinement in
order to detect the failure zones more precisely, see [2, 8, 9]. We focus on simple
domains that can be homomorphically transformed to a regular domain consisting
of a union of squares. Therefore, it suffices to work with isosceles right triangles in
order to keep the regularity of the refined meshes.

The contribution is organized as follows. In Section 2, a conforming variant of the
longest-edge bisection algorithm is introduced. Section 3 is focused on a special case
of the mesh, the so-called Right-Triangulated Irregular Network (RTIN) consisting of
isosceles right triangles. In Section 4, we demonstrate that the RTIN approach can be
also used for more complex geometries if a homomorphic transformation is applied.
In Section 5, we suggest to build RTIN on a balanced quadrant tree (QuadTree)
decomposition. Section 6 contains some concluding remarks.

2. Longest-edge bisection algorithm

The main idea of this algorithm is based on splitting a triangle according to
the longest edge. To save the required property of the mesh we also have to split
the neighboring triangle with common edge. It is illustrated in Figure 1 where the
triangle ABC is chosen for refinement and its neighbor is denoted by DCB. In
Figure 1 a), the common edge BC is the longest one for both the triangles and thus
one can directly split these triangles. If BC is not the longest edge of DCB (see
the cases b) and c)) then this neighbor triangle is split repeatedly until the common
edge becomes the longest one. Figure 1 b) shows one-split decomposition of DCB,
Figure 1 c) shows two-split decomposition of DCB. It is clear that after finite number
of splittings, the edge BC is the longest one for both the neighbor triangles.

a) b) c)

Figure 1: Refinement strategies of triangular mesh.

Let us consider the initial triangular decomposition T = {t1, t2, t3, . . . , tm} of
a bounded domain and the array (stack) of distinct triangles T4R = (ti1 , ti2 , . . . , tin),
T4R ⊂ T , chosen for the refinement. Then the conforming variant of the longest-edge
bisection algorithm can be written as follows.

60



Algorithm 1: (Conforming longest edge bisection algorithm)

1 WHILE (T4R is not empty}

2 { Select the first element t from T4R, t=ABC,

where a=BC is the longest edge.

3 IF (a is on the boundary of the domain)

4 { Split t to triangles q=DAB, r=DCA.

5 Replace triangle t with q,r in T.

6 Remove t from T4R.

7 }

8 ELSE

9 { Select tt=BCD - neighboring triangle to ABC with common edge BC.

10 IF (tt is in T4R) Remove tt from T4R.

11 IF (a is the longest edge in tt)

12 { Split the pair (t,tt) into four triangles EAB,EBD,EDC,ECA.

13 Replace t,tt with these four triangles in T.

14 Remove t from T4R.

15 }

16 ELSE T4R=(tt, T4R).

17 }

18 }

From Algorithm 1, we see that three possible scenarios can occur for any inves-
tigated triangle t. If the longest edge a of t is a part of the domain boundary or if a
is also the longest edge of the neighboring triangle tt then one can simply split t and
eventually tt, see steps 3–15. If a is not the longest edge of tt then we cannot directly
split t. In this case, we postpone the splitting of t and analyze its neighbor tt at first
such that the array T4R is used as a stack, see step 16.

It is important to note that the while-loop in Algorithm 1 is finite. Indeed, we
can add only a finite number of triangles to the stack T4R in front of the triangle t
because the lengths of their longest edges will increase and the domain is bounded.
Once the last triangle (with the maximal longest-edge length) is added to T4R in
front of t, the splitting process will start. During this process, other triangles can be
added to T4R in front of t only if some triangle requires multi-split decomposition as
in Figure 1 c). After finite number of steps, the triangle t will be on the first position
in T4R and can be split. It leads to the reduction of T4R.

a) b) c)

Figure 2: Illustration of Algorithm 1: a) initial stack T4R consists of the dark
triangle, b) enlargement of the stack for local refinement, c) final refinement.

61



The extension and the consequent reduction of the stack T4R within Algorithm 1
is illustrated in Figure 2. The initial triangulation and the stack consisting of the grey
triangle is depicted in Figure 2 a). The sequence of triangles inserted into T4R is
shown in Figure 2 b). We see that three triangles were added to T4R and their
longest-edge lengths increase. The last added triangle has the longest edge on
the boundary and thus can be divided according to steps 3–7. The final locally
refined mesh is in Figure 2 c). The remaining triangles from T4R are split according
to steps 9–15. The edges signed by numbers indicate the order of the refinement
process. In this particular case, any triangle from T4R was split into two triangles
(1-split decomposition).

Starting from the initial mesh, the longest-edge bisection algorithm can be applied
multiply leading to a family of refined and nested meshes. The following theorems
summarize important properties of the family, see, e.g., [3].

Theorem 1 (Rosenberg). Let αmin be the smallest angle in the initial triangulation.
Then longest-edge bisection algorithm produces the family of triangulations where any
angle α of any triangle from any triangulation is such that

α ≥ αmin

2
.

Theorem 2 (Adler). The longest-edge bisection algorithm produces only a finite
number of different triangular shapes.

From these properties, it follows that the locally refined meshes produced by the
longest-edge bisection method do not degenerate even if a large number of refinements
is applied.

3. Right-triangle irregular network

If the investigated domain is a union of square subdomains then one can choose
the initial triangulation consisting of isosceles right triangles. Then the splitting
process is always one-step as in Figure 2, that is, any triangle from T4R is split just
into two triangles, unlike the case from Figure 1c). It means that any refined triangle
is again isosceles and right-angled and thus the triangles have the same shape and do
not degenerate. These facts simplify implementation and properties of Algorithm 1.
The corresponding locally refined meshes create the so-called Right-Triangle Irregular
Network (RTIN).

The construction of RTIN based on a family of nested local refinements is illus-
trated on the example depicted in Fig. 3. It is considered a quarter of the circle Q
inside a square domain and the initial mesh, see Fig. 3 a). Further, we consider the
parameters 0 < h1 < h2 < 1, ε > 0 and the following criterion:

h1 ≤
p(t ∩Q)

p(t)
≤ h2 and l(t) > ε, (1)

where p(t) denotes the area of triangle t and l(t) is the length of its hypotenuse.

62



The purpose of the first part of the criterion is not to refine the triangle if its
intersection with prescribed domain is negligibly small. Such small intersections we
can see in Figure 1 b) – black. The choice of the values h1, h2 depends on compexity
of the shape of analyzed domain. Experience leads to values of h1 = 0.1, h2 = 0.9.
Nevertheless, the resulting triangulation is sufficiently fine in the given area. This
is enforced by the condition of conformity in the decomposition scheme used – see
steps 9–17 of Algorithm 1.

The second part of criterion (1) is a simple stopping criterion based on the small-
est size of the considered element.

We construct a family of locally refined nested meshes by the following automat-
ically generated process:

Algorithm 2: (RTIN)

1 Based on criterion (1) generate T4R.

2 WHILE (T4R is not empty)

3 { Apply Algorithm 1.

4 Based on criterion (1) generate T4R.

5 }

a) b) c) d)

Figure 3: a) The initial triangulation and the subdomain Q (in grey), b) highlighted
negligible small intersections of domain with triangles, c) and d) local refinement for
different values of ε. Dark triangles form a stack for further refinement.

4. RTIN-based decomposition of more general domains

Let Ω ⊂ R2 be an investigated bounded domain which can be one-to-one trans-
formed to a domain Ω̃ ⊂ R2 consisting of a union of square subdomains. In particular,
we assume that there exists a Lipschitz continuous and piecewise smooth function
χ : Ω̃→ Ω satisfying

c1 ≥ det∇χ(ξ) ≥ c2 > 0 for almost all ξ ∈ Ω̃, (2)

where c1 and c2 are positive constants independent of ξ ∈ Ω̃. Further, let T̃ be a given
RTIN-based triangulation of Ω̃. Then, using the function χ, one can transform any
nodal point of T̃ to Ω and create the corresponding triangulation T of the domain Ω.

63



In addition, we assume that χ is a homomorphic transformation in the following
sense: there exists a minimal and maximal angles α and β, 0 < α < β < π, such
that for any RTIN-based triangulation T̃ of Ω̃ the corresponding triangulation T
of Ω has the same structure as T̃ and any angle of any triangle from T has the size
between α and β. In general, it is not clear whether the natural assumption (2) is
a sufficient condition for satisfying the homomorphic assumption on χ.

Using the transformation χ one can construct a family of locally refined meshes
in Ω as in Algorithm 1 applied on RTIN. It is worth noticing that this family can-
not be interpreted as the longest-edge bisection, nevertheless its triangles cannot
degenerate due to the assumptions on χ.

The transformation χ and RTIN-based meshes are illustrated in Figures 4 and 5,
where model examples on stability of a tunnel and a slope are considered, respec-
tively.

a) b) c)

Figure 4: RTIN-based meshes for a tunnel profile (a symmetric quarter of the ge-

ometry is considered): a) initial triangulation of Ω̃, b) its transformation to Ω,
c) adaptively refined RTIN-based mesh (detail).

a) b) c)

Figure 5: RTIN-based meshes for a slope profile: a) initial triangulation of Ω̃, b) its
transformation to Ω, c) adaptively refined RTIN-based mesh.

For the slope geometry, the angle characteristic has been done, see Figure 6.
Distributions of initial triangulation are in red, distributions of final triangulations
are in green. We see that the mesh does not degenerate.

64



Figure 6: Angle characteristics of the initial (in dark area) and adaptively refined
meshes for the slope geometry. x-coordinate means the minimal angle of any triangle,
y-coordinate means the maximal one.

5. RTIN strategy based on a balanced quadrant tree

The RTIN approach cannot be directly extended to 3D. At least, we are not able
to keep the same shape of all tetrahedrons during the mesh refinement procedure.
Motivated by the eventual extension of RTIN to 3D, we suggest the following strategy
based on a balanced quadrant tree presented in 2D.

2D extension of recursive dichotomous interval division is called a quadrant tree
(QuadTree). It leads to a non-conforming decomposition of a rectangular domain into
rectangles. For any rectangular element e of the decomposition, one can determine its
recursion depth σ := σ(e). The degree of nonconformity denoted by η is the maximal
difference σ(e1)−σ(e2) of the recursion depths between two adjacent elements e1, e2.
The determination of η is illustrated in Figure 7 a), b). We see that the recursion
depths σ of the squares vary from 1 to 4. We have σ = 1 for the largest squares, while
σ = 4 for the smallest ones. Therefore, η = 3 in Fig 7 a), while η = 1 in Figure 7 b).
If η ≤ 1 then we say that QuadTree is balanced. The balanced QuadTree in 2D and
also in 3D has been used, for example, in [5].

a) b) c)

Figure 7: a) QuadTree with η = 3. b) QuadTree with η = 1 (balanced QuadTree).
c) RTIN based on the balanced QuadTree (QRTIN).

65



RTIN strategy based on balanced QuadTree (or, briefly, QRTIN) has two steps:

1. refine locally QuadTree and keep η = 1, see Figure 7 b);

2. create QRTIN from the refined QuadTree, see Figure 7 c).

The local refinement procedure of the balanced QuadTree is similar to Algorithm 1.
We prescribe the set E of all rectangular elements defining the initial QuadTree and
the stack E4R of elements to be refined. We sketch the corresponding algorithm.

Algorithm 3: (Balancing)

1 WHILE (E4R is not empty)

2 { Select first element e from E4R.

3 refin=TRUE.

4 Find the set S of all elements adjacent with e.

5 FOR (s in S)

6 { IF (sigma(e) > sigma(s)) { E4R = (s, E4R). refin=FALSE. }

7 }

8 IF (refin) { Refine e and any s in S. Remove e from E4R.}

9 }

The balance of refined QuadTree is kept due to step 6 of Algorithm 3: if an adja-
cent element s has the recursion depth σ(s) less than σ(e) then we postpone the split
of e and add s at the beginning of the stack E4R.

The conforming QRTIN can be created from the balanced QuadTree, for example,
by the following algorithm.

Algorithm 4: (Converting quadrilaterals to triangles)

1 For (e in E)

1 { IF (e contains a hanging node)

2 { Split e into four triangles using both diagonals.

3 Split all triangles containing the hanging nodes. }

4 ELSE

5 { Split e into two triangles by one of the diagonals.}

6 }

Resulting algorithm we obtain as a modification of the Algorithm 2, where instead
of step 3 (Algorithm 1) the Algorithm 3 and Algorithm 4 are used.

To illustrate QRTIN we use the same example as in Section 3. In Figure 8, one can
see: a) A locally refined balanced QuadTree structure, b) the corresponding QRTIN,
and c) RTIN refinement (for comparision). In Table 5, the number of triangles for
RTIN and QRTIN strategies and their ratios nQ/nH depending on selected values
of ε are compared.

It is readily seen that the QRTIN strategy can be also transformed to more
general domains as in Section 4.

66



a) b) c)

Figure 8: a) QuadTree, b) the corresponding QRTIN, c) RTIN refinement (for com-
parison).

ε n(RTIN) n(QRTIN) nQ/nH

8 271 572 2.11
4 616 1208 1.96
2 1282 2824 2.20
1 2666 5792 2.17

0.5 5664 12022 2.12

Table 1: Comparison of numbers of triangles for RTIN and QRTIN strategies.

6. Conclusion

In the paper, we have started from the longest-edge bisection algorithm in 2D
and applied it on Right-Triangulated Irregular Network (RTIN) consisting of isosceles
right triangles. RTIN-based refinements has been extended to more general domains
by the homomorphic transformation. We have also suggested a combination of RTIN
and the balanced quadrant tree (QRTIN) for purposes of extension to 3D in future.
This research has been motivated by solution of geotechnical stability problems.

Acknowledgements

This work was supported by grant No. 19-11441S of the Czech Science Founda-
tion.

References

[1] Cheng, S-W., Dey, T. K. and Shewchuk, J. R.: Delaunay mesh generation.
CRC Press 2013.

[2] Haslinger, J., Repin, S. and Sysala, S.: Inf-sup conditions on convex cones and
applications to limit load analysis. Math. Mech. Solids 24 (2019), 3331–3353.

[3] Korotov, S., Plaza, A. and Suárez, J. P.: Longest-edge n-section algorithms:
Properties and open problems. J. Comput. Appl. Math. 293 (2016), 139–146.

67



[4] Kř́ıžek, M.: On the maximum angle condition for linear tetrahedral elements.
SIAM J. Numer. Anal. 29 (2) (1992), 513–520.

[5] Kůs, P. and Š́ıstek, J.: Coupling parallel adaptive mesh refinement with
a nonoverlapping domain decomposition solver. Adv. Eng. Softw. 110 (2017),
34–54.

[6] Lo, D. S. H.: Finite element mesh generation. CRC Press 2015.

[7] Rivara, M. C. and Irribaren, G.: The 4-triangles longest-side partition of triangles
and linear refinement algorithms. Math. Comp. 65 (216) (1996), 1485–1502.

[8] Sysala, S., Blaheta, R., Kolcun, A., Ščučka, J., Souček, K. and Pan, P.: Com-
putation of composite strength by limit analysis. Key Engineering Materials 810
(2019), 137–142.

[9] Sysala, S., Haslinger, J. and Repin, S.: Reliable computation and local mesh
adaptivity in limit analysis. In: J. Chleboun, P. Kůs, P. Přikryl, M. Rozložńık,
K. Segeth, J. Š́ıstek, and T. Vejchodský (Eds.), PANM 19: Proceedings of 19th
conference, Programs and Algorithms of Numerical Mathematics, Prague: Czech
Academy of Sciences, 2019, 149–158.

68


