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Three technical tools in uniform spaces

by Zden&k Frolik

These are refinements (just a way of looking on conc-
crete functors), partitions of unity, and distal spaces.
Perhaps the most impartant one, the atoms inAuniform spa-
ces, is still being developed by several members of the
seminar, and therefore we omit genéral discussion. Just in
l.4 one of the possible applications is mentioned. For
convenience of the reader a short outline‘is described:

§ 1. Refinemats
l.1. Generaglities
1,2, Fine and coarse objects
l.3. Simply fine and simply coarse objects
l.4. Functors meserving the structure

§ 2. Partitions of unity
2.1, Generalities
2.2+ Partitions subordingted to a cover
2.3. Examples

§ 3. Distal spaces
3.1. Generalities
3.2+ Distally coarse spaces
3.3, Agp-partitions generate 2,

3.4, Stone-Weierstrass theorem for distal spacez

3.5, Disteally fine spaces
3466 Cardinal reflections
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§ 1. Refinemats
1.1. If ¥ is a concrete category, then a refinement of

% is an object-onto concrete embedding
e 5L
into a concrete category & . Thus objects of A coin-
cide with the objects of & , and
(X, e LX, V)

for each X and Y. | |

Our basic examples?at this moment are the classi-
cal refinements: '

Ued>p o>t <> set®
Here p(X,Y) is the set of all proximslly continuous
(abbr. proximal) mappings of X into Y, t{(X,Y) is the
set of all continuous mappings of X into ¥ , and
setU(X,Y)- is the set of all mappings of X into Y .
In general the class of all refinements of 3 is
ordered by inclusion, H is the smallest refinement,

and setjg is the largest refinement, where set%}(Xﬁ)
is the set of all mappings of X into Y . If & 4

and ‘;{2 are two refinements ther the meet (infimum)
is 5{,1/\:(?2 - (X,Y) = ‘jﬂl(}{,x} N &, (X,Y), and the
join (supremum) is the smallest category o‘ﬁj R4 cifz?
such that &, v &,(2,0) o £,(X, 1) o (K1) .

If F is a concrete covariant functor of X into
any category ¥ , then F generates a refinement 3
of W as rfollows:

S(X,:) = 3(“;,;

On the other hand any refinement & ¢—» % of % can
be obtained in this way. Indeed, let Ny consisgt of

all identity bijections in & which are isomorphisms
in £ , and consmer the factor
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= ¥/
K /N;g
which has for the objects the equivalence classes under
the equivalence ~p , and if ~g X is the equivalence
class containing X, then ‘

$ (g X, ~vgt) = &K, T).
Now AX —>~y X §defines a functor F: ’:}C—-‘ré@//uég

which generates & in the sense explained above.

It follows that the investigation of refinements
of K 1is equivalent to the investigation of concrete
functors from ¥ . In the examples above we may define
t(X,Y) without mentioning topolcgy, and then we get the
category of uniformizable topological spaces from 1
by factorization t/~;, or we define the underlying
functor t from uniform spaces into the category Top
of topological spaces, and define

t(X,Y) = Top (tX,tY).
Of course
t/vy =2 1 LU <> Top

Similarly, we can define proximal mappings p(X,Y)
without menticning the category Prox of p oximity spa—
ces, and Prox is then isomorphic with pi’.»vp s 0T we

can start with the functor pr U —> Prox, and define
p{X,¥} = Prox (pX,pY¥) .
The main advantage of refinements is:

A refinement can be defined by many functors, and
any functor defining a refinement XK <> £ of L
factors through & —-’ré‘fﬁ/wgg y and extends to €.

For each £ let pcf{ be the reflection of U on pre-

compact uniform smces (the largest precompact uniformi-
ty contained in XJ). Then
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p(X,Y) = UX,p,¥) = Ulp X,p ¥)
Thus p is generated by the functor Pot U—U.,

For each X let th be the finest uniformlty Wblch
is topological equivalent to X. Then

$(X,Y) = UteX,Y) = UlteX,t,Y)
and hence t is generated by tf:U '—-7’>__U .
Intuitively, the "structure" of the objects of
%E/Nx/ | is "less rich" than the'structure of the ob~
jects of ¥ . The objects of siilwég are calIed éﬁ =

spaces. As we noticed the category of ;B—Spaces over
4C can be realized in many natural ways.

l.2. Fine and coarse objectse.

Let, W <L be a refinement, and let ¥ be a
class of objects. An object Y is called & -fine w.r.t.
% if

L (x,v) = H(X,¥)

for each X in ¥ . An object X is called & -coarse
weret. X if the equality holds for each Y in % o IFf
X is the class of all objects, then we say simply/

4 -fine and < -coarse. Finslly, I ~bi-extremal ob-
jects wer.t. ¥ are the objects which are % =fine
Weroete £ 28 well as £ -coarse wer.t. ¥ ,

One checks immedistely thoet the classes of the
fine werst. X objects are closed under inductive gene=
ration in X , and the class of all coarse w.r.t.X
objects is closed under projective generation in & .
This implies:

Theorem 1. If &% 4is a refinement of the catego~
ry of uniform spaces, or proximity spaces or topologi-
cal spaces, then the category of £ -fine w.r.t. X
spaces is coreflective, and the category of all & -
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coarse w.r.t. % spaces is reflective, and the reflec-
tion is just a modification (the reflection maps are
identity mappings), and the coreflection is a comodifi-
cation (it should be remarked that in the categories
listed any coreflection on is always a modification).

The coreflection onto £ -fine w.r.t. ¥ spaces,
if it exists, is denoted by ¢y , and the reflect-
ion on & ~-coarse w.r.t. X spaces by &'c,ge . If
X is the class of all objects, we simply write égf

and' %co

Examples (p,t,Set). Consider the refinement s Pyt
and set of U. One checks immediately that set X is the

finest uniformity on X (the diagonal is a uniform vi-
cinity of the diagonal), Set oX is the coarsest unifor-

mty on X (Xx X is the only uniform V1C1n1ty of the
diagonal). And we have

Set(X,Y) = U(Set X,¥) = U(X,Set ¥)

As concerns t, t-fine uniform spaces are called
fine in Isbell [2], universal in Bourbaki, and topolo-
gicglly fine in Cech [17]. It is easy to check that
th is the finest uniformity which induces the same

topology as ¥ does. One can say that the uniformly con-
tinuous pseudometrics on t.X are just the continuous

pseudometrics on X, This is trivial, as well as other
descriptions of tpoX. We have noticed

£(X,Y) = U(£,.X,Y)

On the other hand, t X is set-coarse for each X, i.c.

th = Seth. This is proved easily as follows: if x,

y€¥%, x+ y, consider the subspace Y of R consisting of

all 7 , n=1,2,..., and let f: Y—> X asgign x to the
points ~—5a , and y to the points med * Since Y

isdiscrete, f: Y —> X is continuous, and if f is uni=-
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formly contimuous then necessarily the points x and y
are proximsl. -
As concerns p, the p-coarse objects, called pro-
ximally coarse uniformities in Cech {11, are just pre=-
compact uniform spaces. It holds

p(X,Y) = U(X,p,¥),
but it is not true that
p{X,¥) = U(pX,Y¥) »
The first example is due to M.J\Kat'étov', and inde-
pendently by C. Dowker. The simplest way” (Pol jakov, yand
Cech [11) is based on the following two results whlch ;
will be needed 1n the sequel'

Lemma 1. If p (XA¥) = pc(YKY) then X = .

Proof. The p:c-oxmal nelghborhoods of the d:n.ago- -
nal are just the uniform vicinities of the dlagonal. ‘

Lemma 2. If pJX =X, then pc(xx Y) = ch;s’p.cI
for each Y. ' ' e

Proof. Check finite covers of Xx'){ if pPX = = Y.
Now, if ch#-X’ then ‘

P (X »X) 4 pc{»pc
and ,
pc(péXxX)' = p {X®p ) =pXxrp X
inf -l.ch;&X X)sp Xi=XxX
Thus ch‘xX ard Xxch’ are pr'oxraally oqulvalont how-

ever, the Jo:m is strictly finer.

Obvioudy the class of set-fine spaces is heredi-
tary, and finitely productive. On the other hand, the
classes of topologically fine and proximally fine apa-
ces are neither finitely mroductive nor hereditary.

In the case of tp, we have tpo(XxY) = t,Xvith'just

when one of the spaces Ias finite Hausdorff ref flection,
or XxY is psezudocompact. If X is metrizable and Haus-
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dorff then no dense proper subspace of tfx is topologi-~
caly fine. As concerns the proximally fine spaces the
productivity has been a @woblem for some time. M. HuSek
has constructed two countable topological fine spaces
such that the @ oduct is not proximslly fine, and pro-
ved that the product is proximally fine iff all finite
subproducts are. It should be noted that G. Tashjian
(to appear in Fund.Math.) independently proved a weaker
theorem with finite replaced by countable; her proof is
an immediate consequence of her lemma on "completely
additive" disjoint families of sets in products. We
must say that the first non-trivial example of pr oxim—
ally fine spaces were metrizable spaces; one can find a
proef in V. Pohlovd’'s second note. Sinece every uniform
gpace is a subspace of a product of pseudometrizable
spaces, it follows that every space is a subspace of a
proximally fine space. On the other hand, not many spa—
ces acfmi‘l: an embedding into topologically fine spaces
(subspaces of topologically fine spsces are called sub=-
fine by Isbell; see his book),

Return o the general case
ij_ﬁ i -
Pollowing J. Vilimovsky, a refinement & of X is
called fine-maximal if
% (x,7) = K (HX,1),

and coarse maximal if

&£ (X,Y) =W (X, %1

for each X and Y. J. Vilimovsky showed that K e P
is fine-maximal iff the subcategory K of £ is ref-
lective in X (and then &, is the reflection), and si-
milarly for coarse-maximal refinecments. Reflectivity is
defined in the usual way:

For each object ¥ of & there cxists an £ -morph-
ism &X: L—> X', x’ being an cbject of ¥ , such iLhat
far each morphism £ ¢ & (£,Y), Y being azn object of X,
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there exists exactly one £ : X —>Y such that

big
X > Y
X:’
Obviously, if & is fine-maximal then we can put X~ =
= &X. Conversely, since ¥ and # bhave the same ob-

Jects we see immediately that %y has an inverse which

is in K etc. ,

The terms fine-maximal and coarse-maximal were
used becsuse usually ¥ is fixed and variouss & are
studied, and then ¥ & is fine-maximal"™ is more conve-
nient tp me than " % is reflective in & *.

For some categories it is true that no "non-trivi-
al" full subecategory is boih reflective and coreflecti-
ve. For some categories of uniform spaces, in particu-
lar for all uniform spaces and all Hausdorff this theo-
Tem is proved by M. Husek, first note.

A similar property of a category is: ¥ is both
reflective and coreflective in no non-trivial refine-
ment of X . This is & theorem of HuSek and Vilfmovsky
(Spring 1974) for ¥ Dbeing the category of Hausdorff
uniform spaces (see Hudek and Vilimovsky), and HuSek
(Spring 1975) for the category of 2ll uniform spaces.
We shall return to these theorems in 1.4.

In conclusion we present a trivial, however, use-
ful, characteriza_tion of fine-maximal refinements.

Theorem. Assume that ¥ is the category of uni-
form spaces, or more generally, a concrete categary in
which projective generation can be always performed.
Then a refinement £ of X is fine-maximal (i.eo
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is reflective in & ) if and only if the following
condition is satisfied:

if §f, : X — X3 is a projectivel y-generating
family in # , then 4f, : X—> X .} is a projective-
ly-generating family in & . ‘

Equivalently: If X<>» ¥ in ¥ , then so in ¥ ,
and in X = N4X_3 in ¥ , then so in & . |

Certainly this generalizes as follows:
For a given X, , ,
U{&X,Y) = K(X,Y) for each Y iff the conditi-

on in Theorem is satisfied for this X = £ X, and all
B .

1.3, Simpiy Pine and simply coa_rse objects.

Consider a refinement ¥ <> &F . An objeect X
is called simply & ~fine if X is the finest space
in its eguivalence class vy X. Clearly each &-fi-
ne space is simply &0 -fine, and the converse is true
for U > p (this is easy from 1.2, see ExX.(c) below)
but it is not trme in general (some examples are gi-
ven in V. Kirkové and Ptdk-Kosina and the converse
is open for the cardinal reflections even if a parti=-
al result is given in RodI.

Note twop simple results which are used without
any reference:

(1) X is ¢ -fine iff X is simply < ~-fine, and
the reduced product (in ¥ ) of any tw &£ -morphisms
with domain X is an ¢ -morphism.

(2} Assume that for each X there exists a simp~-
ly & -fine space X' in ~/y X, Then X' = XX for
each X iff 41X — X'} is functorial. ‘

Similar results hold for “coarse".
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Definition. An object X is called simply & -
biextremal if X is simultaneously simply & -fine and
simply & -coarse. '

Clearly the bi-extremal objects are simply bi-
extremal, and X is simply bi-extremal iff the equi-
valence class "y X is & singleton (if the refine-
ment is given by a functor F, then this means ¥X = FY
implies X = Y). In P, Pték it is shown that there ex-
ists @ distally coarse, simply distally fine space
which is not distslly fine (for the definition of di-
stal spaces see § 3). We just check the classical re-
finementse.

Examples. (a) U c—>setY, Since the refinement

is both fine-maximal and coarse-maximal, simply fine
is fine and simply coarse is ecoarse, and hence the
singietom gre the only non-void ibi-fextremal spaces.

(b) U <3 t. Since the refinement is fine-coa—
rse, simply fine spaces are fine. We already noticed
that topological coarse spa_ces are just the set-cto—
arse spaces. On the other hand, the simply topologi-—
cally coarse uniform spaces are just the spaces X such
that the topology is locally compact and the unifor-
mity is the relativization of the unique uniformity
. of the one-point compactification of X. The simply
topologically bi-extremal spaces were characterized
by E. Hewitt as follows: if ¥X; and XE are two dis—

tinct sets in X, then the closure of one of them is
compact. This statement is equivalent to saying: all
the compactifications of the induced topological spa=-
ce are equivelent, and this is eguivalent to: the
proximity of X is +topologically simply bi-extremal
(we have in mind the refinement Prox <— t).

(¢} U <> p. Simply coarse objects are coarse
(this is obvious), and simply fine uniform spaces are
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fine, which follows from the formula p(pX>=<Y) = pXxp¥
which was recalled in l.2. Thus simply bi-extremal ob-
jects are bi-extremal. A trivial example: simply topo=
Iogically bi-extremal spaces are proximally bi-exire-
mgl. Another example: precompact metrizable spaces.
Proximally bi-extremal spaces have been studied by Is-
bell. A nice characterization: every proximally conti-
nmuous image is precompact. Some properiies may appear
in some papers by A. Hager.

le4. Tunctors preserving the structure.

If I <> is s refinement denote by Inv ()
the class of all functors F: X —7 KX such that F pre-
serves the &£ =-stiructure, i.e.

FX € ’Ux‘x
for each X. |

If &£ is given by a functor L of & into some-
thing then Fe Inv () iff LeF = L.

A functor F: 3 —-> X is positive (negative) if FX
is coarser (finer) than X for each X. Denote by Inv (L)

and Inv_($) the positive or the negative functors in
Inv (g)o

Clearly Inv (&) is closed under composition, zmnd
contains the identity functore.

Also Inv (&) is fine-directed, and Inv_(&£) is co~-
arse-directed. Indeed F,° F, is coarser (finer) than

both F; and F, if F; are positive (negative).

The finest element of Inv, (&), if it exists, is
denoted by &€, . Similarly we define X_ .

Since &’_,_ and £_ are idempotent,p‘ﬂ_,_ is a refle-
ction since .7C+is positive, and «f_ is a coreflection sin~
ce f:_ is negative.
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If £, preserves the structwre, i.e. if &£ is fi-
ne-maximal, then ¥_ = &, and similarly for <L} .

Egxamples. (a) U <> setl . Setp = Set_, set, =
= set, . |

(b) U <> p. Since P, Preserves the structure,
Py = Pge Next p_ dis the identity functor. In addition,
any functor in Inv(p) is positive. Indeed, assume
FeInv(p). Given any space X we have

| PF(XxX) = p(XxX).
Always the identity '

F(XZ% X) —> FX=TFX
is uniformly contimuous, and hence

p(EX=xX) — p(FX=FX)
is ynifaormly continuous, and hence by a result of Pol=-
Jakov and the anthor, the identity
X—> FX

is mmiformly coniinuous. ‘

(e) U<—> t. Since tp preserves t, t_ = tpe Next
t, = P,» 2nd in addition, each functor F€ Inv{t) is be-
tween ,tf. and 1, = Pg- If X is ccmpact, then FX = X be-
cause the compact topology is induced by exactly one
uniformity. It follows that FX is finer than X if X is
precompact,
Finally, for any X, FX is finer than chX, and this is
finer than ch.

The . plus-functors: and the minus-functors are of
interest in the case when the coarse and fine functars
do not preserve the structure, and this is certainly
the most interesting case. Notice that t determines
p(t, = p). At this moment the most interesting results
concern coz and hyper-coz refinement.

Remark. It might be of some interest to know
which refinements of U are given by a functor of U in-
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to itself. Also it would be interesting to know exam—-
ples of alternating functors in Inv(£): those which
are not between &_ and &, .

The theorem of HuSek-Vilimovsky that the catego-
ry of Hausdorff uniform spaces has no non-trivial
both fine-maximal and coarse—maximal refinement fol-
Iows immediately from the fact that p_ is identity,
and from the observation of Vilimovsky that Pe is the
coarsest concrete functor on Hausdorff uniform spaces.
A similar theorem for all uniform spaces (proved by

HuSeXk) is an immediate consegmence of the fact that every
uniform space is 2 guotient of a sum of atoms {in uniform

spaces) which are not proximally set-fine. (This fol=-
lows from examples in Cech: Topological spaces, or Je
Isbell’s book - recalled in Hudek’s first note , Pe-
lant-Reiterman description of atoms, and the follo-
wing simple observation:

if a concrete functor is positive on a eclass of
spaces, then it is positive on the inductive progeny

of X .
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§ 2. Partitions of umity

2.1. Generalities. A partition of unity on a set
X is a family {f_]a€ &3 of non-negative functions such
that Z{faxi =1 for each x in X. Now if X has 2
structure, then one is interested just in the priitions
of unity which are closely related to that structure.
It is convenient to look on the partltions as maps in-
to various spaces.

Fix a set of indices A, The seil r? can be viewed
as the m pduct of topological linear spaces. For each
21 we define for x =z g3 € rA

(flxﬂ P = Z-ﬂx 3.

For each p=l the set of all x with fix n <o is a
Banach space (linear structure is :therlted from R
the nprm is l;) denoted by .«zp(A). For p =@ we
t ake ‘

ixly = sup {1x,13

and get £ ,(A). We are interested (this is supported by
theorems) just in the cases p =1 and p =00 . Clearly
the identity embedding

£1(8) —> 24, (8)

is a linear continunous mapping, hence a uniformly con-
tinuous mapping. The closure of ,e (4) in £4,(4) is
usually denoted by c (A). The elemmts of ¢ (A) are
those x = -anl for wH:Lch the set &al 1x ] > E 3 is
finite for each © > 0. If we consider A. as a discre-
te locally compact topological space then we may say
that c_(A) are the continuous functicns which have
the limit O at the infinity. _

It should be remarked that A& 1(4) is finite-di-
mensional iff 2,(a) is :Lspmorphlc to £o(4) (as
topological vectnr spaces), or iff the sets Zl(A)
and Q. (4) coincide. '
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Recall that the dual of £;(4) is £ (A) 2nd the
pairing is <x,y) =2 -{xa,y % . Hence the weak topo~
logy on -2 (A) (the resulting space is denoted £ w) is

progectlvely generated by all 4x — <x,y%5: &yw —aR
¥ e £,(4).

The dual of c_(4) is ,e (A), the pairing is again
{x,y) , and it follows eas:.ly that the weak topology
on ¢ is just the goint,wise convergence, i.e. ¢ {4)
is a subspace of R

Coming back to partitions, if ‘{f 3 dis a3 partition,
then 4f,x% is an element of the unit sphere S in .2,(4),
moreover, it is an element of s* which is the intersec-
tion of S with the positive cone. To avoid any misunder-
standing, recall that

S{A) =«ix'“ 'ﬂl = 1.7(
S (A) ‘{xl X€S, x, Z 0 for each a $.

Te have noticed that each partition éfa} defines & mapp—
ing

X —> 4 £ x§ : X—>5sT,
Comversely, if f: X —» S™ is any mapping then 1(fx) '} is
a partition of. Lnlty.

Definition. A partitiocn ‘ifa} of unity is called E-
uniformly continuous, or simply an E-partition, where E
is one of the spaces £, ¢,; le, Coy If the map
if 7;: ¥—>E is uniformly continucus. Instead of ¢, par-
tltlon we say A —partltlon (the yniformities 1ndzz&,ec1
on £, by c, and £w coincide). We are used to say wesk
il—partltlan instead of 1’31 -partition, and weak ¢ ~par-
tition or weak £ o -partition instead of Cow

0 . o [ . "y o
Notation: Sl’ S1w? So, Sow de;otes the uniform sub-

space S of, respectively, £, or £, or c,, or c .

The distinetion of various structures on S is point-

less in topology becasuse of the following easy and well~

partl ion.
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lemma. The uniform spaces S;, SD and Sow are to-
pologically egquivalent (i.e. 18; = 1pS;, =S, =

= t:f‘sow)
Since

2
] —=> %

g )

R

lw ow

0

it is enough to show that the identity S —-i»ll is
contimious, that means, if x°— x in S__ ¥ pointwise!),
then Bx -x1 1> 0. However, this is very £asye.

242 Part'ltlrms subordinated to a cover., If f:
3 X —> R, then we define

coz £ =<¥x| xeX, Fx%$03.

With every mapping £ = {f 3: X—» £ ,(4) such that
fx+0 for each x, there 1s associated the cover {coz T }
of ¥, and the Lebesgue function A{(f): X— R deflned
as follows:

A(f)x = sup -i“ifaxl. la € 4% = il iy, 5
and the Lebesgue number
inf £ A (f)x | xexd = ;erf-iﬂfxﬂ 3.

Observe that the Lebesgue number of £ is the Le-
besgue number of the cover &coz xaanX]} of £ILXJ]
in the metric space FLX1C fm. Hence:

Proposition, If f: X —> 2, (A) is uniformly con-
tinuous and the Lebesgue number is positive, then
icoz fa;g is a uriform cover of X.

Proof. If the Lebesgue number is r > O, then the
r-balls in f [X1c £,{A) refine 4coz x,AFIX1% .

Corollary. If 4f,} is an Ly -partition of X suich
that fcoz £} is point-bounded, then 4coz f }is a uni-
form cover.
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Proeof. If each p01nt is at moat\/k coz :t‘ s then
the Lebesgue number is = /k .

Remark. A short examination of the proof of Co=-
rollary may lead to a conjecture that the Lebesgue num-
bers of the £-partitions characterize (in an obvious
way) the uniform dimensbn of the space. J. Hejcman pro-
ved the conjecture, and this was the first result of
the seminar.

Lemma., If £: X —> 4, (A) is uniformly continuous
then the Lebesgue function A{f) is uniformly continn-
ous. ,

Proof. Since AMf)(x) = Hfxll, , and since il -lg
is uniformly contimmous on Lo , the composite A ()
is uniformly continuous. (As always, lxfi- Iyl &€
2lizx-34 .)

For further use we recall the following simple re-
sult from Isbell: '

Theorem 1. If 9L dis a uniform cover of X, then
there exists an £y -partition of X such that -icoz f,3
refines U . :

Using this result, M. Zahradnik proved that Theo-
rem 1 is true for any p > 1 (this is simple) and more-~
over, he proved that Theorem 1 does not hold for £, in
the following cases: X is an infinite-dimensional Ba-
nach space, and 2 is the cover by l-balls {(this re-
sult seems to be highly non~trivial).

2.3. Examples. We must state the well know Theo=-
rem 1, Every uniform space is mwojectively generated by
bounded maps in some £, (A); one can take X for A.

This follows immediately from the well known fact
that every bounded metric space {¥X,d)> is isomeiric
with a bounded subset of £,(X). One assigns to eqch
x€X the function ¥y — d(x,y}}.

On the other hand, we shall prove in the next §



that just distal spaces are projectively generated by
AL oo ~partitions.

Another useful class of spaces is described in
the next simple result.

Theorem 2. Let ¥ be the class of all spaces X
with the following property:

for each uniform cover 2 is refined by dcoz f,%
for some .£,-partition 12,3 .
. Then ¥ is p:'od;zctive; and hereditary, hence re-
flective. N |
We shall see that the class of spaces in Theorem
2 contains msmyv quite "fine™ spaces, e.g. sub-metric-
i;f.
In conclusion we indicate several coreflective
classes of spaces:
Let El and E, be uniformities admitted in 2.1.
Let ¥(E|,E,) be the class of all X such that every
El-partitinn is an Ez-partition. It is known that
KLy, £,) is the class of metric-tp spaces
’JC(I,D,_ ‘zlw) is the class of Alexandrov spaces.
(See the second suthor s note, or Fourier paper).

As concerns other non-trivial possibilities just
some negative results are known to me.
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§ 3. Distal spaces

The only reference is the author_'s "Basic refine-
ments of uniform spaces", Lecture Notes in Mathematics
378. Springer-Verlag,l140-158, where distal spaces are
introduced. ‘

3.1. Recall that a family -iXa} of subsets of a
uniform space X is called uniformly discrete if there
exists a uniformly continuous pseudomeiric @ on X
such that 4X 3 is metrically discrete in X, @2 ,
or equivalently, there exists a uniform vicinity U of
the diagonal such that U EXaﬁn'Xb =@ for each & F b.

Definition. A mapping £: X—> Y is called distal
if for each uniformly discrete family 4Y_ 3 in ¥, the
family $f “lry gl3 is uniformly discrete 1n X. The set
of all distal mappings from X into Y is denoted by
D{X,Y1).

It is obvious that U(X,Y) . D(X,Y) and the class D of

all distal mappings fromsa category which is a refine~
ment of U. Thus
Ue>Dcc> Setm.

Given a cardinal X, , one defines oG-distal ma-
pping to be the mapping £: X —> ¥ such that the pre-?-
image of each uniformly discrete family is uniformly
discrete provided that the cardinzl of the irdex set
is less than %, ©

Again the o¢-distal morphisms form a refine-
ment D™ of U, and D% = p (For & = 0 the definition of
o =dist g1 maps coincides with a familiar description
of proximal maps.) Thus we have

Uece—sD <>D®csd? = p,
3.2, It was mroved in the above reference that
D is coarse maximal, i.e.
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D(X,Y) = U(X,D 1),

and EDCX was described as follows: the finite-dimensio=-
nal covers (see 3.3) of Y form a basis for the unifornm
covers of DCY. The same procedure gives:

Theorem. For each 3
p%<X,Y ) = U(x, 0¥ 1),

and the fimite~dimensional uniform covers of Y with
the cardinal less than ¥, form a basis for the uni-
form covers of DY Y.

Kosina and Ptik have given an intrinsic characte-
rization of the collection of all uniformly discrete
families in a uniform space, i.e. an axiomatic defini-
tion of distal spaces. It should be remsrked that a ni-
ce characterization is due to Williams.

Remark. The zero-dimensional uniform covers of a
space X fu:m% uniformity which will be denoted by D, X.

Clearly D, is a reflection. Also each of Dg , defined
in an obviouns way, is a reflection, and D, 3is the coa-
rsest non-trivisl reflection of uniform spaces (if it
is non-trivial then the coreflective class must contain
a discrete two-point spacel. | |

On the other hand, one-dimensional, or more gene-~
rally, n-dimensional covers, n> 0, does not form a ba=
se for a uniformity. Of course, the one-dimensional co-
vers fozmIa subbasis for DcX.

3.3. AL -partitions generate D, .

Theorem, If f: X-—-’r,ﬁl(A) has bounded range, and
if £: X —>.2,-(A) is uniformly continuous then so is £:
: DX ~— £y (A).

Corollary l. DCX is projectively generated by maps
in Theoren.

Proof of Corollary. It is enough to show that each



~23-
finite~dimensional uniform cover is realized by am 2 -
partition. This is however almosi evident from 2.2 and
2.3. Given such a cover WU , take any £, —-partition
if;|U € %3 subordinated to % . This partition rea-
Iizes A by 2.2. .
Proof of Theorem. We may and shall gssume that
£ 2 0. For each positive real r > O define

£, =_«i(fa -r)3} - |
Clearly f£,: X —> 2 ,(4A) is vniformly continuous and
bex - rxili£r
for each x. Hence it is enongh to show that each
f,: ‘DcX —r 2o (8)
is uniformly continuous, and to this end it is enough
to show that the range of fr is finite-dimensicnal.

For any x at most [ 1/r] coordinates is non-zero and
hence the image is contained in the subspace BIl/r] of

all elements of the unit ball of £,{&) which have all
“but L1/»7] coordinates zero. This Space has uruform
dimension [1/r 1], see Isbell’s book.

Cornllary 2. Every bounded set in ,21(13.) is dis-
tally coarse in the uniformity inherited from .2,,(A).

3.4 Stone-Weierstrass theorem.

Recall the Stone-Weierstrass theorem for w oximi-
ty spaces (fech’s book).

Let Ub(X) be the algebra of all bounded uniformly
continuous functions on X. If F < U (X) projectively
generates p X, then U (X) is the smallest uniformly
closed algebra contalmng F.

~ A similar theorem is true for £, -distal £~
bounded mappings. However, the statement is not beau-
tiful because, perhaps, one should add the following
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two conditions:
1) Algebra is closed under “permutation" maps of
£ <) ' |

2) The composition with each coordinate—-function
is in the algebra. ' |

It should be remarked that D cX is projectively
generated with the Lyp=-partitions if the index set is
large enough (the cardinal of X suffices). Use Propo-
sition 2.2 =nd Corollary.

3.5. Distally fine spaces.

Since U< D<—> p, each proximally fine space is
distally fine, hence metrizable spaces are distally fi-
ne. Also all proximally coarse spaces are distally fine,
hence distally bi-extremal. Indeed, if X is proximally
coarse, and if f: X—> Y is an onto distal mapping,
then Y is poximally coarse, and hence f is uniformly
contirnuous. -

Since Imv(p) = Inv,(p), necessarily Inv(D) = Iny(D),
and hence D_ is the identity functor.

Recall that a simply bi-extremal space does not
need to be distally fine (see Ptdk’s note).

3.6. Cardinal reflections p™ .

In this field the best result is J. Pelant s space
which answers several important questions in the way
it was hoped for. '

Definition. The starting point is the following
elementary lemma which appears in Isbell’s book.

Lemma. The following properties of a space X are
equivalent :
Ky N
(a) Dc X = DCK.
(b) The uniform covers of cardinal less than &

form a basis for all uniform coverse.
Proof. Work with a metric space.
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Definition. The distal character of a space X
is the smallest ordinal « such that D®X = uX, or
equivalently, such that every uniform cover is refin-
ed by a uniform cover of cardinal less than ¥, . A
space is called oC-=distal if the distal character is
at most X .

It is obvious that the class of all o¢ -distal
spaces is hereditary and productive, hence there ex~—
ists a modification functor ¥—s> p‘g“ X.

Define now a refinement p® of U by setting

p®(X,7) = UK,pY 1),

then o« =distal spaces are Jjust the p*-coarse spaces,
and p‘:’ coincides with pgf’ defined w.r.t. p* .

Note that
U<s»p®esp’=p .
As usual it is desirable to have a nice descripiion of
pc X by means of X. Evidently pz‘x is projectively ge-
nerated by all f: X—» Me U such that M are oc —-distal
metrizable spaces., This amounts to saying:

A is a uniform cover of p‘Z"X iff there exists a
sequence 4% .3 of uniform covers of X such that Q{’l
refines U , each U ,, star-refines U
less than ﬁm—, *

n?
cardinal of each U, is ?
I7 a uniform cover AU is po" nt-finite then by

‘ £ the cardinsl of 9 1is less
than W, then ’U, is uniform cn L‘f ¥. In particular,
if =0 or oo =1 then a uniform cover of ¥ is uni-
form on pjj X iff it is refincd by a uniform cover of
£ of cardinal less than % . This statement is also
truz if CCH is assumed (Kuecis). Both results are pro-

4
ved by the seme procedure in a J. Pelant s note.

What 1is very important, J. Pelant exhibited an
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example (under certain set-theoretical assumptions)

where the statemeni is not true for xXx =2 .

Remark, Recently J. Pelant showed that pi‘re—_

flection of a complete metric space does not need to
be complete. In fact, he proved much more. The proofs
appear in Seminar Uniform Spaces Notes 1974-75. How~
ever, the conjecture that nec non-trivial reflection
preserves completeness is yet open. The problem is
difficult becsuse not many reflections are known.
The following question is yet open:
if X <>Y then p¥X <> p®Y for each o< .
Since
: o
p* <> p = p,
we get immedistely (sece 1.4):
Inv(p°‘) = Inv, (p™).
The following problem seems to be difficult:
is each simply p¥* -fine space p~*-fine?

- We know that the answer is in affirmative for o =
= 0, however, for o¢ =1 the problem is open, and a pos-
sible -candidate for a ccunter-exsmple is studied in the
Rodl’s note, who checks the "counter—example"™ in the
category of zero-dimensional spaces.
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