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Three technical tools in uniform spaces 

by Zdeněk Frolík 

These are ref'inements ( just a way ď looking on conc

cret e f'unctors), partitions of' unity, and distal spaces. 

Perhaps the most impartant one, the atoms in uniform spa

ces, is still being developed by several members of' the_ 

seminar, and theref'ore we omit general discussion. Just in 

1.4 one of the possible applications is mentionedo For 

convenience of' the reader a short outline is described: 

§ 1. Re:f'inemats

1.1. Generalities

lo2• Fine md coarse objects

1.3. Simply fine and simply

1.4. Functors JI' eserving 

§ 2. Partitions af unity

2.1. Generalities

the

coarse objects 

structure 

2.2. Partitions subordinated to a cover

2.3. Examples

§ 3. Distal spaces

3.1. Generalities

3.2. Distally coarse spaces-

3.3. .l00 -partitions generate D
0

3$4. Stone-Weierstrass theorem f'or distal spaces

3.5. Distally f'ine spaces

3.6. Cardinal ref'lections.;
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If' :l
:r 

preserves the structure, i.e. i:f' ·a:! is f'i
ne-maximal, then �- = �� and similarly for �+ • 

Exam.ples. (a) U� setu • Setf = Set_, sete ::

=set+ . 

(b) U � p. Since Pc preserves the structure,
p

..._ 
= Pc• l�xt p_ is the identity :ťunctor. J:n addition„

sny f"unctor in Inv (p) is positive. Indeed, assume 
FE Inv (p). Given any space X we ha"Je 

pF{X x.X) -= p(.X)(. X)• 
Alwsys the identity 

F(X� XJ � FX >'-FX 

is uni:f'orlDl.3 continuous, and hence 

p(X�X) � p(FX�FX). 
is un:i.ťornil.y eontinuous, and hence by a result trf Pol
jako'V snd the author, tbe identity 

X� FX 
is ll!Iiťormly eontinnous. 

Ce) Uc..-:;, t. Since tf preserves t, t_ = t
f"

. Next
t+ = Pc� and in addition, each :ťunctor FE Inv(t) u be
tween t

:f 
and t+ = Pc• I:f' X is cc,mpact, then FX = X be

cause the compact topology is induced by exa·ctly one 
unif'ormity. It f'ollows that FX is :ťiner tllan X if X is 
precompact. 

Finally, :for any x, FX is :ťiner than FpcX, and this is
f'iner than p 0x.

Tbe . plus-f'unct ors: and t he minus-f'unct ors· are of' 
interest in tbe case when tbe coarse and f'ine :ťunctcrs 
do not preserve the s tructure, anď this is cert ainly 
tbe most interesting caae. Notice that t determines 
p(t+ = p). At this momnt the most interesting results
concern coz and hyper-eoz ref'inement. 

Remar k. It .might be oť some int ereat to know 
which ref'inements of U are given by a functor ať U in-





















two condit i ona ! 
1.J Algebra is closed under "permutation" maps of

,,el (A) 
2) The composition with�ach coordinate-:f'llnction

is in t he algebra. 
It should be remarked that D ex is proje cti vely 

genei-.ated with tne .la, -partitions if" the index set is 
large enough (the .cardinal oť X suff'iees). Use :Fropo
si tion 2. 2 aid Garollary. 

3. 5. Distally í'ine spaces.

Since U� J) �P, eacll proximally f'ine space is
dist.ally f'ine, hence Jlletrizabl� �paces are distally f'i

ne. Also all prorlmally coarse spaces are diatally -fine, 
hence dist.ally bi-extremal. Indeed, if X is proximally 
coarse, ana if -f: X� Y is an onto distal mapping, 
then Y is JIZ>Xi:mally coarse, and hence f is unif'or,mly 
continuous. 

Since Inv <1>) = Inv+{p), necessarily Inv (D) = Inv+(D),
.and hence .D_ is the identity �ctor. 

Recall that a simply bi-extremal. space doea not 
ne ed to be distally f'ioo { see Fták, s note). 

3.6. C.ardinal ret'le-ctions p\lt. • 

In this f'ield the best result is J. Pelant s space 
which answers several important questions in the way 
it was hoped for.

nefinition. The starting point is the following
eleme ntary lemma which appears in Isbell s book.

Lemma. The following propert ies o±' n s pace X are 
equivalent: 

(a) D�X = DcX•

( b) The uni:ťorm covers of cardinal less than ""1lc

forma basis for all unif'orm covers. 
Proof. ·Nork with a meti�ic space. 






