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A LEMMA ON FINITE-DIMENSIONAL OOVERS 

Jan HEJCMAN 

The aim of this note. is to prove a lemma which ene

blea every uniťorm cover with finite order to be refined 

by a unitorm cover consisting of finite uniformly discre• 

te subcollect ions. This lemma, in a slightly weaker torm 

{for one cover oť the all space) is well-known, the u

sual proof uses the technic of uniform complexes - see

e.g. J.R. Isbell: Uniform spaoes, IV. 25. The procď pre

eented below uses elementary properties of paeudometrica

and a more generel assertion is obtained quite easily.

Therefore the lemma is ťormulated for pseudometric spa

ces; its. corollary 1s, in :ťact, the lemma in a form

which seems more usable for uni:ťorm spaces.

Remember one theorem on uniform dimensions only, 

the proof oť which uses essent ially the lemma. Let X 

be a uniťorm space, d'd X < a, ; then each ťinite-di

mensional uni:ťorm co\1er oť X can be reťined by a uni

form cover wi th the order lesa or equal to Ód X + � • 

Corollary: Fini te �d X implies ód- X = � d. X • 

Let (·X, 'll) be a uniform space ( 'U, is  the set ot 

entourages), U •'U, Z c X • A collection � of aub-

aet s of X is ..sa to be a U -cover of Z � if for 

each point � of Z there is G in (i, such thet 

U [.x 1 t"\ Z c G- ; r.., is U -discrete if U CG-l n 

t"\ H = � for any G , M fr om C,... , G +a H • I:f' fJ 1a 
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& pseudometric on a set X , E- > O then 5

',l>,e.=.fC�,'JI,>•

e X x X I f (�,11-)" E 1 • In a pseudometric space (X, 9), s,,..,

covers. are called simply � -covers, S
q>,e. -discrete col

lections are called E- -discrete. Given a collect ion . � 
of seta, the order of Cy is 
�� =- �-<.cax.ot.djac 9,, f1Q.,+ 11 .

Now, let us formulate and prove the lemma. 

Lemma. Let. ( X, ť) be a pseudometric space, ma. be 

a naturel number. I:ť a collect ion 'cle of subsets of X ia 

a � -cov�r o:ť a set Z c X ani O"tJ:l dť. ' 1'L for some na-
1 tural ,tt. s mi then there exist -discrete collec-3nn... 

t ions 'lC.
1 

, ,. •. , X ,ti, 
1" 

such that .U X� 
1., = 1 -.. 

ver of Z and refines éfe •

is a -- -co-
3� 

Proof. We may suppose that COJC.d � > 11' and Z, H :+a 

* {4 for each H in ·� , otherwise the assert ion would

be evident. Put, for any a, c � with 1 á OOXÁ a á ,f1, ,

K = � .,< e · Z l G e (l , H e 2le \ Q.. ==>Q, 

�oLv.,.t(.x,z,G) > d-v:>:t(� ., Z,H) + J •

Let X
11 

be the collection of all K
c:v 

with cax.cl a,= -i,

tor .i, = �, • .. , 12- ; we shall show that these X..:, have the 

required properties. 

If a., c. ďť. . , � c tYl , a., =t= 13 , eax.ol a. == COJUJl 13 • ,i.. , 

choose G in a, , a3 and H in � ' d • Let .x s Ka, , 

4j- .- K� • Then we have 
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clv.,t (.x, Z' G) > otc:ot C.>e, z, H) + ,f 
3 ,m, 

ol..ibt. C'\f-', Z' 1-4) > oLů,t ,,,., Z, G) + � 
'3,m, 

� Suppose f (.x, ,y.) < -- ; then 
3 ML 

, 

.d.v.,.:t. C '\t', Z ' H ) s d4t C.x , Z \ H ) + _i__ < � ( .x Z, G ) 6 
3nn. 

' 

- clů,,t C"f', Z' G) + _i_< ot.i.t (,y-, Z, H)
3 ,m, 

1which is a contradiction; thus f C.x,11-) � 
3 ,m, 

are 1 -discrete.
'3 /ffl., 

and 

Given a point � of Z , choose G in 1f such 

that s,,,, C .x l f'\ Z c: G • Hence cU.et ( JC, Z 'G) � ,f • The 

numbers � ( .x , Z \ M ) are positive for at most 12-

set s H from � , one 1s at le ast 1 and at most -f.l, -

-1 of them are less than 4 , thus a gap with length 
I 

1 - must appear. Therefore there exists Q, c: 1ť with 
11, 

4 , COJt.d, Q, '- � such that 
4 

,wwn,{oUo,t(�, z, H > I M �aJ i: ma.4X{cllbt(:1.,z, H > J·H e 2,a.1+
-;-

.
. ,fNow·, clearly, if � c Z, f (;;<, ,- ) < 

3 ,m. then ,v.. • 
..,.., f e K� .• Thus • u� X -i, is a -- -cover of z and it

� 1,,r•, 3nn. 

refines 'le because K
a, 

c H for any H in a, • 

Corollary. Let C X, '1L ) be a uniform space·. For

each V in 'l and a naturel number ma, there exiata 
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w in 9L with the tollowing property. It a collection 

� ot subsets ot X is a V •cover ot a set Z c: X and 

04Ld. � .� 11,, tor so.me natural ..f1, • ,m. then there ex• 

iat W -discrete colle-ctions X11 , o ...,, 1l
,t,;

auch that 

U 1( .:. is ,a W •cover ot Z and retines 'lt, • 
,l. ,; 


