Jan Hejcman A lemma on finite-dimensional covers

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1975. pp. 191–194.

Persistent URL: http://dml.cz/dmlcz/703128

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

- 191 -A LEMMA ON FINITE-DIMENSIONAL COVERS

Jan HEJCMAN

The aim of this note is to prove a lemma which enables every uniform cover with finite order to be refined by a uniform cover consisting of finite uniformly discrete subcollections. This lemma, in a slightly weaker form (for one cover of the all space) is well-known, the usual proof uses the technic of uniform complexes - see e.g. J.R. Isbell: Uniform spaces, IV. 25. The proof presented below uses elementary properties of pseudometrics and a more general assertion is obtained quite easily. Therefore the lemma is formulated for pseudometric spaces; its corollary is, in fact, the lemma in a form which seems more usable for uniform spaces.

Remember one theorem on uniform dimensions only, the proof of which uses essentially the lemma. Let Xbe a uniform space, $dd X < \infty$; then each finite-dimensional uniform cover of X can be refined by a uniform cover with the order less or equal to dd X + 4. Corollary: Finite $\Delta d X$ implies $dd X = \Delta d X$.

Let (X, \mathcal{U}) be a uniform space $(\mathcal{U}$ is the set of entourages), $\mathcal{U} \in \mathcal{U}$, $Z \subset X$. A collection \mathcal{G} of subsets of X is said to be a \mathcal{U} -cover of Z, if for each point x of Z there is \mathcal{G} in \mathcal{G} such that $\mathcal{U}[x] \cap Z \subset \mathcal{G}$; \mathcal{G} is \mathcal{U} -discrete if $\mathcal{U}[\mathcal{G}] \cap$ $\cap \mathcal{H} = \emptyset$ for any \mathcal{G} , \mathcal{H} from \mathcal{G} , $\mathcal{G} \neq \mathcal{H}$. If φ is $-192 - \varepsilon = -192 - \varepsilon = -102 - 022 - \varepsilon = -102 - 022 -$

Now, let us formulate and prove the lemma.

Lemma. Let (X, φ) be a pseudometric space, *m* be a natural number. If a collection \mathcal{H} of subsets of X is a 1-cover of a set $Z \subset X$ and $\operatorname{ord} \mathcal{H} \leq p$ for some natural $p \leq m$ then there exist $\frac{1}{3m}$ -discrete collections $\mathcal{K}_1, \ldots, \mathcal{K}_p$ such that $\bigcup_{i=1}^{p} \mathcal{K}_i$ is a $\frac{1}{3m}$ -cover of Z and refines \mathcal{H} .

Proof. We may suppose that $\operatorname{card} \mathcal{H} > \mu$ and $Z \setminus H \neq \neq \emptyset$ for each H in \mathcal{H} , otherwise the assertion would be evident. Put, for any $\mathcal{A} \subset \mathcal{H}$ with $1 \leq \operatorname{card} \mathcal{A} \leq \mu$, $K_{\mathcal{A}} = 4 \times \epsilon Z | G \epsilon \mathcal{A}, H \epsilon \mathcal{H} \setminus \mathcal{A} \Longrightarrow$ $\Rightarrow \operatorname{dist}(x, Z \setminus G) > \operatorname{dist}(x, Z \setminus H) + \frac{1}{3m}$.

Let \mathcal{K}_i be the collection of all K_a with card a = ifor i = 1, ..., p; we shall show that these \mathcal{K}_i have the required properties.

If $A \subset \mathcal{H}$, $B \subset \mathcal{H}$, $A \neq B$, card A = card B = i, choose G in $A \setminus B$ and H in $B \setminus A$. Let $x \in K_A$, $y \in K_B$. Then we have

$$dist(x, Z \setminus G) > dist(x, Z \setminus H) + \frac{1}{3m},$$

$$dist(y, Z \setminus H) > dist(y, Z \setminus G) + \frac{1}{3m}.$$

Suppose $\rho(x, y) < \frac{1}{3m}$; then

dist $(ny, Z \setminus H) \leq dist(x, Z \setminus H) + \frac{1}{am} < dist(x, Z \setminus G) \leq$ $\leq \operatorname{dist}(y, Z \setminus G) + \frac{1}{2m} < \operatorname{dist}(y, Z \setminus H)$

which is a contradiction; thus $\varphi(x, y) \ge \frac{1}{3m}$ and \mathcal{H}_{i} are $\frac{1}{3m}$ -discrete.

Given a point x of Z, choose G in \mathcal{H} such that $S_{0,1}[x] \cap Z \subset G$. Hence dist $(x, Z \setminus G) \ge 1$. The numbers dist(x, $Z \setminus H$) are positive for at most psets H from $\mathcal H$, one is at least 1 and at most p --1 of them are less than 1, thus a gap with length $\frac{1}{n}$ must appear. Therefore there exists $a \in \mathcal{H}$ with $1 \leq card \ a \leq n$ such that min {olist $(x, Z \setminus H) | H \in Q_3 \ge max \{dist(x, Z \setminus H) | H \in \mathcal{H} \setminus Q_3 + \frac{1}{4}$. Now, clearly, if $y \in Z$, $\rho(x, y) < \frac{1}{2m}$ then $y \in Z$ $\in K_a$. Thus $\bigcup_{i=1}^n X_i$ is a $\frac{1}{3m}$ -cover of Z and it refines \mathcal{H} because $K_{a} \subset H$ for any H in a .

Corollary. Let (X, \mathcal{U}) be a uniform space. For each V in U and a natural number m. there exists

W in \mathcal{U} with the following property. If a collection \mathcal{H} of subsets of \mathcal{X} is a V-cover of a set $Z \subset \mathcal{X}$ and $\mathcal{O} \mathcal{U} \quad \mathcal{H} \quad \mathcal{L}$ for some natural $\mathcal{P} \quad \mathcal{L}$ then there exist \mathcal{W} -discrete collections $\mathcal{K}_1, \dots, \mathcal{K}_p$ such that $\stackrel{\mathcal{V}}{\longrightarrow} \mathcal{K}_{\mathcal{L}}$ is a \mathcal{W} -cover of Z and refines \mathcal{H} .