Miloš Zahradník Inversion-closed space has Daniell property

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1975. pp. 233–234.

Persistent URL: http://dml.cz/dmlcz/703132

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

-233 -Inversion closed uniform spaces have the Daniell property

M. Zahradník

Definition 1. A uniform space X is inversion closed iff for each positive uniformly continuous function f the function $\frac{1}{4}$ is uniformly continuous.

Definition 2. A uniform space X has the Daniell property iff each family $\{f_n\}$ of uniformly continuous functions such that $l \ge f_n > 0$ is uniformly equicontinuous. It can be shown (see [1]) that the Daniell property of X implies that X is inversion closed. It is the aim of this note to prove the converse statement.

Proposition. Any inversion closed space X has the Daniell property.

Proof: Let $\{f_{n,n=1,2,...}\}$ be a family of uniformly continuous functions such that $1 \ge f_n \ge 0$. We have to show that $\{f_n\}$ is uniformly equicontinuous. It is possible to assume that $1 > f_n(x) > f_{n+1}(x)$ for each $x \in X$ and n = 1, 2, Define a function f_t for each $t \in \langle 0, \omega \rangle$ as follows: $f_t(x) = s \cdot f_{n+1}(x) + (1 - s) f_n(x)$ where s = t - [t], n = [t] (we put $f_0 = 1$). Obviously f_t are uniformly continuous functions.

We shall show that the family if_t is uniformly equicontinuous. For each o' positive, $o' \leq 1$, consider the function

$$\Phi_{\sigma}(\mathbf{x}) = \inf_{\mathbf{f}_{t}(\mathbf{x}) \neq \sigma} \{\mathbf{t}\}.$$

Lemma. Each $\Phi_{\sigma'}$ is a cozero function. Then the inversion closed property of X will imply that $\Phi_{\sigma'}$ is uniformly continuous (see [1]).

Proof of Lemma. We have -234i) $\Phi_{-}^{-1}(c, \infty) = fx, f_{-}(x) > \sigma^2$, ii) $\Phi_{a}^{-1}(0,c) = \{x, f_{a}(x) < \sigma'\}$. $\Phi_{\sigma}^{-1}(\Omega)$ is a cozero set for each open $\Omega \subset \langle 0, \infty \rangle$, Thus q.e.d. Proof of uniform equicontinuity of {f_t}: Notice that for $n \leq t_1 \leq t_2 \leq n+1$ $|f_{t_1}(x) - f_{t_2}(x)| \le |t_2 - t_1| f_n(x) + |t_2 - t_1| f_{n+1}(x)$. Hence (1) $\|f_{t_1} - f_{t_2}\| \le 2 |t_2 - t_1|$ for each $t_1, t_2 \in (0, \infty)$. This implies (2) $\inf_{\mathbf{x} \in \mathbf{X}} | \Phi_{\mathcal{S}_1}(\mathbf{x}) - \Phi_{\mathcal{S}_2}(\mathbf{x}) | \ge \frac{|\delta_2 - \delta_1|}{2}$. Fix $\varepsilon > 0$. Choose a uniformly continuous pseudometric φ_{ε} on X such that (3) $\mathcal{G}_{\mathcal{E}}(\mathbf{x},\mathbf{y}) < 1 \implies |\Phi_{m\mathcal{E}}(\mathbf{x}) - \Phi_{m\mathcal{E}}(\mathbf{y})| < \frac{\varepsilon}{\varepsilon}$ for each $n = 1, 2, ..., [\frac{1}{2}]$. If $f_t(x) - f_t(y) \ge 2\varepsilon$, then $f_t(x) \le m\varepsilon$ and $f_t(y) \ge (n+1)\varepsilon$ holds for some integer n. This means that $\Phi_{m, \beta}(x) \leq t$, $\Phi_{(m+1)e}(y) \ge t$. Using (2) and (3) we get $\Phi_{ns}(y) \ge t + \frac{\varepsilon}{2}$ and $\mathcal{O}_{\varepsilon}(x,y) \ge 1$. $\mathcal{G}_{\varepsilon}(x,y) < 1$ implies $|f_t(x) - f_t(y)| < 2\varepsilon$ for each Thus t , q.e.d.

Reference:

[1] Frolik Z.: Three uniformities associated with uniformly continuous functions. Proc. Conf. Algebras: Continuous Functions, Rome, 1973. To appear.