## Petr Simon <br> Uniform atoms on $\omega$

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1976. pp. 7-35.
Persistent URL: http://dml.cz/dmlcz/703139

## Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SE:INAR UNIHORN SPACES 1975 - 76

Uniform atoms on $\omega$
Petr Simon

In lo73, J. Felant and J. Reiterman wrote a paper concernine atoms in unirormitics [PR]. It scems that there is a little investigation only in this direction till yet, though the problems in this area are worthy to be studied: any result on unir'orm atoms tells something about the lattice of all urirormities, roreover,it tolls something about the properties of points in the そech-"tone comprotilication 0 discrete space, too.

The ajm of the present paper is to construct, assumine continuum hypothesjs, some ultrifilters on $\omega$ in order to obtain examples of unifrm atoms whose nature is esentially dissimilar to thosc ones described in [PR]. We also give a proof or non-published thoorem duc to J. Pelant, which shows some properties oí non-0-dimensional atoms on $\omega$. It remains an open questions whether such atoms exist at all.
O. General background. Consider the lattice of all uniformities on the set $A$, the order given by the uniform continuity of an identity mapping: $U \zeta v \quad i f f i d a:\langle A, U\rangle \rightarrow$ $\rightarrow\langle A, \mathcal{V}\rangle \quad$ is uniformly continuous. Atoms in this lattice will be called uniform atoms.

Let us Eive a brief review of the main results from [FR].
Let $q$ be a filter on the set $X$, denote by $\sigma_{2}$ a uniformity on $X$ defined as follows: A cover $\left\{U_{i}: i \in I\right\}$ belongs to $\sigma_{2}$ iff there is some ifI with $U_{i} \in q$.
(a) Proposition. $\left\langle\omega, \sigma_{2}\right\rangle$ is a uniform atom if and only if $q$ is a selective ultrafilter on $\omega$.

The uniformity will be called proximally discrete $i$ ' the induced proximity is discrete.
(b) Proposition. F'or any proximally discrete atom there is an ultraitiler a such that $u-3 \sigma_{q}$.

If $U$ is a liniformity on $X$, iencte by $W$ the ramily of all suosets $B C X$ sunh thit $\langle B, U / B\rangle$ is not uniformlj discrete. For the prooi of (b) one must check that if $\mathcal{U}$ is a proximally discrate atom, then Nel is an ultraitilter

Suppose $\left\{\left\langle X_{i}: \mathcal{U}_{1}\right\rangle: i \in I\right\}$ be a fismily of uniform spaces witr $X_{i}$ prirwise disjoint, let $q$ be an ultrafilter on I. The family oi covers

$$
\left\{_{L}\{x\} i x \in \cup X_{i}\right\} \cup \cup\left\{\mathcal{P}_{i}: i \in V\right\}
$$

( $V \in q, \mathscr{B}_{1}$ is 9 uniform cover of $\left\langle X_{i}, u_{i}\right\rangle$ ) form a base of a uniformity $U$ on $U K_{i}$ which will be called an ultraproduct of uniformities $U_{i}$, and denoted by $U=$
$\sum_{Z} U_{i}$.
(c) Proposition. If $u_{i}$ are atoms, so is $\sum_{q} u_{i}$.
(d) Proposition. No atora $U$ which is an ultraproduct cf atoms is of the rorm $\sigma_{2}$.
( $\epsilon$ ) Proposition. Each atom on $\omega$ has a basis consiot. ing of point…inite covers (see alsn [V]).

For the details and proofs, see [PR].

1. Up to now, we have no example of a proximally dis crete atom on $\omega$ other than $\sigma_{q}$ with a selective ultra. filter $q$, and ultraproducts of such $\sigma_{q}$ 's. गhere are kncwn, or course, other stoms. Let $q$ be a non-selective ultraiilter on $\omega$ whose type is minimal in Rudirn-molik' order (abbr. PA-minimal, see [R] or [CN]), according to (a), $O_{q}$ is not an atom. Let $\mathcal{A}-3 \sigma_{q}$ be an atom and we are to show that $\Omega$ is not an ultraproduct of atoms. Sup pose $\mathcal{A}=\sum_{r} \mathcal{A}{ }_{i}$, then the equality $q=\mathbb{N}_{\mathcal{A}}=\sum_{i} N_{\mathcal{A}_{i}}$ contradicts the assumption that $q$ is RF-minimai.

Thus, we shall construct several uliraxillters a and stuay $\sigma_{2}$ and atoms beiow it. Let us start with the simpleat one:
2. Theonem. Assume [ CH ]. Then there exists a P-point $q$ on $\omega$ such that there is precisely one atom $\mathcal{A}-\sigma_{q}$,
$\mathcal{A} \neq \sigma_{2}$.
Proof. Let $R=\left\{R_{n}: n<\omega\right\}$ be partition of $\omega$ such that all $R_{n}$ are finite and $\sup \left|R_{n}\right|=\omega$. Let $A$ be a subset of $\omega$. We shall call $A$ to be $\mathfrak{K}$-unbounded, if $\sup \left\{\left|R_{n} \cap M\right| \cdot n<\omega\right\}=\omega$.

Let $B$ be a family of all point-finite covers of $\omega$, let $\mathcal{G}=\mathcal{B} \cup \mathcal{P}(\omega)$. Since $|\mathrm{G}|=2^{\omega}$, assuming $[\mathrm{CH}]$, we may well-order it in the manner $\mathcal{G}=\left\{g_{\infty}: \alpha<\omega^{+}\right\}$.
I. The construction of $q$ goes by transfinite induction. For each $\alpha<\omega^{+}$we shall define a filter base $\mathcal{3}_{\infty}$ such that:
(i) $\mathbb{F}_{0}=\left\{\cup\left\{\mathrm{R}_{\mathrm{i}}: \mathrm{i}>\mathrm{n}\right\}: \mathrm{n}<\omega\right\}$;
(ii) if $\alpha<\omega^{+}$, then $\left|\mathcal{F}_{\alpha}\right|=\omega$;
(iii) if $\alpha<\beta<\omega^{+}$, then $\mathcal{F}_{\alpha} \subset \mathcal{F}_{\beta}$;
(iv) if $\alpha<\omega^{+}$and if $F \in \mathcal{F}_{\propto}$, then $F$ is $\mathcal{B}$-unbounded;
(v) if $\propto<\omega^{+}$is a limit ordinal, then $\mathcal{F}_{\propto} \supset$ $\nu_{\beta \& \alpha} \bigcup_{\beta} \cup\{H\}$ with $|H-F|<\omega$ for each $F \in \bigcup_{\beta<\alpha} \mathcal{F}_{\beta}$;
(vi) if $\beta=\alpha+1, g_{\alpha}=M \in \mathcal{P}(\omega)$, then either $M \in \mathcal{F}_{\alpha+1}$ or $(\omega-\mathbb{M}) \in \mathcal{F}_{\alpha+1}$;
(vii) if $\beta=\alpha+1, g_{\alpha}=\varphi \in \beta$, then there exists an $F \in \mathcal{F}_{\alpha+1}$ such that
either $|F \cap C| \leq 1$ for every $\varepsilon \in \mathscr{C}$ or there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in R_{n}$ and $\operatorname{st}\left(x_{n}, \mathscr{C}\right) \cap R_{n} \supset F \cap R_{n}$ for every $\mathrm{n}<\omega$.

O-th step is precisely described in (i).
Suppose $\propto<\omega^{+}$to be limit. $\propto$ is countable, all $\mathcal{F}_{\beta}$ 's with $\beta<\alpha$ are countable, thus $\bigcup_{\beta<\alpha} \mathcal{F}_{\beta}=\left\{F_{n}\right.$ : $: n<\omega\}$.

By an induction over $\omega$, let us find a sequence. $\left\{n_{j}: j<\omega\right\}$ such that $n_{0}<n_{1}<n_{2}<$. . and
$\left|F_{0} \cap F_{1} \cap \ldots \cap F_{j} \cap R_{n_{j}}\right|>j$ for all $j<\omega$. Indeed, if $n_{0}, n_{l}, \ldots, n_{k-1}$ be defined, then by (iv) the set
$F_{0} \cap F_{1} \cap \ldots \cap F_{k}$ is $\mathcal{R}$-unbounded, thus there is some $n_{k}>n_{k-1}$ with $\left|F_{0} \cap F_{1} \cap \ldots \cap F_{k} \cap R_{n_{k}}\right|>k$.
Let $H=\left(F_{0} \cap R_{n_{0}}\right) \cup\left(F_{0} \cap F_{1} \cap R_{n_{1}}\right) \cup \ldots \cup$
$\cup\left(F_{0} \cap F_{1} \cap \ldots \cap F_{k} \cap R_{n_{k}}\right) \cup \ldots$, and let
$\mathcal{F}_{\alpha}=\left\{F \cap H: F \in \underset{\beta<\infty}{\cup} \mathcal{F}_{\beta}^{L}\right\} \cup \underset{\beta<\alpha}{\cup} \mathcal{F}_{\beta}$.
$\mathfrak{F}_{\infty}$ is obviously countable filter base. Let $\mathcal{F}_{\mathrm{k}} \in$ $\in_{\beta<\infty} \bigcup_{\beta} \mathcal{F}_{\beta}$. Then $H \cap F_{k}$ is $\mathbb{R}$-unbounded, because $\left|\mathrm{H} \cap \mathrm{F}_{\mathrm{K}} \cap \mathrm{R}_{\mathrm{n}_{\mathrm{m}}}\right|>\mathrm{m}$ whenever $\mathrm{m}>\mathrm{k}$ 。

The set $H-F_{k}$ is finite, since $R_{n}$ is finite for ever: $n<\omega$ and since $H-F_{k} c\left(F_{0} \cap R_{n_{0}}\right) \cup\left(F_{0} \cap F_{1} \cap R_{n_{1}}\right) u$ $\cup \ldots \cup\left(F_{0} \cap F_{1} \cap \ldots \cap F_{k-1} \cap R_{n_{k-1}}\right) \subset R_{n_{0}} \cup R_{n_{1}} \cup \ldots \cup R_{n_{k-1}}$.

Let $\beta=\alpha+1$, suppose $S_{\alpha}=\mathbb{M} \subset \omega$. Then either $M \cap F$ is $\mathcal{R}$-unbounded for all $F \in \mathcal{F}_{\infty}$ or $(\omega-i i) \cap F^{\prime}$ is
 re are $F, F^{\prime} \in \mathcal{F}_{\propto}$ and $r$, a natural such that $\left|F \in \ln R_{n}\right| \leq$ $\leq r$ for each $n<\omega,\left|F^{\prime} n(\omega-M) n R_{n}\right| \leq s$ for each $\mathrm{n}<\omega$. Then $\left|\mathrm{F} \cap \mathrm{F}^{\prime} \cap \mathrm{R}_{\mathrm{n}_{1}}\right| \leq \mathrm{r}+\mathrm{s}$ for each $\mathrm{n}<\omega$, a contradiction, since $\mathcal{F}_{\substack{c}}$ satisfies (iv).) In the first ca. se, define $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\propto} \cup\left\{M \cap F: F \in \mathcal{F}_{\propto}\right\}$, in the secons, $\left.\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha} \cup f(\omega-M) \cap F: F \in F_{\alpha}\right\}$.

Let $\beta=\alpha+i$, suppose $g_{\alpha}=\in \mathcal{B}$ for every sequel: ce $\left\{x_{n}\right\}$ such that $x_{n} \in R_{n}$ denote by $S\left\{x_{n}\right\}$ the set $\cup\left\{s t\left(x_{n}, \mathscr{C}\right) \cap R_{n}: n<\omega\right\}$.
Two cases are possible:
a) There exists a sequence $\left\{x_{n}\right\}, x_{n} \in R_{n}$, such that $S\left\{x_{n}\right\} \cap F$ is $\mathcal{R}$-unbounded for every $F \in \mathcal{F}_{\infty}$. In this case, let $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha} \cup\left\{\begin{array}{l}\text { F } \\ S\end{array}\left\{x_{n}\right\}: F \in \mathcal{F}_{\alpha}\right\}$.
b) There is no such sequence. In this case, we shall proceed by induction as follows: $\mathcal{F}_{\alpha}$ is countable, $\mathcal{F}_{\alpha}=$ $=\left\{F_{j}: j<\omega\right\}$. Let us define natural numbers $j_{k}, n_{k}$ and finite subsets $H_{k}$ of $\omega$ such that $j_{0}=0$ and for every $k<\omega$ the following holds:
(1)

$$
n_{k}<n_{k+1}, j_{k}<j_{k+1}, H_{k} \subset H_{k+1},
$$

(2) $\left|H_{k} \cap R_{n_{k}} \cap F_{0} \cap F_{1} \cap \ldots \cap F_{j_{k}}\right|>k$ and
(3) for every $y \in H_{k}$, st $(y, \mathscr{C}) \cap H_{k}=\{y\}$.
$F_{0}$ is $\mathcal{R}$-unbounded, thus there exists some $n_{0}$ with $\left|F_{0} \cap R_{n_{0}}\right|>0$; pick a point $y \in F_{0} \cap R_{n_{0}}$ and define $H_{0}$ $=\{y\}$ 。

Let $n_{k}, j_{k}, H_{k}$ be defined. The cover $\varphi$ is point-finite and $\mathrm{H}_{k}$ is finite, thus the set $\mathscr{C}_{k}=\{C \in \mathscr{C}$ : : $\left.C \cap H_{k} \neq \varnothing\right\}$ is finite. For every $C \in \mathscr{C}_{k}^{k}$, let $\left\{x_{n}^{C}\right\}$ be some sequence chosen as follows: If $\mathrm{R}_{\mathrm{n}} \cap \mathrm{H}_{\mathrm{k}} \cap \mathrm{C} \neq \varnothing$, then, according to (3), this intersection contains precisely one point which will be denoted by $x_{n}^{C}$. If $R_{n} \cap H_{k} \cap C$ is empty, but $R_{n} \cap C$ is nonempty, pick $x_{b}^{C}$ from $R_{n} \cap C$ arbitrarily. Pimolly, if $R_{n} \cap C=\varnothing$, let $x_{n}^{C}=\operatorname{Min} R_{n}$. Fix one such sequence $\left\{x_{n}^{C}\right\}$ for every $C \in \mathcal{C}_{k}$; as we assume that a) fails, there is some $j_{k+1}$ such that $j_{k+1}>j_{k}$ and $F_{j_{k+1}} \cap \cup\left\{s\left\{x_{n}^{C}\right\}\right.$ : $\left.: C \in \mathscr{C}_{k}\right\}$ is not $\Omega$-unbounded. Denote by $G_{k+1}$ the set

$$
\cap\left\{F_{j}: 0 \leq j \leq j_{k+1}\right\}-U\left\{s\left\{x_{n}^{C}\right\}: C \in \mathscr{C}_{k}\right\} .
$$

The set $G_{k+1}$ is obviously $\mathcal{R}$-unbounded and there exists natural $n_{k+1}>n_{k}$ such that $G_{k+1} \cap R_{n_{k+1}}$ contains $k+1$ distinct points $y_{0}, y_{l}, \ldots, y_{k}$ with $y_{p} \notin$ 勿 $\left(y_{q}, \mathscr{C}\right)$ if $p \neq q$. (If not, then for every $n>n_{k}$ there are $y_{0}(n), y_{l}(n), \ldots$, $y_{k-1}(n)$ such that $\cup\left\{\right.$ ot $\left.\left(y_{p}(n), \mathscr{C}\right): 0 \leqslant p \leqslant k-1\right\} \sim$ $\supset G_{k+1} \cap R_{n}$. Define $x_{n}^{p}=y_{p}(n)$ for $0 \leqslant p \leqslant k-1$ and $n>r_{k}$, $x_{n}^{p}=\operatorname{Min} R_{n}$ for $0 \leqslant p \leqslant k-1$ and $n \leqslant n_{k}$. Then the finite union $\cup\left\{s\left\{x_{n}^{p}\right\}: 0 \leqslant p \leqslant k-1\right\} \cup \cup\left\{S\left\{x_{n}^{C}\right\}: c \in \varphi_{k}\right\}$ covers some member of $\mathcal{F}_{\infty}$, namely $F_{0} \cap F_{1} \cap \ldots \cap F_{j_{k}} \cap$ $n\left(\cup\left\{R_{i}: i>n_{k}\right\}\right)$, which contradicts the assumption that a) does not take place. ) Let $H_{k+1}=H_{k} \cup\left\{y_{0}, y_{l}, \ldots, y_{k}\right\}$. Obviously, (1), (2) and (3) are satisfied for $\mathrm{H}_{\mathrm{k}}$.

Let $F=\cup\left\{H_{k}: k<\omega\right\}$, let $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\infty} \cup$ $\cup\left\{E \cap F^{\prime}: F^{\prime} \in \mathcal{F}_{\alpha}\right\}$.

In both cases, the filter base $\mathcal{F}_{\alpha+1}$ is well-defined:
$\Re$-unboundedness of its members is clear in a) and a consequence or (1) and (2) in b), $\mathcal{F}_{\alpha+1}$ satisfics (vii), too: The added set equals to some $S\left\{x_{n}\right\}$ in the case a) and mets every $C \in \mathscr{C}$ in at most one point in the case b), as can be deduced from (3).

Now, havirg the whole induction verified, it remains to define $q=U\left\{\mathcal{F}_{\propto}: \propto<\omega+\right\}$. The filter $q$ is an ultrafilter because of ( $v i$ ), it is a P-point by ( $v$ ) and it cannot be selective, since its members are $\mathcal{R}$-unbounder by (iv).
II. Let $\mathcal{A}$ be a uniformity whose base consists of all covers $\mathcal{R} \wedge \mathcal{P}(=\{R \cap P: R \in \mathcal{R}, P \in \mathcal{P})$, whers $\mathcal{P}$ is a uniform cover from $\sigma_{2}$. The following facts art clear: $\mathcal{A}$ is not uniformly discrete (all members of $q$ are $\mathcal{R}$-unbounded), $\mathcal{A} \neq \sigma_{2}$ (no member of $\mathcal{R}$ belongs to $q_{1}$ and $\Omega \rightarrow \sigma_{2}$.
$\mathcal{A}$ is the unique uniform atom below $\sigma_{q}$ : Let $\mathcal{A}^{\prime}$ b a proximally discrete atom, let $\varphi^{\prime}$ be a uniform cover be longing to $\mathcal{R}^{\prime}$, let $\mathcal{C}$ be a point-finite cover from $\mathcal{R}^{\prime}$, which star-refines $\mathscr{C}^{\prime}$ (the existence of such $\mathscr{C}$ is implied by Proposition ( )). Since $\mathscr{C}$ belongs to $\mathcal{B}, \mathscr{\varphi}=$ $=g_{\propto}$ for a suitable $\propto<\omega^{+}$. We know that $\mathcal{F}_{\alpha+1} \subset q$ an that there is some $F \in \mathcal{F}_{\alpha+1}$ satisfying the condition (vii) from the induction. Let $\mathfrak{ß}_{0}$ be a cover consisting of $F$ and of all one-point subsets of $\omega$. Supposing $\mathcal{A}^{\circ} \rightarrow \sigma_{2}$, we obtain $\mathcal{J}_{0} \wedge \mathcal{C} \in \mathcal{A}^{\prime}$, so it cannot ha pen that $|F \cap C| \leq 1$ for every $C \in \mathcal{C}$, because then $\mathcal{P}_{0} \wedge \mathscr{\varphi}=\{\{x\}: x \in \omega\}$, which is impossible $-\mathcal{A}^{\prime}$ is not uniformly discrete. Thus there is a sequence $\left\{x_{n}\right\}$, $x_{n} \in R_{n}$, with st $\left(x_{n}, \mathscr{C}\right) \supset F \cap R_{n}$; in other words, $\mathcal{P}_{0} \wedge \mathcal{R}$ refines $\varphi^{\prime}$.

We have shown that every atom $\Omega^{\prime} \rightrightarrows \sigma_{2}$ is uniformly coarser than $\mathcal{A}$, thus $\mathcal{A}^{\prime}=\Omega$, which completes the proof.
3. It may be instructive to anglyse the proof of Theorem 2. We needed to construct a non-selective ultrafilter, hence the starting point with some partition $\mathcal{R}$ where the non-selectivity should appear, was necessary. It was sufficient to assume that $\left|R_{n}\right|<\omega$ and $\sup \left\{\left|R_{n}\right|: n<\omega\right\}=$ $=\omega$, since we were looking tor a P-point. (Such partitions will be called admissible in the rest of the paper.) There were three essential steps in the proof: verifying of (v), (vi) and or (vii). Only the property (vii) was crucial for uniform properties of the desired atom, (vi) was necessary to obtain an ultrarilter, (v) implied that the future ultraitilter mould be a P-point. We wanted all members of $q$ to be $\Omega$-unbounded - let us say, we warted all members of $q$ to have some property $\mathbb{P}$. The property " M is $\mathcal{R}$-unbounded" was, moreover, of very special kind: There were, in fact, a countable collection $\{\mathbb{P}(k)\}$ of properties of finite subsets of $\omega$, namely " $|M|>k$ ", and it was sufficient to verify, whether $\operatorname{lin} R_{n}$ has $\mathbb{P}(k)$ for arbitrary $k$ and some $n<\omega$, depending on $k$.

Now, let us return to (vii) from the proof of Theorem 2. It was, in fact, a collection of $\omega^{+}$properties $\mathbb{S}_{\alpha}$ or subsets of $\omega$ (each was described using some point-fiinite cover), and we wanted to satisfy this: "For every $\propto<\omega^{+}$there is at least one $F \in q$ which has $\mathbb{S}_{\alpha}$

In order to avoid unnecessary repeating oi some steps given in the proof of Theorem 2 we shall prove the following lemna, which is some kind of recipe, how to obtain ultrafilters.
4. Lemma. Let $\mathcal{R}=\left\{R_{n}: n<\omega\right\}$ be an admissible partition of $\omega$. Suppose that for every $k<\omega$ there is a property $\mathbb{P}(k)$ of finite subsets of $\omega$ such that (0) there exist a $k<\omega$ such that $\varnothing$ has not

## $\mathbb{P}(k)$;

(i) if $\mathbb{M} \in ß_{\sin }(\omega)$ satisfies $\mathbb{P}(k)$ for sor $k>0$, then $M$ satisfies $\mathbb{P}(k-1)$;
(ii) for every $k<\omega$ and every $n_{0}<\omega$ there is some $n>n_{0}$ such that $R_{n}$ has $\mathbb{P}(k)$;
(iii) there exists a mapping $f \in \omega^{\omega}$ which satisfies:
given $k<\omega$ and $M, M^{\prime} \in \mathcal{P}_{\text {fin }}(\omega)$, in Mull has $\mathbb{P}(f(k))$, then either $\mathbb{M}$ or $M^{\prime}$ has $\mathbb{P}(k)$;
(iv) for every $k<\omega$ and every $\mathbb{M}, \mathrm{Q} \in \mathcal{P}_{\text {in }}(\omega)$, if $\mathbb{M}$ has $\mathbb{P}(k)$ and $M \subset Q$, then $Q$ has $P(k)$.
Let the property $\mathbb{P}$ of subsets of $\omega$ be defined by the rule
(v) $M$ has $\mathbb{P}$ iffy for every $k<\omega$ and every $n_{0}<$ there is an $n>n_{0}$ such that $\mathbb{M} \cap \mathbb{R}_{n}$ has $\mathbb{P}(k)$. Then the following holds:
A. If $\mathcal{F}^{\prime}$ is a filter on $\omega$ with a countable base, if $\mathbb{M} \in \mathcal{P}(\omega)$ and if every $\mathbb{F} \in \mathcal{F}$ has $\mathbb{P}$, then there exists a filter $\mathcal{G}$ with countable base, $\mathcal{G} \supset \mathcal{F}$, all members of $\mathcal{G}$ have $\mathbb{P}$ and either $\mathbb{N} \in \mathcal{G}$ or ( $\omega$ - II) $\in$ $\in \mathcal{G}$ 。
B. If $\mathcal{F}$ is a filter on $\omega$ with a countable base and if every $F \in \mathcal{F}$ has $\mathbb{P}$, then there exists a subset $M$ of $\omega$ such that $M \cap F$ has $\mathbb{P}$ and $|M-F|<\omega$, for each $F \in \mathcal{F}$.
C. Let $\left\{\mathbb{S}_{\propto}: \propto<2\right\}$ be a collection of properties of subsets of $\omega$. Suppose that for every filter $\mathbb{J}$ with countable base consisting of sets with $\mathbb{P}$ and for every $\alpha<2^{\omega}$ there exists an $H_{\alpha} c \omega \quad$ such that $M_{\infty}$ has $\mathbb{S}_{\alpha}$ and $M_{\alpha} \cap F$ has $\mathbb{P}$ for every $F \in \mathbb{F}$.

Then, assuming [CH], there exists a P-point $q$ such that $U \in q$ has $\mathbb{P}$ and for every $\alpha<2^{\infty}$ there is a set $U_{\alpha} \in q$ satisfying $\mathbb{S}_{\propto}$. If, moreover, each $M$ with $\mathbb{P}$ is $\mathcal{R}$-unbounded, then q is not selective.

Proof. A. Let $\mathcal{G}_{1}\left(\mathscr{C}_{2}\right.$, resp.) be a filter generated by $\mathfrak{F} \cup\{M\}(\mathcal{F} \cup\{(\omega-M)\}$, respectively). By the method of contradiction, let us suppose that neither $G_{1}$ nor $\mathcal{G}_{2}$ has the desired properties. Then there exist $F_{1}, F_{2} \in \mathcal{F}$ and natural numbers $k_{1}, k_{2}, n_{1}, n_{2}$ such that
$F_{1} \cap \mathbb{L} \cap R_{n}$ has not $\mathbb{P}\left(k_{1}\right)$ whenever $n>n_{1}$ and ${ }_{2} \cap(\omega-v) n$ $R_{n}$ has not $\mathbb{P}\left(k_{2}\right)$, for $n>n_{2}$ (a consequence of v)). Let $n_{0}=\max \left(n_{1}, n_{2}\right), k_{0}=\max \left(k_{1}, k_{2}\right), F_{1} \cap F_{2}$ belongs to $\mathcal{F}$, according to (v), there exists an $n>n_{0}$ such that $F_{1} \cap F_{2} \cap R_{n}$ has $\mathbb{P}\left(I\left(k_{0}\right)\right) . \operatorname{By}(i i i)$, either $F_{1} \cap F_{2} \cap \mathbb{M} \cap R_{n}$ has $\mathbb{P}\left(k_{0}\right)$ or $F_{1} \cap F_{2} \cap(\omega-M) \cap R_{n}$ has $\mathbb{P}\left(k_{0}\right)$, thus by (iv) and (i) either $F_{1} \cap \mathbb{M} \cap R_{n}$ has $\mathbb{P}\left(k_{1}\right)$ or $F_{2} \cap(\omega-M) \cap$ $\cap R_{n}$ has $\mathbb{P}\left(k_{2}\right)$, a contradiction.
B. Let $\left\{\mathrm{F}_{\mathrm{j}}: \mathrm{j}<\omega\right\}$ be a base of $\mathfrak{F}$; we may assurme that $F_{0} \supset F_{1} \supset F_{2} \supset \ldots$. The proof goes by an obvious induction:
$F_{0}$ has $\mathbb{P}$; by (v) there is some $n_{0}<\omega$ such that $F_{0} \cap R_{n_{0}}$ has $\mathbb{P}(0)$.
$F_{1}$ has $\mathbb{P}$; by (v) there is some $n_{1}>n_{0}$ such that $F_{1} \cap R_{n_{1}}$ has $\mathbb{P}(1)$.

Let $n_{0}<n_{1}<n_{2}<\ldots<n_{k}$ be defined. $F_{k+1}$ has $\mathbb{P}$, thus, applying (v) once more, there is some $n_{k+1}>n_{k}$ such that $F_{k+1}$ has $\mathbb{P}(k+1)$.

Let $M=U\left\{F_{i} \cap R_{n_{i}}: i<\omega\right\}$. The set $M \cap F_{i} \cap R_{n_{k}}$ satisfies $\mathbb{P}(k)$ whenever $k \geq i$, thus $\mathbb{M} \cap \mathbb{F}_{i}$ satisfies $\mathbb{P}$ and $\mathbb{N}-F_{i} \subset R_{n_{0}} \cup R_{n_{1}} \cup \ldots \cup R_{n_{i-1}}$, thus $M-F_{i}$ is Pinite.
C. The proof of $C$. is a mere copy of the proof of The orem 2 and may be left to the reader. Use A., B. and the assumptions of C. for inductive steps, $0^{\prime}$ th step is guaranteed by (ii).
5. Theorem. Assume [CH], let $L$ be a natural number. Then there exists a p-point $q$ on $\omega$ such that there are precisely $L$ distinct uniform atoms below $\sigma_{q}$.

Proof. The special cases $L=0, L=1$ have already been shown (Proposition (a), Theorem 2). The proof for $1<\mathrm{L}<\omega$ is divided into four sections. At first, the notation used throughout this proof will be given. Then the assumptions of Lemma 4 will be verified with help of two combinatorial statements. Finally, it will be shown
that the ultrafilter $q$ constructed by Lemma 4 has all the desired properties.
I. Let $A_{1}, A_{2}, \ldots, A_{L}$ be finite and pairwise disjoin sets, $\left|A_{1}\right|=\left|A_{2}\right|=\ldots=\left|A_{L}\right|=n$, where $n<\omega$. The set $A_{1} \times A_{2} \times \ldots \times A_{L}$ will be called an Lrcube. If $A_{1} \times A_{2} \times$
$\ldots \times A_{L}$ is an L-cube and if $B_{i} \subset A_{i}$ for $i=1,2, \ldots, L$, $\left|B_{1}\right|=\left|B_{2}\right|=\ldots=\left|B_{L}\right|$, the cube $B_{1} \times B_{2} \times \ldots \times B_{L}$ will be called a subcube of $A_{1} \times A_{2} \times \ldots \times A_{L}$. If no special emp hasis on the coordinate sets will be needed, we shall use for an $L$-cube a notation $Q\left(n^{L}\right)$, where $n$ is the cardinalit of coordinate set; or $Q\left(n^{L-1}\right) \times A_{L}$, if $A_{L}$ is the only coon dinate set we are interested in. Similarly, if $Q\left(n^{L}\right)=$ $=A_{1} \times A_{2} \times \ldots \times A_{L}$ and if $a \in A_{L}$, then the set $A_{1} \times A_{2} \times \ldots$ $\ldots \times A_{L-1} \times\{a\}$ will be often denoted as $Q\left(n^{L-1}\right) \times\{a\}$ and called to be an a-th square; if $Q\left(k^{L-1}\right)$ is a subcube $Q\left(n^{L-1}\right)$, then $Q\left(k^{L-1}\right) \times\{a\}$ will be called a subsquare 0 $Q\left(n^{L-1}\right) \times\left\{\begin{array}{l}\text { a }\end{array}\right.$.

Given $L<\omega, L \geqslant 1$, and a countably infinite pairwi se disjoint fomily $\left\{Q\left(n_{i}^{L}\right): i<\omega\right\}$ of L-cubes with $\sup n_{i}=\omega$, we may identify the set $\boldsymbol{\omega}$ with $\cup\left\{\mathbb{Q}\left(n_{i}^{L}\right): i<\omega\right\}$ and thus we have a partition $R=$ $=\left\{Q\left(n_{i}^{L}\right): i<\omega\right\}$ of $\omega$ consisting of $L$-cubes; in accor dance with the notation of Lemna 4, we shall also write $\mathcal{R}=\left\{R_{n}: n<\omega\right\}$. Clearly $\mathcal{R}$ is an admissible partition.

Given a partition $\mathbb{R}$ of $\omega$ into $L$-cubes, let $\mathcal{k}$ a family of L-cubes defined as follows: $Q \in \mathcal{Q}$ iff $Q$ is a subcube of some $R_{n} \in \mathcal{R}$. Thus the family $\mathcal{Q}$ is compl tely determined by $\mathcal{R}$.

Let $\mathcal{R}$ be an admissible partition of $\omega$ into $L-c u$ let i $\in\{1,2, \ldots, L\}$. For an $R_{n} \in \mathcal{R}, R_{n}=A_{1} \times A_{2} \times \ldots$ $\ldots \times A_{L}$, and for $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{L}\right\rangle \in A_{1} \times A_{2}$ $\ldots \times A_{i-1} \times A_{i+1} \times \ldots \times A_{L}$, let $T=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{i-1}, t\right.\right.$, $\left.\left.a_{i+1}, \ldots, a_{i}\right\rangle \in R_{n}: \in A_{i}\right\}$. Define $\mathcal{T}_{i}$ to be a family $o$ all such $T$ s with $n$ and $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{L}\right\rangle$
variable. Obviously mach $\mathcal{J}_{i}$ is a subpartition of $\mathcal{R}$, $\mathcal{J}_{i} \wedge \mathcal{J}_{j}=\{\{x\}: x \in \omega\}$ whenever $i \neq j$ and the partitions $\mathcal{J}_{1}, \mathcal{J}_{2}, \ldots, \mathcal{J}_{\mathrm{L}}$ are uniquely determined by $\mathcal{R}$. Further, if $T \in \mathcal{J}_{L}$, it $A_{I} \times \ldots \times A_{L}=Q\left(n^{L}\right) \in \mathcal{R}$ and ii $T \subset\left(n^{L}\right)$, then $\left.\mid T \cap n^{L-1}\right) \times\{a\} \mid=1$ for each $a \in A_{L}$. If i fL, then there are $\mathrm{n}^{\mathrm{L}-2}$ member rs T of $\mathcal{J}_{i}$ which are contained in $2\left(n^{L-1}\right) \times\{a\}$.

Let $\mathscr{C}$ be a cover or $\omega$, let $x \in \omega$, let Mc $\omega$. Denote by $\operatorname{st}^{2}(\mathrm{x}, \boldsymbol{\varphi}$; the set $\operatorname{st}(\mathrm{st}(\mathrm{x}, \boldsymbol{\mathscr { C }}), \mathscr{\varphi})$ and call $a$ set $M$ to be $\mathscr{C}$-discrete in for each $x \in M, M n s t(x, \mathscr{C})=$ $=\{x\}$ 。

In order to apply $L$ :mama 4 , let $L>1$ be a natural numbbor, let $\mathcal{R}$ be an admissible partition or into $L$-cubes, let $k<\omega$.

The set $M \in \mathfrak{P}_{\text {fin }}(\omega)$ has $\mathbb{P}(k)$ iff there is some $Q\left(k^{L}\right) \in Q \quad$ contained in $M$.

Let $\varphi$ be a point-finite cover of $\omega$, let $M \subset \omega$. The set if has $\mathbb{S}_{\varphi}$ iff either $\mathbb{M}$ is $\mathscr{C}$-discrete or th re exists an $i \in\{1,2, \ldots, L\}$ ind $a$ sequence $\left\{x_{T}: T \in \mathcal{J}_{i}\right\}$, Where $X_{r} \in T$, such that $\operatorname{sit}^{2}\left(x_{T}, \mathscr{C}\right) \supset \mathbb{N} \cap T$ for each $T \in \mathcal{J}_{i}$.
II. It is clear that the family of properties $\{\mathbb{P}(k): k<\omega\}$ satisii $s(0),(i),(i i)$ and (iv) from In: ma 4. To grove (iii), $w^{2}$ need to find a mapping $f \in \omega^{\omega}$ with the desired properties. The existence or such a mapping follows immediately from the following combinatorial statement (take the value 2 for mi):
(*) For each $L \geq 1$ there exists a mapping $I_{L}: \omega \times \omega \rightarrow \omega$ such that every subset $X \subset Q\left(f_{\mathrm{L}}(\mathrm{k}, \mathrm{m})\right)^{\mathrm{L}}$ ) with $|X| \geq$ $\geq\left(\Psi_{\mathrm{L}}\left(k, r_{1}\right)\right)^{L}=\frac{1}{m}$. contains sone subcube $2\left(k^{L}\right)$.

Though this statement is a well-known combinatorial +esult (see egg. Erdös-Spencer's book [ES], Theorem 12.2 and Corollary 12.5), it will not do any hem to move i here.

Induction: $f_{l}(k, m)=k m+1$ is clearly better then $o$ satisfactory mapping for $L-2$. Sup pose $P_{I}$ suit to state-
ment and $f_{L}(k, m)>k m$.
Let $n=f_{L}(k, 2 m), r=2^{n^{L}}$ and define $f_{L+1}(k, m)=$ $=n p=N$. Obviously $f_{L+1}(k, m)>k m$. Suppose $X \subset \cdot\left(N^{L+1}\right)=$ $=A_{1} \times A_{2} \times \ldots \times A_{L+1},|X| \geq N_{m}^{L+1}$. Let $\mathcal{B}$ be a martitron of $A_{1} \times A_{2} \times \ldots \times A_{L}$ into $p^{L}$ pairwise disjoint subcubes $Q_{i}\left(n^{L}\right)$, we have $Q\left(N^{L+1}\right)-U\left\{Q_{i}\left(n^{L}\right) \times A_{L+1}: i=1,2, \ldots\right.$ $\left.\ldots, p^{L}\right\}$ such that

$$
\left|X \cap Q_{i_{0}}\left(n^{L}\right) \times A_{L+1}\right| \geq N \cdot n^{L} .
$$

Let $X_{a}=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{L_{T}}\right\rangle \in Q\left(N^{I_{1}}\right):\right.$
$\left\langle a_{1}, a_{2}, \ldots, a_{L}, a\right\rangle \in X \cap Q_{i_{0}}\left(n^{L}\right) \times\{a\}$. Obviously $X_{a} \subset$ $\subset Q_{i_{0}}\left(n^{L}\right)$ and $X \cap Q_{i_{0}}\left(n^{L}\right) \times A_{L+1}=U\left\{X_{a}: a \in A_{L+1}\right\}$.
Define $D=\left\{a \in A_{L+1}:\left|X_{a}\right| \geq m^{L} \quad 2 m\right.$, from the estim.tion $\left|X \operatorname{n} Q_{i_{0}}\left(n^{L}\right) \times A_{L+1}\right| \leq\left|D n^{L}+\left|A_{L+1}-D\right| \cdot \frac{m^{L}}{2 m} \leq|D| n^{L}\right.$ $+N \cdot m^{L}$ follows that $|D| \geqq \frac{N}{2 m}$, thus $|D| \geqq$ $\geq \frac{p m}{2 m}>p k$, because $n=f_{L}(k, 2 m)>2 k m$. Since $p\left(=2^{n^{L}}\right)$ i the cardinality of the power set of $Q_{i}\left(n^{L}\right)$, there must be a subset $B$ of $D,|B|=k$ such that $X_{b}=X_{b}$ whenever $b$, $b^{\prime} \in B$. But every $X_{b}$ with $b \in B$ is of cardinality at least $\frac{m^{L}}{2 m}$ and $X_{b} \subset Q_{i_{0}}\left(n^{L}\right)$, thus by the induction wo thesis there exists some cube $Q\left(k^{L}\right) \subset X_{b}$. Consequently $Q\left(k^{L}\right) \times$ $\times B$ is the $(L+1)$-cube contained in $X$.
III. The verifying of the assumptions of C. from Lemma 4 needs further combinatorial proposition: (**) Let $L \geq 1$ be a natural number. Then there exists a mapping $\mathcal{E} \in \omega^{\omega}$ with the following property:

If $\mathcal{C}$ is a cover of $\omega$, if $R$ is an admissible partition of $\omega$ into L-cubes, if $\mathcal{Z}$ and $\left\{\mathcal{T}_{i}: i=1,2\right.$, .
$\ldots, L\}$ are defined by the rules given in $I$ and if $n \geq$ $\geq g(k)$, then each cube $Q\left(n^{L}\right) \in Q$ contains a subcube $Q\left(k^{L}\right)$ which is either $\mathscr{C}$-discrete or contained in $\cup\left\{\mathrm{st}^{2}\left(\mathrm{x}_{\mathrm{T}}, \varphi\right) \cap \mathrm{T}: T \in \mathcal{J}_{i}, \operatorname{Tn} Q\left(\mathrm{n}^{\mathrm{L}}\right) \neq \varnothing\right\}$ for some $i \epsilon$ $\epsilon\{1,2, \ldots, L\}$ and some suitable choice of $x_{T} \in T$.

The proof goes by an induction. For $\mathrm{L}=1$ we have the case from Theorem 2, $\mathcal{J}_{1}=\mathcal{R}$ and obviously the fundlion $g(k)=k^{2}$ will suffice for an arbitrary $\mathscr{C}$.

Assume the statement ( $* *$ ) holds for $\mathrm{L} \geq 1$. If $\mathcal{R}$ is an admissible partition of $\omega$ into ( $L+1$ ).cubes, then each cube $2(n) \times A_{L+1} \in \mathcal{R}$ is a disjoint union of squares $Q\left(n^{L}\right) \times\{a\}$ with $\in \in A_{L+1}$, let $\mathcal{R}^{\prime}$ be a collection of all those squares. We may consider $R^{\prime}$ as a partition of $\omega$ into L-cubes; if $\mathcal{J}_{1}^{\prime}, \mathcal{J}_{2}^{\prime}, \ldots, \mathcal{T}_{L}^{\prime}$ and $Q^{\prime}$ are the carespending partitions and subcubes, then $\mathfrak{J}^{\prime \prime}=\mathcal{J}_{i}$ for $i=$ $=1,2, \ldots, L$ and $\left|\operatorname{Tn} \mathbb{Q}^{\prime}\right| \leq 1$ whenever $T \in \mathcal{T}_{\mathrm{L}+1}, Q^{\prime} \in \mathcal{Q}^{\prime} \cdot$ Let $g^{\prime}$ be the function from $(* *)$ for $L$, let $f_{L+1}$ be the function from (*).

For every $\mathrm{k}<\omega$, let us define by the finite recursion:

$$
\begin{aligned}
& u_{o}=k ; \\
& v_{i}=f_{L+1}\left(u_{i}, 2\right) ; \\
& w_{i}=f_{L+1}\left(k, 16 v_{i}^{L}\right) ; \\
& u_{i+1}=g^{\prime}\left(w_{i}\right) ; \\
& g(k)=u_{(L+1) k^{0}} .
\end{aligned}
$$

For $N=g(k)$ we must prove that the cube $Q\left(N^{L+1}\right)$ contain some subcube $Q\left(k^{I+1}\right)$ with the desired properties. Let us write $Q\left(N^{I+1}\right)=A_{1} \times A_{2} \times \ldots \times A_{I+1}$; by an induction down we shall define for $i=(L+1) k,(L+1) k-1, \ldots$ $\ldots, 2,1$ natural numbers $n_{i}, n_{i} \geqslant u_{i-1}$, distinct members $a_{i}$ of $A_{L+1}$ and cubes $Q\left(n_{i}^{L+I}\right)=A_{1, i} \times A_{2, i} \times \ldots \times A_{L+1, i}$ such that $Q\left(n_{i}^{L}\right) \times\left\{a_{i}\right\}$ is a subsquare of $Q\left(N^{L}\right) \times\left\{a_{i}\right\}$, $Q\left(n_{i-1}^{\mathrm{L}+1}\right)$ is a subcube of $Q\left(n_{i}^{\mathrm{L}+1}\right)$ and $A_{i+1, i} \cup\left\{a_{i+1}, a_{i-2}, \ldots\right.$
$\ldots, a^{(L+I) L^{\}}=\varnothing .}$
Let for $i+1 \leq(I+I) k$ the cube $2\left(n_{i+I}^{I+I}\right)=A_{1}, i+I \times$ $\times A_{2, i+1} \times \ldots \times A_{I+1, i+1}$ and the points $a_{i+1}, a_{i+2}, \ldots$ ..., $a_{(L+1) k}$ were defined; pick some $a_{i}$ from $A_{L+1, i+1}$ other than $a_{i+1}$ and consider the square $\hat{\imath}\left(n_{i+1}^{\nu}\right) \times\left\{a_{i}\right\}$ (ir' $i=(L+I) k$, pick arbitrarily $a(L+1) k \in A_{L+1}$ and conoid. the square $\left.\left.Q\left(N^{L}\right) \times\left\{{ }^{a_{(L+1}}\right)_{k}\right\}\right)$.

Since $Q\left(n_{i+1}^{L}\right) \times\left\{a_{i}\right\} \in Q^{\prime}$ and since $n_{i+1} \geq u_{i}=$ $=g^{\prime}\left(w_{i}\right)$, we may assume that there is a subsquare $Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}$ such that

1) either there is some $j \in\{1,2, \ldots, I\}$ and a sequince $\left\{x_{T}: T \in \mathcal{J}_{j}\right\}, x_{T} \in T$, such that.
$Q\left(w_{i}^{L}\right) \times\left\{a_{i}\right\} \subset \cup\left\{\operatorname{st}^{2}\left(x_{T}, \varphi\right) \cap T: T \in \mathcal{J}_{j}\right.$, $\left.\operatorname{T\cap Q}\left(n_{i+1}^{L}\right) \times\left\{a_{i}\right\} \neq \varnothing\right\}$,
2) or the square $Q\left(w_{i}^{L}\right) \times\left\{a_{i}\right\}$ is $\varphi$-discrete.

Let $Q_{2}\left(w_{i}^{L}\right)=B_{1, i} \times B_{2, i} \times \ldots \times B_{L, i}$. Choose some sub; $B_{L+1, i} \subset A_{L+1, i+1}$ such that $L_{L+1, i}$ contains $a_{i}$, $\left|B_{L+1, i}\right|=w_{i}$ and $E_{L+1, i} \cap\left\{a_{i+1}, a_{i+2}, \ldots, a_{(I+1) k}\right\}=\varnothing$. Then $Q\left(w_{i}^{L+1}\right)=Q\left(w_{i}^{L}\right) \times B_{L+1, i}$ is obviously a subcube of $a\left(n_{i+1}^{I+1}\right)$ 。

If the case 1) takes place, we are done when define $n_{i}=w_{i}$ and $A_{j, i}=B_{j, i}$ for $j=1,2, \ldots, L+1$.

The case 2) is little more complicated. Let $\mathcal{S}$ be partition of the cube $\mathrm{Q}\left(\mathrm{w}_{i}^{\mathrm{L}+1}\right)$ consisting oI all ror-voi $\operatorname{TnQ}\left(w_{i}^{L+1}\right)$ with $T \in \mathcal{T}_{L+1}$. As mentioned in $I$, each $S \in$ meets $Q\left(W_{i}^{I}\right) \times\left\{a_{i}\right\}$ in precisely one point, thus we may Label the mernbers of $\mathcal{S}$ in the manner $\mathscr{S}=\left\{S_{y}: y \in\right.$ $\left.\in Q\left(w_{i}^{j}\right) \times\left\{a_{i}\right\}\right\}$ 。

There are two possibilities:

2a) There exists a subcube $Q\left(v_{i}^{L}\right) \subset Q\left(w_{i}^{L}\right)$ such that $\mid$ st $\left(Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap\left(Q\left(v_{i}^{\mathrm{L}}\right) \times B_{L+1, i}\right) \left\lvert\,<\frac{v_{i} \cdot w_{i}}{2}\right.$.

Then there must be a subset $D_{\mathrm{I}+1, i} \subset \mathrm{~B}_{\mathrm{I}+1, i}$ with $\left|D_{L+1, i}\right|=v_{i}$ and
| st $\left(Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap\left(Q\left(v_{i}^{L}\right) \times D_{L+1, i}\right) \left\lvert\,<\frac{v_{i}^{L+1}}{2}\right.$
Then, since $v_{i}=f_{L+1}\left(u_{i}, 2\right)$, there exists a subcube $Q\left(u_{i}^{\mathrm{L}+1}\right)$ of $Q\left(v_{i}^{\mathrm{L}}\right) \times D_{\mathrm{L}+1, i}$, which does not intersect the set st $\left(Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}, \varphi\right)$.

Suppose $2\left(u_{i}^{L+1}\right)=A_{1, i} \times A_{2, i} \times \ldots \times A_{L, i} \times A_{L+1, i}^{\prime} ;$ the set $A_{\mathrm{L}+1, i}^{\prime}$ does not contain frorntrivial reason the point $a_{i}$. Pick an arbitrary $a \in A_{I+1, i}^{\prime}$ and define $n_{i}=u_{i}$, $A_{\mathrm{L}+1, i}=\left\{a_{i}\right\} \cup A_{\mathrm{L}+1, i}^{\prime}-\{a\}$. It remains to write $Q\left(n_{i}^{i+1}\right)=A_{1, i} \times A_{2, i} \times \ldots \times A_{L+1, i}$.

Db) For every subcube $Q\left(v_{i}^{L}\right) \subset Q\left(W_{j}^{L}\right)$ the inequality
$\mid$ st $\left(Q\left(w_{i}^{L}\right) \times\left\{a_{i}{ }^{3}, \mathscr{\varphi}\right) \cap\left(Q\left(v_{i}^{L}\right) \times B_{L+1, i}\right) \mid \geq v_{i}^{L} \cdot w_{i}^{L}\right.$
holds. Fix for a moment one such subcube. There exists a set $\operatorname{McQ}\left(v_{i}^{L}\right) \times\left\{a_{i}\right\},|\mathbb{M}| \geq \frac{v_{i}^{L}}{4}$ and points $x_{y} \in S_{y}$ for $y \in \mathbb{M}$ such that $\left\lvert\, s^{2}\left(x_{y}, \varphi\right) \cap s_{y} \geq \frac{w_{i}}{4 v_{i}^{-}} \quad\right.$ (to see this, it suffices to take $\mathbb{M}=\left\{y \in \mathfrak{Z}\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}\right.$ :
$: \mid$ st $\left.\left(Q\left(v_{i}^{\mathrm{L}}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap s_{y} \left\lvert\, \geq \frac{w_{i}}{4}\right.\right\}$ : This set $M$ must be of cardinality at least $v_{i}^{L}$, because st $\left(Q\left(v_{i}^{\mathrm{L}}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap\left(2\left(v_{i}^{\mathrm{L}}\right) \times \mathrm{B}_{\mathrm{L}+1, i}\right)=$ $=\cup\left\{\right.$ st $\left.\left(\mathfrak{q}\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap S_{y}: y \in Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}\right\}$, but for each $y \in \mathbb{M}$ the set st $\left(Q\left(v_{i}^{I}\right) \times\left\{a_{i}\right\}, \mathscr{C}\right) \cap S_{y}$ equals to the union of at most $v_{i}$ sets st $(z, \varphi) \cap S_{y}$ where $z$ varies through $Q\left(v_{i}^{L}\right) \times\left\{a_{i}\right\}$, thus for at least one $z_{y}$ the incquality st $\left(z_{y}, \varphi\right) \cap s_{y} \geq \frac{w_{i}}{4 v_{i}^{L}} \quad$ takes place. Pick an

## $22-$

$x_{y}$ from st $\left(z_{y}, \mathscr{C}\right) \cap S_{y}$, obviously st ${ }^{2}\left(x_{y}, \mathscr{C}\right) \cap S_{i y} 工$ $\nu$ st $\left.\left(z_{y}, \mathscr{\varphi}\right) \cap S_{y}\right)$.

Since this result holds for an arbitrary subcube $Q\left(v_{i}^{L}\right) \subset Q\left(W_{i}^{L}\right)$, we may conclude that it is possible to choose a point $x_{s} \in S$ with $\left|s t^{2}\left(x_{s}, \varphi\right) \cap S\right| \geq w_{i}^{w_{i}} 4 v_{i}^{L}$ for at least $w_{i}^{l}$ members $S$ of $\mathcal{S}$, thus there exist a set of points $\left\{x_{s} \in S: S \in \mathscr{S}\right\}$ with

$$
\left|\cup\left\{s t^{2}\left(x_{s}, \varphi\right) n s: s \in \varphi\right\}\right| \geq \frac{w_{i}^{L}}{4} \cdot \frac{w_{i}}{4 v_{i}^{L}}=\frac{w_{i}^{L}+1}{16 v_{i}^{L}}
$$

Now, notice that $w_{i}=f_{L+1}\left(k, 16 v_{i}^{L}\right)$ : there must be a cube $Q\left(k^{L+1}\right)$ contained in $U\left\{s t^{2}\left(x_{s}, \mathscr{C}\right) \cap S: S \in \mathscr{S}\right\}$. Since $\mathscr{S}$ was a relativization of $\mathcal{T}_{\mathrm{L}+1}$, we have obtained that if Lb) will occur, then the statement holds for $L+1$ and we may stop with the induction $\operatorname{rrom}(L+l) k$ to 1 .

Suppose that the only possible cases during the whole induction from ( $L+1$ )k to $l$ were those indicated in l) and $2 a$ ). In the final step the cube $Q\left(n_{1}^{L}\right)=A_{1,1} \times A_{2}, 1 \times \ldots$ $\ldots \times A_{L+1,1}$ was obtained, $n_{1} \geq u_{0}=k$. Choose some subsets $B_{i} \subset A_{i, i}$ for $i=1,2, \ldots, L$ with $\left|B_{i}\right|=k$. The set $a_{1}, a_{2}, \ldots$ $\ldots, a_{(L+1) k}$ can be divided into $L+1$ subsets $M_{1}, M_{2}, \ldots$ $\ldots, M_{L+1}$ : A point $a_{i}$ belongs to $M_{L+1}$ if $Q\left(n_{i}^{L}\right) \times\left\{a_{i}\right\}$ is $\mathscr{C}$-discrete, $a_{i}$ belongs to $\mathbb{M}_{j}(j \in\{1,2, \ldots, L\})$ if there is a sequence $\left\{x_{T}: T \in \mathcal{T}_{j}\right\}$ with $x_{T} \in T$ and $\cup\left\{s t^{2}\left(x_{T}, \mathscr{C}\right)\right.$ $\cap T: T \in \mathcal{T}_{j}$ and $T \cap Q\left(n_{i+1}^{L}\right) \times\left\{a_{i}\right\} \neq \varnothing$ contains a square $Q\left(n_{i}^{L}\right) \times\left\{a_{i}\right\}$.

Since $\left|\cup\left\{M_{i}: i=1,2, \ldots, L+1\right\}\right| \geq(L+1) k$, the re is some $i_{o}$ with $\left|M_{i_{0}}\right| \geq k$. Let $B_{L+1} \subset M_{i_{0}},\left|B_{L+1}\right|=k_{\text {s }}$ and define $W\left(L^{L+1}\right)=B_{1} \times B_{2} \times \ldots \times B_{L+1}$. Now, if $i_{0} \leqslant L$, it is clear that

for some choice $x_{T} \in T$, if $i_{0}=L+1$, then $Q\left(k^{L+1}\right)$ is $\mathscr{C}$-discrete, because $Q\left(k^{L}\right) \times\left\{a_{i}\right\}$ is $\varphi$-discrete and st $\left(Q\left(k^{L}\right) \times\left\{a_{i}\right\}, \mathscr{C}\right) \cap Q\left(k^{L}\right) \times\left\{a_{j}\right\}=\varnothing$ for any $i \neq j, a_{i}$, af ${ }^{M} \mathrm{~L}+1$ as a consequence of the rect that st $\left(Q\left(n_{i}^{L}\right) \times\left\{a_{i}\right\}, \varphi\right) \cap Q\left(n_{i}^{L}\right) \times\left\{a_{j}\right\}=\emptyset$ for $j>i$.

The statement ( $* *$ ) is proved and we are able to velrife the assumptions of C. prom Lemma

Let $\mathcal{F}$ be a filter on $\omega$ with a countable base, suppose that each $F \in \mathcal{F}$ has $\mathbb{P}$, let $\mathscr{C}$ be a point-tinite cover of $\omega$.

If there exists an $i \in\{1,2, \ldots, L\}$ and a sequence $\left\{x_{T}: T \in \mathcal{T}_{i}\right\}$ with $x_{T} \in T$ such that $\cup\left\{\operatorname{st}^{2}\left(x_{T},\right) \cap T:\right.$ $\left.: T \in \mathcal{J}_{i}\right\} \cap \mathbb{F}$ has $\mathbb{P}$ for each $\mathfrak{F} \in \mathbb{F}$, it suffices to write $M=U\left\{\operatorname{st}^{2}\left(x_{T}, \varphi\right) \cap T: T \in \mathcal{T}_{i}\right\}$ 。

If no such $i$ exists, then there is some $\widetilde{F} \in \mathcal{F}$ and natural $m<\omega$ such that for every $i \in\{l, 2, \ldots, L\}$,for every sequence $\left\{x_{T}: T \in \mathcal{T}_{i}\right\}$ with $x_{T} \in T$ and for every $n<\omega$ the set $\cup\left\{s t^{2}\left(x_{T}, \mathscr{C}\right) \cap T: T \in \mathcal{J}_{i}\right\} \cap \widetilde{F} \cap R_{n}$ has not $\mathbb{P}(m)$. We are to find a $\mathscr{C}$-discrete set $M$ such that M $\cap F$ has $\mathbb{P}$ for every $F^{\prime} \in \mathcal{F}^{\circ}$. Suppose $\left\{F_{j}: j<\varepsilon\right\}$ be the base of $\mathcal{F}$ and $\tilde{F} \supset F_{0} \supset F_{I} \perp F_{2} \supset \ldots$ 。

Induction: $F$ has $\mathbb{P}$, so there is a system $\left\{Q_{0}\left(k_{i}^{L}\right): i<\omega\right\} \subset \mathcal{Q}$ and a sequence $\{(0, i): i<\omega\}$ of natural numbers such that $F_{0} \cap R_{n}(0, i) ? Q_{0}\left(k_{i}^{L}\right)$, sup $k_{i}-$ $=\omega$ and $n(0, i) \neq n\left(0, i^{\prime}\right)$ whenever $i \neq i^{\prime}$. Let $i_{0}<\omega$ be such a natural number that $k_{i_{0}}=g(m)$, where $g$ is a function from ( $* *$ ). Then there is a $\mathscr{C}$-discrete set $X_{0} \subset Q_{0}\left((g(m))^{L}\right)$ which contains some cube $Q\left(m^{L}\right)$, other possibilities being excluded by the assumption $F_{0} \subset \tilde{F}$. Set $n_{0}=n\left(0, i_{0}\right), H_{0}=X_{0}$.

Suppose $n_{0}<n_{l}<n_{2}<\ldots<n_{p-1}$ and $M_{0}=M_{l} \subset \ldots \subset M_{p-1}$ be defined with $M_{p-1}$ finite and $\mathscr{L}$-discrete, $M_{\ell} \cap F_{\ell} \cap{ }^{R_{n_{l}}}$ having $\mathbb{P}(m+l)$ for $\ell=1,2, \ldots, p-1$. The sect $\quad l n-1$ is finite, the cover $\mathscr{C}$ is point-finite, thus $F_{p} \cap$ $n \operatorname{st}\left(M_{p-1}: \varphi\right)$ cannot have $\mathbb{P}$ - the idea is the same as in
the proof of Theorem 2. Thus $G_{p}=F_{p}-s t\left(M_{p-1} ; \mathscr{C}\right)$ has $\mathbb{P}$; it follows that there exist a system $\left\{Q_{p}\left(k_{i}^{L}\right): i<\right.$ $<\omega\} \subset Q$ and a sequence $\{n(p, i): i<\omega\}$ of naturail numbers such that $G_{p} \cap R_{n(p, i)} ? Q_{p}\left(k_{i}^{L}\right)$, sup $k_{i}=\omega$ and $n(p, i) \neq n\left(p, i^{\prime}\right)$ whenever $i \neq i^{\prime}$. Let $i_{p}$ be a natural number such that $n\left(p, i_{0}\right) \geqslant n_{p-1}$ and $k_{i_{p}} \geq g(m+p)$. Using $(* *)$, we can find a $\mathscr{C}$-discrete set $X_{p} \subset Q_{p}\left(\varepsilon_{i_{p}}^{L}\right)$ which contains a cube $Q\left((m=p)^{L}\right)$. Let $n_{p}=n\left(p, i_{p}\right), i_{p}=$ $=M_{p-1} \cup X_{p}$. The set $X_{p}$ is contained in $R_{n_{p}} \cap F_{p}$ and the set $M_{p}$ is $\mathscr{C}$-discrete: $X_{p}$ is $\mathscr{C}$-discrete and $X_{p} \subset \omega$ -- st $\left(M_{p-1}, \mathscr{C}\right)$.

It remains to define $M=\bigcup\left\{M_{p}: p<\omega\right\}$. $M$ is $\varphi$ discrete and $M \cap F$ has $\mathbb{P}$ for each $\mathbb{F} \in \mathbb{F}$.
IV. We have verified that the properties $\mathbb{P}$ and are good enough to use them in Lemma 4. Let $q$ be the ultrafilter from C. of that Lemma, it is a P-point and it is not selective.

Let $q_{i}$ be a uniformity with a base
$\left\{\mathfrak{J}_{i} \wedge \mathcal{P}: \mathcal{J}\right.$ is a uniform cover of $\left.\mathcal{O}_{q}\right\}$.
Clearly each $\mathcal{R}_{i}$ is uniformly non-discrete and $\mathcal{A}_{i} \neq \mathcal{A}_{j}$ whenever $i \neq j$ because $\mathscr{V}_{i} \wedge \mathcal{T}_{j}=\{\{x: x \in$ $\epsilon \omega\}$. Thus we have $L$ distinct uniformities below $\sigma_{c}$ and it remains to prove that each of them is an atom and that there is no other atom belovo $\sigma_{q}$. Indeed, it will suffice to show that any uniformity $\mathcal{U}$ below $\sigma_{q}$ is dit her coarser than some $\mathcal{A}_{i}$ or uniformly discrete.

To this end, let $U$ be a uniformity below $\sigma_{q}$ : If there is an $i \in\{1,2, \ldots ., L\}$ such that every uniform coveer $\mathcal{E}$ of $\mathcal{U}$ belongs to $\mathcal{A}_{i}$, then $\mathcal{U} \mathcal{\mathcal { R } _ { i }}$, so suppose the contrary. We can find then uniform covers $\varepsilon_{1}$, $\varepsilon_{2}, \ldots, \varepsilon_{L} \in \mathcal{U}$ with $\varepsilon_{i} \neq \mathcal{A}_{i}$ for $i=1,2, \ldots, L$. Let $\mathscr{C}$ and $\mathscr{D}$ be uniform covers from $\mathcal{X}, \mathscr{C}$ point-finite and suppose that $\mathscr{\ell}{ }_{3}^{*} D \star_{3} \varepsilon_{1} \wedge \varepsilon_{2} \wedge \ldots \wedge \varepsilon_{L}$.

According to Leman 4 there exists a set $M \in q$ having $\mathbb{S}_{\mathcal{e}}$, let $\mathcal{P}_{\mathrm{M}}$ be the cover $\{M\} \cup\{\{\mathrm{x}: \mathrm{x} \in \omega\}$. Since $\mathcal{P}_{I i} \in \sigma_{q}$ and $U$ is finer than $\sigma_{q}, \mathcal{P}_{M} \in \mathcal{U}$.

It there exist an $i \in\{1,2, \ldots, L\}$ and a sequence $\left\{x_{T}: T \in \mathcal{J}_{i}\right\}$ with $x_{T} \in T$ such that $s t^{2}\left(x_{T}, \mathscr{C}\right) \cap T \leadsto M \cap T$, then the cover $\mathcal{P}_{\mathrm{M}} \wedge \mathcal{J}_{i}$ would refine $\varepsilon_{1} \wedge \varepsilon_{2} \wedge \ldots \wedge$ $\ldots \wedge \varepsilon_{L}$ which is impossible by the choice of $\varepsilon_{i}$. Thus $M$ is $\mathscr{C}$-discrete, consequently, $\mathcal{P}_{M} \wedge \mathscr{C}=\{\{x\}: x \in$ $\in \omega\}$ and the uniformity $\mathcal{U}$ is uniformly discrete.

The proof or Theorem 5 is complete.
Let $1 \boldsymbol{u}$ consider the atoms constructed in the previous proofs ir om another point oi' view. We gave some examples of P -points in $\beta(\omega) \omega$ which indicate that there is a classification of types in $\beta(\omega) \omega$ completely diffferent and in some sense finer than the classifications obtaine with the topological approach. Let us say that an ultrafilter $q$ beings to $W_{\infty}(\propto$ cardinal) if there is arecisely $\propto$ distinct uniform atoms below $\sigma_{q}$. We have proved that (under [CH]) $W_{\alpha} \neq \emptyset$ for $\propto<\omega$, we are able to prove that $\mathbb{W} \neq \varnothing$, too (Theorem 7); an open question is non-voidness of $\ln _{\infty}$ Cor $\omega \leqslant \propto<2$. Another question arises if we realize that ali the described atoms were made simply by adding one partition to $\sigma_{q}$ : is this a generat principle, how to make atoms? As may be expected this is not true, not even in the case of P-points, this result is stated in Theorem 6. What may be surprising is the fact that one needs only countably many partitions to obtain an atom below this special $\sigma_{\mathrm{G}}$.
6. Theorem. Assume [CH]. Then there exists a P-point $q$ on $\omega$ such that for each partition $\mathcal{R}$ of $\omega$ a uniformmity with a base $\left\{\mathcal{R} \wedge \mathcal{P}: \mathcal{P} \in \sigma_{q}\right\}$ is never a uniform atom on $\omega$. Moreover, there exists precisely one aton below $\sigma_{q}$.

Proof. Let $\Omega=\left\{\Omega_{n}: n<\omega\right\}$ be a partition of
such that $\left|R_{n}\right|=n^{n}$. Then we can easily construct a sequence $\mathscr{S}_{I}, \mathscr{S}_{2}, \mathscr{\varphi}_{3}, \ldots$ of partitions of $\omega$ such that $R \in \mathscr{S}_{1} \in \mathscr{Y}_{2} \in \ldots$ and, $\pm \underset{S}{S} \in \mathscr{S}_{\mathrm{m}}$ and $S \subset R_{\mathrm{n}}$, then $|s|=\operatorname{Max}\left(1, n^{n-m}\right)$ 。

Similarly as in Theorem 5, we want to use Lema 4. The properties $\mathbb{P}(k)$ are defined as follows: A finite set $M \subset \omega$ has $\mathbb{P}(0)$ iff $M \neq \varnothing$, and $M$ has $\mathbb{P}(k)$ iff $1\left\{s(1) \in \mathscr{C}_{1}: \mid s(2) \in \mathscr{S}_{2}: s(2) c s(1)\right.$ \& $i\left\{s(3) \in \mathscr{Y}_{3}:\right.$ $: S(3) \subset S(2) \& \ldots \& \mid\left\{S(k) \in \mathscr{S}_{k}: S(k) \subset S(k-1) \&\right.$ $\&|S(k) \cap M|>k\} \mid>k \ldots\} \mid>k\} \mid>k\} \mid>k$ 。 (Thus $M$ has $\mathbb{P}(1)$ iff $\mid\left\{S(1) \in \mathcal{S}_{1}|S(1) \cap M|>\right.$ $>1\} \mid>1, M$ has $\mathbb{P}(2)$ itf $\mid\left\{S(1) \in \mathcal{S}_{1}: \mid\{S(2) \in\right.$ $\left.\left.\epsilon \mathcal{S}_{2}: S(2) \subset S(1) \&|S(2) \cap M|>2\right\} \mid>2\right\} \mid>2$, and so on.)

All the conditions (0),...,(iv) from Lemma 4 are satisfied. We shall show the validity or (iji) only and leave the rest to the reader.

Let $f(k)=2 k=1$, suppose $\mathbb{M}$ has $\mathbb{P}\left(\mathbb{P}^{2}(k)\right), \mathbb{M}=\mathbb{L}_{1} \cup$ $\cup M_{2}$. Since $M$ has $\mathbb{P}\left(f^{\prime}(k)\right)$, there are some members from
$2_{k+1}$ which meet $M$ in at least $2 k+2$ points, so there are some $S(k)$ 's from $\mathcal{S}_{k}$ with $|\mathrm{M} \cap S(k)|>2 k+1$, becau se $\mathcal{S}_{2 k+1}$ refines $\mathcal{S}_{k}$. Denote by

$$
\begin{aligned}
& \mathcal{\varphi}_{k}(0)=\left\{S(k) \in \mathcal{S}_{k}:|\mathbb{M} \cap S(k)|>2 k+1\right\}, \\
& \mathcal{\varphi}_{k}(i)=\left\{S(k) \in \mathcal{Y}_{k}:\left|M_{i} \cap S(k)\right|>k\right\}, i=1,2 . \\
& \text { Suppose } \mathcal{S}_{l+1}(i), i=0,1,2, \text { be defined for } 1<\ell+
\end{aligned}
$$ $+\lambda \leqslant k$, then

$$
\mathscr{\varphi}_{\ell}(0)=\left\{s(\ell) \in \mathscr{\varphi}_{\ell}:\left(\left\{s(\ell+1) \in \mathscr{\varphi}_{\ell+1}(0): s(\ell+1) c\right.\right.\right.
$$ c $S(\ell)\} \mid>2 k+1\} ;$

$$
\mathscr{S}_{\ell}(i)=\left\{S(\ell) \in \mathscr{S}_{\ell}: \mid\left\{s(\ell+1) \in \mathscr{S}_{\ell+1}(i):\right.\right.
$$

$: S(\ell+1) \subset S(\ell)\} \mid>k\}, i=1,2$.
The inclusion $\Theta_{l}(0) \subset \mathcal{S}_{l}(1) \cup \varphi_{l}(2)$ holds for each $\boldsymbol{\ell}=1,2, \ldots, k$ : This is obvious for $\boldsymbol{\ell}=k$ and ror $\ell<k$ we obtain the result simply by a finite induction
down using the fact that $M$ has $\mathbb{P}(2 k+1)$. Thus $\mathcal{S}_{1}(0) c$ $\subset \varphi_{1}(1) \cup \varphi_{1}(2)$ and, since $M$ has $\mathbb{P}(2 k+1)$,
$\left|\varphi_{1}(0)\right|>2 k+1$ and we conclude that eeg. $\left|\varphi_{1}(1)\right|>$ $>k$. But then it can be quickly deduced from the definitimon of $\mathscr{S}_{1}(1)$ that $\mathbb{N}_{1}$ has $\mathbb{P}(k)$.

Let $\mathbb{P}$ be the property from Lemma 4 (where we use $\mathcal{R}$ as an admissible partition). Let $\mathscr{C}$ be a point-finite cover of $\omega$, let $\mathbb{S}_{\varphi}$ be the following property of a set MC $\subset$
"The set $M$ is either $\mathscr{C}$-discrete or there exist some $m<\omega$ and a sequence of points $\left\{x_{S} \in S: S \in \mathcal{S}_{\mathrm{m}}\right\}$ such th $t \operatorname{st}^{2}\left(x_{S}, \mathscr{C}\right) \cap S \supset M \cap S$ for every $S \in \mathcal{S}_{m^{\prime}}$ "
:ie have to verify the assumptions of C. from Lemma 4. To this end, let $\mathcal{F}$ be a tilter with a countable base $\left\{F_{j}: j<\omega\right\}$ consisting of sets with $\mathbb{P}$ and assume that $F_{0} \supset F_{1} \supset F_{2} \supset F_{3} \supset \cdots$.

If there exist and $m<\omega$ and a sequence $\left\{x_{S} \in S\right.$. $S \in$ $\left.\in \mathcal{Y}_{\mathrm{m}}\right\}$ with $\cup\left\{\operatorname{st}^{2}\left(\mathrm{x}_{S}, \mathscr{\varphi}\right) \cap S: S \in \mathcal{S}_{\mathrm{m}}\right\} \cap \mathrm{F}_{\mathrm{j}}$ having $\mathbb{P}$ for each $j<\omega$, then we may define $\mathbb{M}=U\left\{\operatorname{st}^{2}\left(x_{S}, \mathscr{C}\right)\right.$ n $\left.\cap S: S \in \mathcal{S}_{\mathrm{m}}\right\}$ and the assumptions of C. from Lemma 4 are satisfied for this $M$.

So, suppose the opposite: No such $m<\omega$ and no such sequence $\left\{x_{S}\right\}$ exists. We must construct a $\mathscr{C}$-discrete set $M$ such that $M \cap F_{j}$ has $\mathbb{P}$ for each $j<\omega$.

Induction: Let $j_{0}=0$, pick arbitrarily a point $y \in F_{0}$, let $X_{0}=M_{0}=\{y\}$ and let $n_{0}$ be such a natural number that $y_{0} \in R_{n_{0}}$.

Let $k<\omega$ and suppose that the natural numbers $n_{0}<$ $<n_{1}<\ldots<n_{k-1}, j_{0}, j_{1}, \ldots, j_{k-1}$ and finite sets $M_{0}, M_{1}, \ldots$ $\ldots, \mathbb{M}_{k-1}, X_{0}, X_{1}, \ldots, X_{k-1}$ be defined such that $M_{k-1}$ is $\mathscr{C}$ discrete, $M_{i}=M_{i-l} \cup X_{i}, X_{i} \subset F_{j_{i}} \cap F_{i} \cap R_{n_{i}}$ and $X_{i}$ have
$\mathbb{P}$ (i) for $i=0,1, \ldots, k-1$.
By the hypothesis, there is some natural $j_{k}$ such that $\cup\left\{\operatorname{st}^{2}\left(x_{S}, \varphi\right) \cap S: S \in \mathscr{S}_{k}\right\} \cap F_{j_{k}}$ h ns not $\mathbb{P}$ for each choice $\mathrm{x}_{\mathrm{S}} \in \mathrm{S}$. Thus we may assume that the is some $1_{\mathrm{k}}<\omega$
and natural $N>n_{k-1}$ such that for every $n>N$ and for every sequence $\left\{x_{S} \in S: S \in \mathscr{S}_{k}\right\}$ the set $\cup\left\{\begin{array}{ll} \\ \\ \end{array}\left(x_{S}, \mathscr{C}\right) n\right.$ $\left.: S \in \mathscr{\varphi}_{k}\right\} \cap F_{j_{k}} \cap R_{n}$ has not $\mathbb{P}\left(\boldsymbol{\ell}_{k}\right)$. The set $M_{k-1}$ is finite and $\mathscr{C}$ is point-finite; similarly as in previous proofs we conclude that the set $G_{k}=F_{k} \cap F_{j_{k}}-\operatorname{st}\left(M_{k-1}, \mathscr{C}\right.$ has $\mathbb{P}$.

By the repeated use of (iii) rom Lemma 4 we can fin a natural $h$ such that if a finite set $Q$ has $\mathbb{P}(h)$, if $y$ is a family of cardinality $(k+1)^{k+1}$ and if $\cup y=Q_{\text {, }}$ then at least one $Y \in \mathcal{Y}$ has $\mathbb{P}\left(\right.$ Max $\left.\left(k, \ell_{k}\right)\right)$.

Since the set $G_{k}$ has $\mathbb{P}$, there is some $n_{k}>N$ such that $G_{k} \cap R_{n}$ has $\mathbb{P}(f(h))$ (the function $f$ was defined above). Let $\mathcal{S}_{k}^{\prime}$ be a family of all $S \in \mathcal{S}_{k}$, $S \subset R_{n_{k}}$ such that there exists a set $D_{S} \subset S \cap G_{k}$ with a property that st ${ }^{2}(x, \varphi) \cap D_{S}=\{x\}$ whenever $x \in D_{S}$ and of cardinality $\left|D_{S}\right|=(k+1)^{k+1}$. Let $L=U\left\{S\right.$ e $\mathcal{S}_{k}: S \subset R_{n_{k}}$, $\left.S \notin \mathscr{S}_{k}^{\prime}\right\} \cap G_{k}$. The set $L$ cannot have $\mathbb{P}(h)$ : Notice the we can choose a set $D_{S} \subset S \cap G_{k}$ for each $S \notin \mathcal{Y}_{k}^{\prime}$ such that $\operatorname{st}^{2}\left(D_{S}, \mathscr{C}\right) \supset S \cap G_{k},\left|D_{S}\right| \leq(k+1)^{k+1}$. Thus it is possible to find one $x_{S} \in D_{S}$ for each $s \in \mathcal{S}_{k}-\mathscr{P}_{k}^{\prime}$ such that the set $\left\{s t^{2}\left(x_{S}, \mathcal{C}\right) \cap S: S \notin \mathscr{P}_{k}^{\prime}\right\} \cap_{G_{k}}$ has $\mathbb{P}\left(i_{k}\right)$, as a consequence of the definition of h and $\mathscr{S}_{\mathrm{K}^{\prime}}{ }^{\circ}$

Thus the set $R_{n_{k}} \cap G_{k}$ - L has $P(h)$, and one can find the following families of sets:

$$
\left\{S_{i_{1}}: l \leqslant i_{1} \leqslant k+l\right\} \subset \mathcal{S}_{1}, S_{i_{l}} \subset R_{n_{k}} \text { for } l \leqslant i_{1} \leqslant k+1 ;
$$

$$
\left\{s_{i_{1} i_{2}}: 1 \leqslant i_{1}, i_{2} \leqslant k+1\right\} \subset \rho_{2}, s_{i_{1} i_{2}} \subset S_{i_{1}} \text { for } l \leqslant i_{1}
$$ $i_{2} \leqslant k+1 ;$

$$
\begin{aligned}
& \vdots \\
& \left\{s_{i_{1} i_{2} \ldots i_{k-1}}: l \leq i_{1}, i_{2}, \ldots, i_{k-1} \leqslant k+1\right\} \subset \mathscr{S}_{k-1} \\
& \quad s_{i_{1} i_{2} \ldots i_{k-2} i_{k-1}} \subset s_{i_{1} i_{2} \ldots i_{k-1}} \text { for } 1 \leqslant i_{1}, i_{2}, \ldots, i_{k-2}
\end{aligned}
$$

$i_{k-1} \leqslant k+1 ;$
$\left\{S_{i_{1} i_{2} \ldots i_{k}}: l \leqslant i_{l}, i, \ldots, i_{k} \leqslant k+1\right\} \subset \mathcal{Y}^{\prime}{ }_{k}$,
$s_{i_{1} i_{2} \ldots i_{k-1} i_{k}} \subset s_{i_{1} i_{2} \ldots i_{k-1}}$ and $\left|s_{i_{1} i_{2} \ldots i_{k}} n^{G_{k}}\right|>h$ for $l \leq i_{1}, i_{2}, \ldots, i_{k} \leqslant k+l$ 。

Since $S_{i_{1} i_{2} \ldots i_{k}} \in \mathscr{C}_{k}^{\prime}$, let $D_{i_{1} i_{2}} \ldots i_{k}$ be a subset of $S_{i_{1} i_{2} \ldots i_{k}} \cap G_{k}$ which satisfies st ${ }^{2}(x, \mathscr{C}) \cap D_{i_{1} i_{2} \ldots i_{k}}=\{x\}$ for each $x \in D_{i_{1}} i_{2} \ldots i_{k}$ and $\left|D_{i_{1}} i_{2} \ldots i_{k}\right|=(k+1)^{k+1}$.

Let $I=\left\{z: l \leq z \leq(k+1)^{k}\right\}$ be some well-ordering of the set of indices $I=\left\{\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle: l \leq i_{1}, i_{2}, \ldots\right.$ $\left.\ldots, i_{k} \leqslant k+l\right\}$. By an induction we may define for each $z \in\left\{1,2, \ldots,(k+1)^{k}\right\}$ a Finite $\varphi$-discrete set $E_{z} \subset D_{z}$ such that $\left|E_{z}\right|=k+1$ and $\operatorname{st}\left(E_{Z}, \mathscr{C}\right) \cap \mathbb{E}_{w}=\emptyset$ for $u \neq w$. Ir $\mathbb{E}_{w}$ have been defined for $1 \leqslant \mathrm{w}<\mathrm{z} \leqslant(\mathrm{k}+1)^{k}$, then
$\left|\cup^{W}\left\{E_{W}: l \leqslant w<z\right\}\right| \leqslant(k+l)^{k+1}-(k+1)$, and from the observation st ${ }^{2}(x, \mathscr{C}) \cap D_{z} \supset$ st $(y, \mathscr{C}) \cap D_{z}$ (whenever $x \in D_{z} \cap$ $\cap$ st $(y, \varphi)$ and $\left.y \in \cup\left\{E_{w}: l \leq w<z\right\}\right)$ together with the fact that st $^{2}(x, \varphi) \cap D_{z}=\{x\}$ (for $x \in D_{z}$ ) follows that there is a subset $E_{z} \subset D_{z}$ - st $\left(\cup\left\{\mathbb{E}_{w}: l \leq w<z\right\}, \varphi\right)$ with cardinality $\mathrm{k}+\mathrm{l}$.

Let us doling $\left.X_{k}=U\left\{E_{z}: 1 \leqslant z \leqslant k+1\right)^{k}\right\} \quad$ Clearby $X_{k}$ is $\varphi$-discrete, $X_{k} c G_{k} c \mathcal{F}_{j_{k}} \cap F_{k}^{\prime} \cap \tilde{X}_{n_{k}}$, st $\left(M_{k-1}, \mathscr{C}\right) n$ $\cap X_{k}=\varnothing$, thus $M_{k}=M_{k-1} \cup X_{k}$ is $\varphi$-discrete, and $X_{k}$ has $\mathbb{P}(\mathrm{k})$.

It follows that the set $M=U\left\{\mathbb{M}_{k}: k<\omega\right\}$ is the set needed in Lemma 4, C.

Now, use Lemma 4: We have a P.-point $q$ and we must provo that there is at most one atom below $\sigma_{\mathrm{q}}$ and that his atom cannot be obtained by adding one artition to a uniformity $\sigma_{q}$. The uniformity $\mathcal{A}$ on $\omega$ will be th uniformitt whose base consists of all $\mathcal{P} \wedge \mathscr{S}_{\mathrm{n}}$ with $\mathfrak{P} \in \sigma_{q}$ : $\mathrm{n}<\omega$. By the definition of th prop ry $\mathbb{P}$, every set belonging to $q$ is $\mathscr{Y}_{\mathrm{n}}$-unbound $d$ for each $\mathrm{n}<\omega$,
thus $\mathcal{A}$ is not the discrete uniformity; obviously $\mathcal{A} \rightarrow \sigma_{q}, \mathcal{A} \neq \sigma_{q}$.

We shall show that $\mathcal{A}$ is the unique atom below $\sigma^{-}$ Let $\mathcal{U}$ be an arbitrary uniformity below $\sigma_{q}$, suppose $\mathcal{U}$ not to be uniformly discrete. Let $\mathcal{E}$ be a $\mathcal{U}$-unison cover. We can find covers $\mathscr{C}, D \varepsilon \mathcal{U}$ such that $\mathscr{4}$ 娄 $D$ 㥹 $\mathcal{F}$ with $\mathscr{C}$ point-finite.

If I is the set of a satisfying $\mathbb{S}_{\varphi}$, then $N$ can no be $\mathscr{C}$-discrete, for this together with $\mathcal{P}_{\mathbb{M}} \in \mathbb{U}$ (when $\mathcal{P}_{M}=\{\{x\}: x \in \omega\} \cup\{M\} \in \sigma_{q}$ ) implies that $\mathcal{U}$ is a discrete uniformity on $\boldsymbol{\omega}$. But if m is not $\mathscr{\varphi}$-discre te, then there exists an $m<\omega$ and a sequence $\left\{x_{S} \in S\right.$ : $\left.: S \in \mathcal{S}_{\mathrm{m}}\right\}$ such that $\operatorname{st}^{2}\left(x_{S}, \mathscr{C}\right) \cap S \supset M \cap S$ for each $S \in \mathcal{S}$ in other words $\mathcal{J}_{\mathrm{M}} \cap \mathcal{\varphi}_{\mathrm{m}}$ refines $\varepsilon$, thus $\mathcal{E} \in \mathcal{A}$, which shows that $\Omega$ is a unique atom below $\sigma_{q}$.

Finally, suppose that there is some partition $\mathcal{J}$, $\omega$ such that $\left\{\mathcal{T} \wedge \mathcal{P}: \mathcal{P} \in \sigma_{q}\right\}$ is a base for $\mathcal{A}$. Let $\mathbb{N}$ be the set from $q$ having $\mathbb{S}_{\mathcal{J}}$, then the cover $\mathcal{P}_{\mathrm{M}} \wedge \mathcal{Y}_{\mathrm{m}}$ refines $\boldsymbol{\sim}$ for some suitable $\mathrm{m}<\omega$. Cons der the cover $\mathcal{P}_{\mathrm{IN}} \wedge \boldsymbol{\varphi}_{\mathrm{H}+\mathrm{l}}$. Assume th there is some $\boldsymbol{P}$ $\epsilon$ a such that $\mathcal{T} \wedge \mathcal{P}_{F}$ reitines $\mathcal{P}_{\mathrm{H}} \wedge \mathcal{S}_{\mathrm{m}+\mathrm{l}}$, thus $\mathcal{P}_{M} \wedge \mathcal{P}_{F} \wedge \mathscr{S}_{\mathrm{m}}$ refines $\mathcal{P}_{\mathrm{M}} \wedge \mathscr{S}_{\mathrm{m}+1}$. But this contradict the condition that $\mathbb{F} \cap \mathbb{M}$ has $\mathbb{P}$ : Consider the sot $R_{n} \in \mathbb{R}$ such that $R_{n} \cap \mathbb{M} \cap \mathcal{F}$ has $\mathbb{P}(m+1)$. There is a set $S \in \mathcal{S}_{\mathrm{m}}, S \in R_{n}$, and a point $x \in R_{n} \cap S \cap M \cap F$ such that $\operatorname{st}^{2}\left(\mathrm{x}, \mathcal{P}_{\mathrm{M}} \wedge \mathcal{P}_{\mathrm{F}} \wedge \mathcal{S}_{\mathrm{m}}\right) \cap \mathrm{S}=\mathrm{M} \cap \mathrm{F} \cap \mathrm{S}$ intersects at least $m+1$ members of $\oint_{\mathrm{m}+\mathrm{l}}$. This contradiction completes the proof.

We have promised to show an example of an ultrafilter $q$ such that there are $2^{\downarrow}$ atoms below $\sigma_{q}$. It is possible to arrange the proof of it in such a way that the $q$ obtained will be a P-point, but it seems better to describe the main idea of the construction on the simpler case of non-minimal (in Reorder) point of $\beta(\omega)-\omega$.

By Theorer 5, for each $L<\omega$ there exists an ultrafilter $q_{L}$ with precisely $L$ distinct uniform atoms below $\sigma_{q_{L}}$.
The proor or Theorem 5 gives alightly more than stated in the theorem: each $q_{L}$ is an ultrafilter defined on a union $K_{L}$ of a disjoint tramily $\Omega_{L}$ of L-cubes and every $F \in q_{L}$ contains arbitr rily large L-subcubes of cubes from $\Re_{L}$. Let $p$ be an arbitrary free ultratilter on a set $\omega=\{\mathrm{L}: \mathrm{L}<\omega\}$, let $\mathrm{q}=\sum_{k} \mathrm{q}_{\mathrm{L}}$ be derined on $\mathrm{K}=$ $=U\left\{K_{L}: L<\omega\right\}$, the union is, of course, disjoint. We claim that $q$ is the desired ultrafilter.

Fix $L$ for a moment. For every set $Y \subset\{I, 2, \ldots, L\}$ we may detinc a partition $\mathcal{J}_{\mathrm{L}, \mathrm{y}}$ of $\mathrm{K}_{\mathrm{L}}$ as follows: $\mathrm{T} \in$ $\in \mathcal{T}_{L, Y}$ irf there is an $A_{1} \times A_{2} \times \ldots \times A_{L} \in \mathcal{R}_{L}$ and a point $\left\langle y_{I}, y_{2}, \ldots, y_{L}\right\rangle \in A_{1} \times A_{2} \times \ldots \times A_{L}$ such that $T=\left\{\left\langle z_{1}, z_{2}, \ldots, z_{L}\right\rangle \in A_{1} \times A_{2} \times \ldots \times A_{L}: z_{i}=y_{i}\right.$ for each i $\in\{1,2, \ldots, L\}-Y\}$ 。
Thus $\mathcal{J}_{I,\{i\}}=\mathcal{J}_{i}$ in the notation used in the proof of Theorem 5.Obvicusly $\mathcal{J}_{L, Y} \wedge \mathcal{J}_{I, Z}$ is a discrete cover $\left\{\{x\}: x \in \mathbb{K}_{\mathrm{L}}\right\}$ if and only if $\mathrm{Y} \cap \mathrm{Z}=\boldsymbol{A}$.

Consider the set $X=\{\langle L, i\rangle: L<\omega, i=1,2, \ldots$ ..., I\} . For ZcX, let $Z_{L}=\{i:\langle L, i\rangle \in Z\}$. Hoving a partition $\mathcal{J}_{\mathrm{L}, Z_{L}}$ of $\mathrm{K}_{\mathrm{L}}$, we may define a partition $\mathscr{J}_{Z}$ of K simply as $\cup\left\{\mathcal{T}_{\mathrm{L}, \mathrm{Z}_{\mathrm{L}}}: \mathrm{L}<\omega\right\}$. It is self-evident that
$(+)$ the uniformity with a subbase $\left\{\mathcal{J}_{Z}\right\} \cup \sigma_{q}$ is uni_


Finally, let $\mathcal{F}$ be a filter on $X$ such that $F \in \mathcal{F}$ iff there is some $P \in p$ with $\mathcal{H} \supset\{\langle L, i\rangle: i=1,2, \ldots, L\}$ whenever $L \in P$. Let $m$ be the Camily of all ultrafilters on $X$ containing $\mathcal{I}$, cbviously $|m|=2$. Thus, according to $(+)$, for $t \in M$, the family $\left\{\mathcal{T}_{Z}: Z \in t\right\}$ of partitions of $K$ together with $\sigma_{q}$ is contained in some atom $\mathcal{A}_{t}$.

We have a sufficiently large ramily of atoms on $K$ and we need to prove that $\mathcal{R}_{t} \neq \mathcal{A}_{t^{\prime}}$ for $t \neq t^{\prime}$. Eut this is clear since for $Z \in t, Z^{\prime} \in t^{\prime}$ with $Z \cap Z^{\prime}=\varnothing$ the common refinement of $\mathcal{T}_{Z} \wedge \mathcal{T}_{Z}$, is the discrete cover $\{\{x\}: x \in \mathbb{K}\}$ 。

Thus we have proved
7. Theorem. Assume [CH]. Then there exists an ultrafilter q on $\omega$ such that there is 2 distinct uniform atoms below $\sigma^{\sigma}$.
8. Remarks and problems. a) It is possible to strengthen Theorem 7 by the condition that q is a P-poin The proof is similar to the proof of Theorem 5, one star with some partition of into cubes $Q\left(n^{L}\right)$ where both $n$ and $L$ are increasing. The choice of $n$ (depending on $L$ ) needs some care, but this is the only difficult step the rest is a mere amalgamation of methods used in the proofs of Theorems 5 and 7 .
b) Theorem 5 can be sharpened to this form: Under [CH], there is a P-point $p$ on $\omega$ such that there are on ly $L+1$ uniformities below $\sigma_{p}$, the uniformly discrete one and $L$ atoms. If $\mathcal{R}$ is a family of $L$ cubes used in the proof of Theorem 5, we can map $\cup \mathcal{R}$ onto $\omega$ suc that the image of the $q$ from Theorem 5 will be the desir ed p. To describe the mapping $f$, visualize each $Q\left(n^{L}\right)$ e. as $\{1,2, \ldots, n\}^{L} \subset \omega^{L}$; let $f_{n}$ be a mapping which split together any two points $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $\left\langle b_{1}, b_{2}, \ldots\right.$ $\left.\ldots, b_{n}\right\rangle$ from $\{1,2, \ldots, n\}^{L}$ such that $b_{i}-a_{i}=1$ for all $i \leqslant n$. Then $f$ is the canonical mapping from $\cup \mathcal{R}$ onto the disjoint union $\sum f_{n}\left[Q\left(n^{L}\right)\right]$.
c) I do not know whether the results obtained wit [CH] will remain valid under any other set-theoretic as. sumption which implies the existence of P-points.
d) Up to now, all atoms described in this paper we re O-dimensional, i.e. their base was a family of partitions. It is an open question whether there exists a nol

O-dimensional uniPorm atom; this problem seems to be pretty hard. We also do not lnow an answer to this, perhaps easicr, question: $I f$ URIF is the lattice of all O-dimensicnal uniformitics on $\omega$, if $\mathcal{A}$ is an atom on $\omega$ and if the uniformity $\mathcal{B}$ has a base of all $\mathcal{A}$-unitiorm partitions, is then $\mathcal{B}$ necessarily an atom in UNIF $0_{0}$ ?
e) Th Efllowing is the purely set-theoretic probl $m$ concerning the procerties of RH-order of $\beta(\omega)-\omega$. Suppose that $t=\sum_{12} q_{n}$ Lor somo ultratilters $t ; p, q_{1}$, $q_{2}, \ldots$. Is it true then that $t=\sum_{p}, q_{n}$ for some $p$, where all ultrarilters $n$ are ri-minimal? the motivation for this problem is hidden inthis - maybe too ecneral - question: Suppose one knows cverything about atoms below $\sigma_{q}$ for an arbitrario Rrainimal $q$. What are the consequences or this knowledre for atomb below $\sigma_{\mathrm{p}}$ with p non-minimal?

1) Faybe there arc several readers satisfying the rollawint two conditions: T.hey are - in spite of reading the present paper till here - fresh enough to solve some of our mobeng, and they believe that at least one non-c-dimensional atom on exists. Those readers are precisely those ones who noed the following description of non-O-dimensional atom,due to J. Pelant. Recall thet a component of a cover $\mathcal{V}$ is the smallest non-empty set $X \subset \cup \vartheta$ such that $s t(X, V)=X$, or, equivalently, if $x, y \in K$, then there is a finite sequence $C_{1}, C_{2}, \ldots, C_{n}$ of members of $V$ such that $x \in C_{1}, y \in C_{n}$ and $C_{i} \cap C_{i+1} \neq \varnothing$ for $i=1,2, \ldots, n \quad 1$ 。
S. Theorem. (Polant) If $\mathcal{A}$ is non-0-dimensional uniform atom cn $\omega$, then $\mathcal{A}$ has a base consisting of point-finite covers with finite components.

Proor. The first atep is to prove that there is a ba-
 and each $C \in \mathscr{C}$ is firitc.

Suppose $U$ to be ar arbitrary $\mathcal{A}$-unisorm cover. According to Proposition.(e) we may assume that there is a
couple $V, W$ of point-finite covers rom $\mathcal{A}$ such that
 $\mathcal{V}=\left\{V_{\alpha}: \propto<\lambda\right\}$ for some ordinal number $\lambda$. Then the family $\left\{\mathrm{R}_{\alpha}: \alpha<\lambda\right\}$, where $\mathrm{R}_{\infty}=\{x$ : st $(\mathrm{x}, \mathcal{W}) \mathrm{c}$ $c V_{\alpha} \&$ st $(x, W) \notin V_{\beta}$ for $\beta<\alpha$, is a partition or $\omega$. Clearly $\left\{R_{\alpha}\right\}$ refines $\mathcal{U}$, and by the assumption that $\mathcal{A}$ is non-O-dimensional there exists a couple $V$ $\mathcal{W}$ such that $w^{*} v^{*} \mathcal{H} \mathcal{A}$ and $\left\{R_{\alpha}\right\} \notin \mathcal{A}$. But $\mathcal{A}$ is an atom, so there is some point-finite $\mathcal{Z} \in \mathcal{A}$ such that st $(x, \mathcal{Z}) \cap R_{\alpha}=\{x\}$ whenever $x \in R_{\propto}$ and $\alpha<\lambda$.

The cover $W \wedge \mathcal{Z}$ is point-finite and the set $W n$ ( $W \in \mathbb{W}, Z \in \mathbb{Z}$ ) is always finite: If $x \in W$ and if $y_{\infty} \in W \cap$ $\cap R_{\propto}$, then $x \in s t\left(y_{\alpha}, \mathcal{W}\right)$; by point-finiteness of $\mathcal{V}$, $W$ meets only finitely many $R_{\alpha}$. Since $Z$ meets every $R_{\alpha}$ in one point at most, $W \cap Z$ is Pinite.

Now we are ready to prove the theorem. Let $\mathcal{U} \in \mathcal{A}$, let $\mathcal{V}$ be a point-finite star-refinement of $\mathcal{U}$, let every $V \in \mathcal{V}$ be Pinite. Pick a point $x_{C}$ from each compo. nett $C$ of $v$ and define by induction $M_{0}=\left\{x_{C}: C\right.$ is a component of $v\}, M_{n}=\operatorname{st}\left(M_{n-1}, V\right), H_{n}=M_{n}-M_{n-1}$ Io: $1 \leqslant n<\omega$. Notice that st $(x, V) \cap H_{n} \neq \varnothing$ implies $x \in$ $\in H_{n-1} \cup H_{n} \cup H_{n+1}$. Let $G_{1}=\cup\left\{H_{3 n+1}: n<\omega\right\}, i=$ $=0,1,2$. If $N_{\Omega}$ is the ultrafilter of all uniformly non: discrete subspaces of $\langle\omega, \mathcal{A}\rangle$ (see [PR], p. 76), then one $G_{i}$, say $G_{0}$, belongs to $N_{\mathcal{R}}$ Since the cover $\mathbb{W}=\{\{x\}: x \in \omega\} \cup\left\{G_{0} \cap V: V \in \mathcal{V}\right\}$ obviously belongs to $\mathcal{A}$ and $\mathbb{w}$ *3 $\mathcal{U}$, we need only to prove that $\mathcal{W}$ has Pinite components. To see this, re alize that. $H_{n} \cap C$ is finite for each $n<\omega$ as a cons quince of point-finiteness of $V$ and of finiteness of its members, and use the fact that each component $D$ of $W^{W}$ is either one-point or contained in some $\mathrm{H}_{3 n} \cap \mathrm{C}$, whe re $C$ is a component of $\mathcal{V}$.
G. Coquet [CH] has defined an ultrafilter $q$ on $\omega$
to be rar, il ior ev ry partition $\mathcal{R}$ of $\omega$ nto fini te sets th re is a set $F \in q$ uch th $t|F \cap R| \leqslant 1$ whenever $R \in \mathcal{R}$. Henc the theor $m h \cdot s$ imm diate

1C. Corollary. Suppose q to be a rar ultrafilt r on $\omega$. Then every itom below $\sigma_{q}$ is 0 -dimensional.
Rexer nces
[č] L. Čech: Topoiogicrl sp, ces. 2nd ed., Academia, Pr. zue 1966 .
[Ch] G. Choquet: Deux classes rera rquables a ultrafiltres sur iv. Bull. Sc. Nath., 2' éri 92(1968), 143-153.
[CN] Wei. Comfort, S. Negreponti : The theory of ultrajilters. Wringer Verlac, Berlin 1974.
[形] P. Erdös, U. Gnencor: Frobabilistice methods in combinatorics. Akadémiai Kiado, Budapest 1974.
[F] 2. Prolik: Sums of ultrafilters. Bull. Amer. Math. Snc. 73(1967), 87-91.
[PR] Je Pelant, J. Reiterman: Atoms in uniPormities. Somina uniform sptes 1973-1974, Natematický ústav ČuAV, Prasue 1974, pp. 73-81.
$[R] \quad N \cdot E \cdot R u d i n ;$ Partigl orders on the types in $\beta N$. Trans. Amer. Math. Soc. 155, 2(1971), 353-362.
[V] G. Vidossich: Uniform spaces of countable type. Proc. Amer. Math. Soc. 25(1970), 551-553.

