1975-1976

Jan Pelant; Jifi Vilimovsky
Two examples of reflections

In: Zdenék Frolik (ed.): Seminar Uniform Spaces. , 1976. pp. 63-68.

Persistent URL: http://dml.cz/dmlcz/703144

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/703144
http://dml.cz

- 63-
Seminar Uniform Spaces 1975~1976

Two examples of reflections

Jo Pelant and J. Vilimovsky

Two ccnstructl ons of modifications (set preserving
reflections) are presented. These constructions give ex-
amples of modifications with unbounded point-character
and of quite "large" modifications not preserving Cauchy
filters. Connections with Kat&tov=Shirota theorem are ad-
ded.

Definitien 1: For any uniform space X, let <(X) be
a family of subsets of X fulfilling the following:
(%) For a mapping £f: X—> Y being either uniform embed-
ding or Casrtesian projection (i.e. X =TIX,, ¥ = Xg» £ =
= Mgt X—>¥) and S € P(X)"there is £ [S] € F(Y).

Let further J& be a modification in uniform spaces.
We denote MAf (¥ ,R) the class of all uniform spaces X
such that Se€ ® for all S e ¥ (X).

Proposition 1: The classes Mdf (<& ,J2) in Definition
1 sre modifications, R c Mdf (¥ , )

Proof: is easy verifying thet Mdf (F,R) is clesed
under products and subspaces.

Now we turn our sttention to an interesting example.
At first we recall a concept of a bcunded set in a uniform
space (cf, [HJ]). A subset B of a uniform space ¥ i1l be
called pounded if s8ll uniformly continuous real valued
functinns on X are bounded on B. Th following proposition
1s essentially proved in [(H] :

Proposition 2: The following propertias of a subset
B of a uniform space X are equivalent:
(1) B is bounded
(2)  For any uniformly continuous mapping f: X—>»E, E be-
ing a topological vector space, £ [B] is bounded in E (1.e.
£UB1 1s absrobed by all meighbourhoods of zero in E).
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(3) For each uniform vicinity V of the diagonal of X the.
re is a positive integer n such that Bx Be vt

(4) For each @ wuniforr cover of X there is a point xe¢]
and a positive integer n such that st® (x,U) (the n-th
U -star of x) contains B,

A uniform space X will be called absolutely bounded if X
is bounded in itself. Obviously, the families J3(X) of g
bounded subsets and @ B (X) of all absolutely bounded s
sets of X satisfy the condition (% ) from Definition 1. 0
can immedistely see that for any & € QR(X), Bc A implie
B € J3(X). There is the converse question whether each bo
ded subset of X can be embedded into some absolutely boun
ed subset of X . The answer is negative as shows the foll

wing
:.wo
Example 1: Let M be an infinite set. [M] denott
the family of all infinite countable sggsets of M. Take a
countable disjoint family £S,3 c [M] ° and a maximal

almost disjoint system J c [M]’o" such that -(Sn}c’
Take a portition P |ne @i of P such that S, €
For each S € P ', we add a new point £{S§ and if S e 7
we join §S 3% by intervals of length n exactly with points
contained in S (i.e. a hedgehog with thorns of length n i
built above each £S3%), for S & P,, H(S) denotes the
corresponding hedgehog. Put X = Mu U{H(S) |S e P 3 . W
take on X a uniformity 9 inductively generated by

L H(S) \ S e Py, Mis bounded w.r.t. (X,%) as esch infi
nite countable subset of M intersects some member of
in an infinite set,

If Q is a bounded set containing M, then there is nj and
a uniform cover J° of X such that st”° (£S#,J) does 1t
intersect Q for any S € P, n2n_ . Now consider the fan
ly 4£S, |In€ w} and we see that there is an unbounded
uniformly cont inuous real=-valued mapping defined on Q
(special properties of J° and £S, 9 are employed), her
ce M is nct contained in any absolutely bounded set.
However every uniform space can be embedded into an absoc~
lutely bounded 3pace because one can check that every in
Jective uniform space is absolutely bounded.
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Taking for % (X) in Definition 1 the family of bounded
subsets of X and for R sll precompact spaces, we obtain
so called BP-spaces (see (LD ]). Example 1 shows that this
class is distinct from the class MAf (@ JB ,Precompact)

Definition 2: Let ¥ -be a family of subsets of X.
We define order of ¥ by ord ¥ = sup < card g,[g, c¥ ,
NG+*0%
Let (X,%) be a uniform space. A point-character pec (X,%)
is defined as the least infinite cardinal number o¢ such
that there is a base of % whose al). members are of order
less than o . In studying modifications preserving Cauchy
filters (see [P3]) there appeared an importance of modifi=-
caticns with unbounded point=character. We are going to show
that point=character of BP-spaces is not bounded by any car-
dinal, nevertheless, BP-modification does not preserve Cau=
chy filters.

We need the following

Lemma: Let X be a uniform space. XeBP 1ff no infini-
te count abl@® discrete subset of X is bounded,

Proof: The only question arises which implication' is
more trivial.

Construction: Let (X,72) be a uniform space. Let I’
be a uniform cover of X. {T, |n € @, % 1s a disjoint sub~-
family of I . For {7V, [ n € @ % we define a cover

(%) C{'U'ni ,{Tn§] = (T-'{Tnl n e _woi)u
uU{‘Vn/‘Tn‘n e woi

The set of all covers of the form (% %) represents a base
of a uniformity. Denote this uniformity by Z(Q), a uniform
space (X,Z(2)) will be denoted by Z(X). Lemma and Proposi=
8ition 2 imply that Z(X) is BP for each uniform space X.
(The fact that Z(X) and X have the same set of all countab-
le discrete sets is helpful.)

Consider now A£_,, (ec) where oc 1is an infinite cardi-
nal number. It is shown in [P,1 that pc (£_,()) Z o
Z (L () differs from £, (ot) only on countable dis-
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crete families, so it i1s not hard to see that the point-
character of Z (£, (o)) 18 large.

Definition 3: For AR a modification in uniform spe
ces with the reflector r we define a class [I', of unifon
spaces in the following way: X e l" ire rX is complete
where X stands for the completion of X
One can easily prove the following

Proposition 3: (1) " » is always a modification

(2) X e [, 1ff rX has the same Cauchy filters as ]

(3) 1f R e ¥ with reflectors r, s-then [, c T,
For R closed under completions, it holds

(4) Rc T

(5) xel, ire oR = %

Proof: (1) LetX be from T, Tﬁ='ﬂ)’€;,r'ﬂ
is finer than T rf\ complete, hence r Xa is complete,
Analogously for subspaces. Statements (2) = (5) are self-
evident.

Remark: Let c be a modification into the spaces prot

Jectively generated by all uniformly continuous real valu
functions.
The class [', is then the field of validity of Kat&tov-$
rota theorem which asserts that all topologically fine uni
form spaces having its basis consisting of covers of non-
measurable cardinality are contained in [",. J. Pachl [p]
generalized this result to the class of all sub=inversion
closed spaces with basis of nonmeasurable covers. One can
see from Proposition 3 that making products and their sut-
spaces we do not get out of (7.

Theorem 1: PBP = BP,

Proof: The inclusion > <follows from Proposition 3
because BP 1s evidently closed under completions.
Conversely, take X complete such that BP (X) is again cony
lete. For B a bounded subset of X, B is bounded also in
BP (X) because boundedness depends only on uniformly conti
nuous functions (see Proposition 2) hence B is relatively
compact in BP (X) amd so B is precompact in X,
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Corollary: l"‘c is contained in BP,
The £ollowing theorem shows that there is not a signifi-
cant connection btetween a combinatorial complexity of &
uniform space and Cauchy filters.

Theorem 2: Two fellowlng assertions are equivalent:
(1) There exists an Ulam measurable cardinal
(2) [ . has bounded point -character iff (R,r) is the pre-
compact modification.

Proof: (1) » (2)
Obviously, if r is a precompact modification then f‘r =
= Precompe.
Let r be distinect from the precompact modificati on.Then a
countable uniformly discrete space N lies in R, and so
each countable uniform partition of any X is a uniform co-
ver of rX. Take a metric space (M,g)) of point-character
o . Define a base of a metric uniformity 2L on MxN by
By = L4<n,J¥3 | meM,j<n ;U{Bz (m) x £33 | meM,

mn

j>n 3
Cleerly, point- haracter of {Mx N, %3 1is o and r(MxN,)
and (Mx N 2) have the same collection of Cauchy filters
because each countable partition of Mx 1is uniformly lo~
cally uniform end all cardinals are non-measurable.

(2) < » (1)
If there is an Ulam measurable cardinal then [ 1 (pl is &

separable modification) contains no uniform space of po nt=-
character greater than some measurable cardinal.

Concluding remarks: M3Af (¥ ,R) in Definition 1 is a
generalization of the concept Kkr, here K ia a clas of
uniformspaces, r a modification; these classe are studied
infv]) (K#r is a class of all spaces with th property
that each uniformly continuwouc map from a spac I .2 X into
¥ factorizes through rY.)

There are many other pos ible gene alizutions of-Defi-
anition 1; e.ge we may put ome conditicna on covers, so
can form a class of all uniform spsces whose poin =fi- it
covers are refinable by & —~disc ste covers etc.



_.(;8_.

The problem whether [, can be the class of all un

r

form spaces for some nonidentical modification r is equi-
valent to that one concerning mocdifications preserving
Cauchy filters studied in our seminar (e.g. see [P3]).
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