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Seminar Uniform Spacea 1975-76

On 5 -<.'. s·"reteness in unif'orm spacea 

Jan Pelant, Pavel pt� 

This pa;:ier has two parta·. The tirst one is an investi­
«ation of the plus and minus functors associated with tbe 
ref'inement �6' aJXl 91°"' • Both retinements were introdu-
ced by z. Frolík in [F1]. The refinement 3) 6' respecta: � -
discrete collections and 3)6'ol the 6' -discretely decompo­
sable ones. It is shown that «0:' and J>f °" ia the distal-
ly coarse functor �e , � is the identity am 3J�4

adds tbe � -discrete partitions. Further S l"2 = 2P2
= Id, 

+ 
-

3J6ó,2 � !JJ and QJ'42 = �Gel •
+ -c - -

T 
�, 2 "" 6' 2 

-1"\ tf d, 2 �-S'd, 2he symbole oU+ , °"'- , cV+ and cv are to 

be r ead aa ( �- a,6' )2 >+, ( ( � li ).2 1., ( ( ��t:L )2 
>
+ 

and 
( I' '1'.6' J,, )_2

� 4' • As we w�ll use the above symbols only in this
sense, we shall write in the simplified for. 

Finally two examplea are given, the second one of prin­
ciple importance for 6'-discretenes& (compare ith [F1J).

The second paragraph brings an example of a metrie fi­
ne space which is not �6'-l,, A coz f'ine •. Thia question was 
stated by z. Frolík in Seminar Uniform Spaces 1973-74, P• 
63 ( and in [ J' 1 J ) •

This  paper overlapa sometimes with the one [ P l , ibid 
aoo the reader is invited to consu.lt [Pl betore. 

§ l. 'l'he re:tinement 3)6" bas tor th, morpbisma the
mappinga t: X --t- T such thet . { t-1 C'r « ) I oC. € I J ia 6' -
diacrete ( abbr. � -d.) in X whenever· -C Y .c: ) oc. e I J la 
6' -d. in Y. Por the detinition ot the retineaent :,6ol

we replace E/ -d. by 6 -d.d. ( 6 -d1�cretely decoapoaab­
le). Becall tAat a ccl1 eet1on tX.c lat• IJ la calle4 °-­

diseretely decospoeable in a space X lt we � wlte Z-• 
• U X� mch tbat aQY collection �1! J ee • JI i•
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discrete. 
For the intuition, iu tae hed&ehog H(I) on I wita un­

countable cardinalit7 the "thorm" f'orm a o -d.d. collec­
tion but not a � -d. one. 

For tlle def'inition of' the plus and minus f'unctora con­
sult ti-

4
1.

T11eorea l: It holda r:bf a .1)(! and :J)! = Id. 
Proot: The equalit7 �fa >e can be obtained f'rom 

the Lemna 2.3 in [PJ (we prove that any FE Inv+ ,3)6' ia 
.,.iiieat1cal on all hed«ebogs on a sequentially regular cardi­
nalit7}. We ahall prove that 31 G = Id, in f'act, that 
Inv_ 2• = {Id J • Let !'€ Inv_ :,jtr and let YX be strictly 
f'iner tlaan X f'or a space X. Take a coverin& X.E n - X 
ani :turther take the set �2: ={ (x,y} f y♦ St(x,X.)l • Put 
Y = r,<T� <Ta- underatood as a anif'ormly discrete apace). 
ftnally put Z • Y 1< a> 1 1< � 1 ( a, 1 tae f'irst · uncountable 
ordinal a• u. d. space). We show t hat F'l has more 6" -d. col• 
lectiqns tban z. 

For eaell (:z: ,y)E T and for each ( oc., /3) 4! c.> l JC. G) 1 
we take two pointa x(oe,(3) = (:z:,(x,y),C:°',/3», y(« ,(3) =
• (y,Cx,y),(oe ,�)) in X'J<(x,y).,<(«,(3>. Vle sbal). define
a collection .(S:

a" 
I 'I' E Ce> 1 J • For any O E c.> 

1 
and f'or

au_r toe, �) � c..> 1 ,c cv1 we put in the set Sr the pointa 
x(o( ,p ).- aa aoon aa 't' = 111.n {oc, (JJ • I:t a- =- max i Cl(, p l 

't�en we put in the set S.,. the pointa y(oc , (3). Then 
-{ s7 I 3"' e @ 

1
J 1s diacrete in FZ (aa F ia a :f'Unctor) but 

it 1s not ó �. in Z aa s-- , Stt: are near for my�tr1 2. 
ditterent indicee a-,

1
, 72 (�ccording to the construction 

tbey are near on �be set Y ,,_ ť r1 , T' z>)•
' 2 Recall that the symbol � f'or a refinement 3l, deno• 

tea tlae refinement haY1ng for the morphisms the -mappinp 
�: x__,.· y aucb tllat ;t1<.f: J:",c.r� Y�Y ie in dl •

Theorea 2: it .holde · t11,:
2 

= :b!
2 

� Id. 

·Proo:t:·Tlae equalit7. :J�� = Id ia evident. �e proot
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of · � = Id is i·n f'act an interplay ot Lemma 2.6 1n (PJ 
and the idea of the proof of l'heorem 1. Similarly as 1n
Theorem 2 .3 in [ PJ it suff'ices to show that f'or anv F E 

2 
. ...., 

� Inv+ � ·· · and for any s.pace X with a diacrete aubset 
D ful:tilling card D-= c�rd x·we have FX = X. Suppose the 
contrary. Take a coverin& �EX - FX and �he aet �% • 
We can assume that card D ':;> e.,

0
• _Let -l � I c:,c E. CJ 1 l be

a partition·, of D such that card De,(. = card D ( = .card T'�:) 
for all oC E- G> 1• For sny Dae we construct a discrete set 
Mac of pointe in XJ(X which is :Qot-diecrete in iX><FX ancl 
the proj�ction of Mce. is D� <see Lemma 2.6 in [P]). Put M = 
= L) lf

oe,
·• By a suitable joint of _the pointa in 14 we obtain 

9 discrete collection in x�x which is not 6'-diecrete in 
FX )( FX. 

The· analogous observations ot �ócl : are more varied. 

statement 1: The 3)6ol tine tunctor :l)_f' is taat 
which assigns to any space X tbe 6' -d. part it ions of' x.

Proof: Denote by a, the described tunctor. We show 
that, f'or siy X, '> X is �Bet tine and that 'Ji> X = X when­
ever X is :,fld tine. · Take a :J)Gol, · cont inuous mappin, f: 
: �X ➔ lf into a metrie space. Let (t e 14. Accordina to 

· the Stone theorem we can re:fine � by a 6"-d. partition 
!R, • So :r-

1(3l,) is 6'-d.d. in �X and then it is 6'-d.d.
in X Cas- X ao! ,PX· have the same S-d.d. collectiona). 

If' X is �6oL fine then � X = X - it is .easy. 

Theorem J: It holds . .:,_;4 
= :lJC and 3) 6' o/, = tlJbd, •

- � 

Proot: The first part follows similarly as the equa-
lity 3)� = �C 

because a collection of pointa 1s G' •d.d. 
I + 

1ft it is 6'-d. The second part is obvious. 

Theorem 4: It holds 

Proot: Both equali ties f'ol.low immediately from the 

following observat ion: If af!d, X = 3>6d. Y then 
. � f 
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:1>.;'='<x,c.X) :s: 3)
f
6'ol, (Y,c.Y). To prove thia, take a diacre­

te collection -{ Zce, I � e li in X_,c. x. �t -{ z· Cl(. '°' � I I 
-be d1acrete of the order X x 'X € X xx. The coverinc X

can be re�in� by a ď'-d. partition in· Y. Then :.fz� ).oc E
'- I J 1�- � �.d. \n -Yx.. Y and tile proot' is concluded.

We finiab the fir•st paragraph with two- examples. 

Example 1: · Let X b� ot a nonmeaaurable cardinality 
and let F be a free ultrafilter on X. Then any disJoint 
collection in X ia 6'-d._ in the space x,. 

Proof: Let tA ee \cx e IJ be_a diajoint ·collection 
in X. I� a set A

ac, 
belongs to F then it is clear. Suppo­

ae tlle contrary •. Take. a mapping t: x� I such that 
f(A

ae,
) a oe • As I ia nonmeaeurable and t( F) is a tree ul­

tra�11 ter on I then there is_ a countable :tamily -ť On \ ne N J
of aeta ot tCi') such that 01 Gn = e. The coverin& ot r,
given by :i-1(on), realize the o-diacreteneas �
� &

a: 
Jac. E. I) • 

Goinc over all tree ultrafiltera we obtain a tamily 
of unUormitiea such that any of these induce the same 
Ctrivial) ó-d. structure but the greatest lower bound 
of these induce some nontrivial tr-d. stru�ture Cas the 
apace given by the .Fréchet filter).

Exšimple 2: This example ahows that there is a o -d. 
fine spec which is not 6' -d.d. fine. 

O() 

Put Y • . · 
11, y 1 'W' n where 110"' n I a Gc> 1 tor all n E N:.

Emow the set Y �ith a uniformity QJ, such thet a coverinc 
'X, belon&s to· the ba e of it 1tt the trace ot X on at 
most finitely mav "'n 1s discrete and tli:� trace of X 
on the remainder 1a a countable·.partition. Then Y is not 
6' -d.d. fine aa Y is o -d.d. into itselt. We shall sho 

that Y ia 6' -d. :fine_.· Take a pseudometric � on Y such 
that each � -diacrete fami�l wrt <f ia 6' -discrete wr't 
'll • We are to prove that q, belonga to ,U • Suppose 

the contrary. Then for an inf'inite number nEN
0

c N, there 
1s an ancountable & -discrete (wrt 1 ) family Sn contai-



ned in •n• Put Sn =- -1. en \ oe e c.>1� for eac Dl( •o• De.ti-
ne a transtinite sequenoe .[•� by•induction: 
a ;: Oo 

c.. c.. E c;J1 

•� = min -{ �l - .( °' � ta1 I there is J< L auch tbat

tD Csn a• } < ..! ) oe,' . aj 3 · tor soae n, ■6 !f 
O 

� 

Put P
c. 

= -l s!c. I DE: N
0

l for each · c.. E c.> 1• ÍJ!he' collection

.( P
c, 

�w;<éJ1 ia f -diacrete wrt ·cp but tt 1e not 6' -
dia crete wrt '1l 

§ 2. Theorem: There 1s a metrie f'ine a·pace _which 1a
not 3)6'ct, A coz f'ine.

P.roof: Let card X> "'i· and let X have for a ·base tbe 
partitions on at most �l classes. It is easy. to check 
that X is metrie fine and not proximally tine. Take the 

,v ,..,, . 

"prequotient" r to X Csee e.g. [ PJ, Th.2.2) • .From the con-
;V ""' 

struction of r we have that X is metrie tine too and tbat 
any mappi11& from X 1s � 6'ol continuous (any disjoint col•,.., 
lection in X 1a 8'-d.d.). So, i t  sufticea to fim a cozero 

. ,v 

continuous mapping from X which is not unifor.inly diacrete. 
But X is not proximally fine (as X is not) and, beinc met­
rie· fine, it 1s not cozero tine (see tr3J). The proot ia
concluded. 

Re� rencea 
z. Frolík: Basic refinements o1 uniform spacea, Proc.

2nd Top. Conf. in Pi ttsbur&h, Lecture Notes in Math.

378', 140-158 

z. Frolík: Four tunctors into paved spaces, SUS 1973-

74 directed by z. Frolík, Publ. _Math.· Inst. Pra8'J,8,
Prague 1975;·
z. Frolík: A note on metrie fine spacea, Proc. A.M.S.

46(1974), 111-119
z. Frolík: Tbree technical toola in unitorm apacea,


