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Seminar Uniform Spaces 1975-=76

On © =‘iscreteness in uniform spaces

Jan Pelant, Pavel Pték

This psz;er has two parts. The first one is an investi-
gation of the plus and minus functors associated with the
refinement D° and D64 . Both refinements were introdu-
ced by Z. Frolfk in [Fll. The refinement {Dc respects 6 -
discrete collections and JD“’" the 6 =discretely decompo-
sable ones. It is shown that o@f and «Qf‘(’ is the distal-
ly coarse functor J, |, 22  is the identity and D®%
adds the G -discrete partitions. Further 9_:2 = P? =14,

6d2 _ 6d.2 6dl
«2)+ = mc and Q_ = Q .

2 2 2 2
The symbols <D |, D, 28" ana 254" are to

be read as ((F)?),, ((D%)* ), ((D¥%)* ), and

(( e )2 . As we will use the above symbols only in this
sense, we shall write in the simplified forz.

Finally two examples are given, the seconc one of prin-
ciple importance for €& -discreteness (compsre with [Fll).

The second paragraph brings an example of a metric fi-
ne space which is not Qe“'/\ coz fine. This qQuestion was
stated by Z. Frolfk in Seminar Uniform Spaces 1973-=T4, p.
63 (and in L'F]_J).

This paper overlaps sometimes with the one [F1, ibid
ard the reader is invited to consult [P] before.

§ 1. The refinement D¥ has for the morphisms the
mappings £: X — Y such that {£ (¥, ) | € I} 18 € -
discrete (abbr. © =d.) in X whenever {Y_ |x e I} 1s
6 =d. in Y. For the definition of the refinement 64
we replace 6 -d. by € =d.d. ( € =discretely decomposab-
le). Recall tnat a colvection X, |x e I} 4s called 6~
discretely cecomposable in a space X if we may write X =
= U xt such that any collection 4!2 |a¢ eI} is
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discrete.

For the intuition, in the hedgeheg H(I) on I with un-
countable cardinality the "thorns" form @ 6 -d.d. collec-
tion but not & & -d. one.

For the definition of the plus and minus functors con~

sult [P‘] .

Theorem 1: It holds .'b" =2, and % =1d.

Proof: The equality $5'= e can be obtained from
the Lemm 2.3 in [P] (we prove that any Fe Inv, D6 1s
“xdentical on all hedgehogs on a sequentially regular cardi-
nality). We shall prove that Q% = Id, in fact, that
Inv_ D% ={1a3. Let FeInv_ D® and let FX be strictly
finer than X for a space X. Take a covering Xe fX - X
and further take the set Ty ={(x,y}| y¢St(x,T)? . Put
Y = X<T, (P, understood as a uniformly discrete space).
Finslly put 2 =Y x @& x @, ( @, the first uncountable
ordinal as u.d. space). We show that FZ has more & =d. col-
lections than Z.

For each (x,y)e T and for each {(x,B) e @, = @,
we take two points x(«,B) = (x,(x,y),(ec,p)), ylx,B) =
= (y,(x,y),(¢,B)} in X x(x,y) % (ex,3). We shall define
a collection {S, |gr€ ¥ ;¥. for any 7€ @, and for
any (ot ,p3) e @) = &, we put in the set Sy the points
xCo¢ 2 ). a8 soon a8 9 = min{o,BS. If 3 = max e, B
then we put in the set S, the points y(oc ,@). Then
4 Sy la' € @,3§ 1is discrete in FZ (as F is a functor) but
it 48 not 6 -d. inZasSag » Sz, 8re near for any

different indices @*), @, (according to the construction
they are near on the set Yx (g,,3%)).

Recall that the symbol :R,2 for a refinement JR deno-
tes the refinement having for the morphisms the mappings
£: X—> Y such that £xXf: YxX —» Yx¥ is in R .

2 2
Theorem 2: It holds o?f = Qf = Id.
‘Proof: The equality Q%2 = Id 1s evident. The proef
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of 352 = Id is in fact an interplay of Lemma 2.6 in [P]
and the idea of the proof of Theorem l. Similarly as in
Theorem 2.3 in [P] it suffices to show that for any F ¢

€ Inv -’0‘2 and for any space X with a discrete subset
D fulfilling card D = card X we have FX = X. Suppose the
contrary. Take a covering JeX - FX and the set T, .
We can assume that card D > @,. Let § Ry [x € @3 be

a partition: of D such that card D, = card D ( = card Ty )
for all o € @,, For any D, we construct a discrete set
Ky of points in Xx X which is not discrete in FXx fX and
the projection of My 18 Do, (see Lemma 2.6 in [P1). Put M =
= U ".x, . By a suitable joint of the points in M we obtain
9 discrete collection in Xx X which is not & -discrete in
FX x FX.

The analogous observations of D8 are more varied.

Statement 1: The D% fine functor DF* 1s that
which assigns to any space X the 6 -d. partitions of X.

Proof: Denote by 7 the described functor. We show
that, for eny X, P X 18 D% fine and that P X = X when=-
ever X 18 94 fine. Take a D? continuous mapping f:
: PX— M into a metric space. let &€ € M. According to

the Stone theorem we can refine &€ by a 6 -d. partition
R . So£HR) 18 €-d.d. in PX and then it is & -d.d.

in X (as X and J?X have the same & -d.d. collections).
Ir X 18 D€ fine then PX =X =- it is easy.

Theorem 3: It holds °a+6'4 = .‘Dc and 60_6"‘ = c?:d.

Proof: The first part follows similarly as the equa=
11ty 2§ = D, because a collection of points is & -d.d.
i1ff it 1s 6 -d. The second part is obvious.

2 2
Theorem 4: It holds Qfd’ =2 and 3_6“ :,‘o:d .

Proof: Both equalities follow immediately from the
following observation: If {.D:d'x = J?:'d Y then
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984xxx} = 9T (¥xY). To prove this, take a discre-
te collection €2, |x € I? 4in XxX. Let {2 | € IS
be discrete of the order . x € € X xX., The covering I
can be refined by a 6 -d. partition in Y. Then 12 | €
61% is @& =d.d. 4n YXY and the proof is concluded.

We finish the first paragraph with two examples.

Example 1: Let X be of a nonmeasurable cardinality
and let F be a free ultrafilter on X. Then any disjoint
collection in X is 6 -d. in the space XF.

Proof: ILet A |x € I3 be a disjoint collection
in X. If a set A, belongs to F then it is clear. Suppo-
se the contrary. Take a mapping £: X—> I such that
A ) = oc , As I is nonmessurable and £(F) is a free ul-
trafilter on I then there is a countable family -(Gn \ne N§%
of sets of f£(F) such that NG, = #. The covering of X,
given by r.]'(Gn)« realize the 6 -discreteness of
{R, |xe I3 .

Going over all free ultrafilters we obtain a family
of uniformities such that any of these induce the same
(trivial) 6 -d. structure but the greatest lower bound
of these induce some nontrivial 6 -d. structure (as the
space given by the Fréchet filter).

Exgmple 2: This example shows that there is a 6 -d.
fine space which is not 6 =d.d. fine.

o0
Put Y = _\/, w, where |1¢rn| = w, for all neN,

Endow the set Y with a uniformity % such that a covering
. belongs to the base of it 4iff the trace of £ on at
most finitely many @, is discrete and the trace of &

on the remainder is a countable partition. Then Y is not
6 =d.d. fine as Y is 6 =-d.d. into itself. We shall show
that Y is 6 -d. fine, Take a pseudometric (@ on Y such

that each ¢ -discrete family wrt @ is 6 -discrete wrt

U . We are to prove that Q@ belongs to 2% . Suppose
the contrary. Then for an infinite number neNoc N, there
is an uncountable ¢ -discrete (wrt @ ) family S, contai-



- 419 -

n
ned in wy. Put S; = {8” | €@,3 for each ne N . Deri-
ne a tranafinite sequence {u§ by induction.

=0

Ecd
a()

a =mn {o - {x e @, | there is J< L  such that

@ (s )< % for some n, me N, 3

Put P, = 4 s: |ne N, for each L € Q,. The collection
L

{Piew, 1o % ~discrete wrt © but it is not 6 -
discrete wrt U

§ 2, Theorem: There is a metric fine space which is
not D6 A coz fipe.

Proof: Let card X > @, and let X have for a base the
partitions on at most a)l classes. It is easy to check
that X is metric fine and not proximally fine. Take the
"prequotient” ¥ to X (asee e.g2. [P], Th.2.2). From the con=
struction of ¥ we have that X is metric fine too and that
any mapping from ¥ is £ continuous (any disjoint ecol-
lection in X is 6'=-d.d.). So, it suffices to find a cozero
continuous mapping from X which is not uniformly discrete.
But ¥ is not proximally fine (as X is not) and, being met-
ric fine, it is not cozero fine (see [F3J). The proof is
concluded.
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