Jan Pelant; Pavel Pták On σ -discreteness in uniform spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1976. pp. 115–119.

Persistent URL: http://dml.cz/dmlcz/703150

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

- 115-

Seminar Uniform Spaces 1975-76

On 6-discreteness in uniform spaces Jan Pelant, Pavel Pták

This paper has two parts. The first one is an investigation of the plus and minus functors associated with the refinement \mathcal{D}^{f} and \mathcal{D}^{fd} . Both refinements were introduced by Z. Frolik in $[F_1]$. The refinement \mathcal{D}^{f} respects 6 discrete collections and \mathcal{D}^{fd} the 6-discretely decomposable ones. It is shown that \mathcal{D}^{f}_{+} and \mathcal{D}^{fd}_{+} is the distally coarse functor \mathcal{D}_{c} , \mathcal{D}^{f}_{-} is the identity and \mathcal{D}^{fd}_{+} adds the 6-discrete partitions. Further $\mathcal{D}^{f^2}_{+} = \mathcal{D}^{f^2}_{-} = \mathrm{Id}$, $\mathcal{D}^{fd^2}_{+} = \mathcal{Q}_{c}$ and $\mathcal{D}^{fd^2}_{-} = \mathcal{D}^{fd}_{-}$.

The symbols $\mathcal{D}_{+}^{6^2}$, $\mathcal{D}_{-}^{6^2}$, $\mathcal{D}_{+}^{6d^2}$ and $\mathcal{D}_{-}^{6d^2}$ are to be read as $((\mathcal{D}^6)^2)_+$, $((\mathcal{D}^6)^2)_-$, $((\mathcal{D}^{6d})^2)_+$ and $((\mathcal{D}^{6d})_-^2$. As we will use the above symbols only in this sense, we shall write in the simplified form.

Finally two examples are given, the second one of principle importance for 6-discreteness (compare with $[F_1]$).

The second paragraph brings an example of a metric fine space which is not $\partial^{64} \wedge \cos fine$. This question was stated by Z. Frolik in Seminar Uniform Spaces 1973-74, p. 63 (and in [F₁]).

This paper overlaps sometimes with the one [P], ibid and the reader is invited to consult [P] before.

§ 1. The refinement $\mathcal{D}^{\mathfrak{C}}$ has for the morphisms the mappings f: X \longrightarrow Y such that $\{f^{-1}(Y_{\mathfrak{C}}) \mid \mathfrak{c} \in I\}$ is \mathcal{C} -discrete (abbr. \mathcal{C} -d.) in X whenever $\{Y_{\mathfrak{C}} \mid \mathfrak{c} \in I\}$ is \mathcal{C} -d. in Y. For the definition of the refinement $\mathcal{D}^{\mathfrak{C}}d$ we replace \mathcal{C} -d. by \mathcal{C} -d.d. (\mathcal{C} -discretely decomposable). Recall that a collection $\{X_{\mathfrak{C}} \mid \mathfrak{c} \in I\}$ is called \mathcal{C} -discretely decomposable in a space X if we may write $X_{\mathfrak{C}} = \bigcup X_{\mathfrak{C}}^{\mathfrak{n}}$ such that any collection $\{X_{\mathfrak{C}} \mid \mathfrak{c} \in I\}$ is

discrete.

For the intuition, in the hedgehog H(I) on I with uncountable cardinality the "thorns" form a \mathcal{C} -d.d. collection but not a \mathcal{C} -d. one.

For the definition of the plus and minus functors consult [F_].

Theorem 1: It holds $\mathcal{J}_{+}^{6} = \mathcal{J}_{c}$ and $\mathcal{J}_{-}^{6} = \mathrm{Id}$. Proof: The equality $\mathcal{J}_{+}^{6} = \mathcal{J}_{c}$ can be obtained from the Lemma 2.3 in [P] (we prove that any $\mathrm{Fe} \operatorname{Inv}_{+} \mathcal{J}_{-}^{6}$ is "identical on all hedgehogs on a sequentially regular cardinality). We shall prove that $\mathcal{J}_{-}^{6} = \mathrm{Id}$, in fact, that $\operatorname{Inv}_{-} \mathcal{J}_{-}^{6} = \{\mathrm{Id}\}$. Let $\mathrm{Fe} \operatorname{Inv}_{-} \mathcal{J}_{-}^{6}$ and let FX be strictly finer than X for a space X. Take a covering $\mathcal{X} \in \mathrm{FX} - \mathrm{X}$ and further take the set $\mathbb{T}_{\mathcal{X}} = \{(\mathrm{x},\mathrm{y}) \mid \mathrm{ye} \mathrm{St}(\mathrm{x},\mathcal{X})\}$. Put $\mathrm{Y} = \mathrm{X} \times \mathbb{T}_{\mathcal{X}}$ ($\mathbb{T}_{\mathcal{X}}$ understood as a uniformly discrete space). Finally put $\mathrm{Z} = \mathrm{Y} \times \mathcal{O}_{1} \times \mathcal{O}_{1}$ (\mathcal{O}_{1} the first uncountable ordinal as u.d. space). We show that FZ has more 6-d. collections than Z.

For each $(x,y) \in T$ and for each $(\alpha,\beta) \in \omega_1 \times \omega_1$ we take two points $x(\alpha,\beta) = (x,(x,y),(\alpha,\beta)), y(\alpha,\beta) =$ $= (y,(x,y),(\alpha,\beta))$ in $X \times (x,y) \times (\alpha,\beta)$. We shall define a collection $\{S_{\mathcal{F}} \mid \mathcal{F} \in \omega_1 \}$. For any $\mathcal{F} \in \omega_1$ and for any $(\alpha,\beta) \in \omega_1 \times \omega_1$ we put in the set $S_{\mathcal{F}}$ the points $x(\alpha,\beta)$ as soon as $\mathcal{F} = \min\{\alpha,\beta\}$. If $\mathcal{F} = \max\{\alpha,\beta\}$ then we put in the set $S_{\mathcal{F}}$ the points $y(\alpha,\beta)$. Then $\{S_{\mathcal{F}} \mid \mathcal{F} \in \omega_1\}$ is discrete in FZ (as F is a functor) but it is not 6 - d. in Z as $S_{\mathcal{F}}$, $S_{\mathcal{F}}$ are near for any different indices \mathcal{F}_1 , \mathcal{F}_2 (according to the construction they are near on the set $Y \times (\mathcal{F}_1, \mathcal{F}_2)$).

Recall that the symbol \mathcal{R}^2 for a refinement \mathcal{R} denotes the refinement having for the morphisms the mappings f: $\mathbf{I} \longrightarrow \mathbf{Y}$ such that $\mathbf{f} \times \mathbf{f} \colon \mathbf{X} \times \mathbf{I} \longrightarrow \mathbf{Y} \times \mathbf{F}$ is in \mathcal{R} .

Theorem 2: It holds $\mathcal{D}_{+}^{6^2} = \mathcal{D}_{-}^{6^2} = \text{Id.}$ Proof: The equality $\mathcal{D}_{-}^{6^2} = \text{Id is evident. The proof}$ of $\mathscr{D}_{+}^{6^2} = \mathrm{Id}$ is in fact an interplay of Lemma 2.6 in [P] and the idea of the proof of Theorem 1. Similarly as in Theorem 2.3 in [P] it suffices to show that for any $F \in \mathcal{E}$ Inv₊ \mathscr{D}^{6^2} and for any space X with a discrete subset D fulfilling card D = card X we have FX = X. Suppose the contrary. Take a covering $\mathscr{L} \in X - FX$ and the set $T_{\mathcal{X}}$. We can assume that card D > ω_0 . Let $\{ D_{\mathbf{x}} \mid \alpha \in \omega_1 \}$ be a partition of D such that card $D_{\infty} = \mathrm{card} \ D \ (= \mathrm{card} \ T_{\mathcal{X}})$ for all $\alpha \in \omega_1$. For any D_{∞} we construct a discrete set \mathbf{M}_{∞} of points in X × X which is not discrete in FI × FX and the projection of \mathbf{M}_{∞} is D_{∞} (see Lemma 2.6 in [P]). Put M = $= \bigcup \mathbf{M}_{\infty}$. By a suitable joint of the points in M we obtain a discrete collection in X × X which is not \mathcal{E} -discrete in FX × FX.

The analogous observations of $\mathcal{D}^{\mathbf{5d}}$ are more varied,

Statement 1: The D^{6d} fine functor D^{6d} is that
which assigns to any space X the 6-d. partitions of X.
Proof: Denote by P the described functor. We show
that, for any X, P X is D^{6d} fine and that P X = X whenever X is D^{6d} fine. Take a D^{6d} continuous mapping f:
: PX → M into a metric space. Let C ∈ M. According to
the Stone theorem we can refine C by a 6-d. partition
R. So f⁻¹(R) is 6-d.d. in PX and then it is 6-d.d.
in X (as X and PX have the same 6-d.d. collections).

If X is \mathcal{D}^{6d} fine then $\mathcal{P} X = X - it$ is easy.

Theorem 3: It holds $\partial_+^{6d} = \partial_c$ and $\partial_-^{6d} = \partial_f^{6d}$.

Proof: The first part follows similarly as the equality $\mathcal{D}_{+}^{\mathbf{c}} = \mathcal{D}_{\mathbf{c}}$ because a collection of points is $\mathbf{6}$ -d.d. iff it is $\mathbf{6}$ -d. The second part is obvious.

Theorem 4: It holds $\mathcal{D}_{+}^{6d^2} = \mathcal{D}$ and $\mathcal{D}_{-}^{6d^2} = \mathcal{D}_{+}^{6d}$.

Proof: Both equalities follow immediately from the following observation: If $\mathcal{J}_{f}^{5d} X = \mathcal{J}_{f}^{5d} Y$ then

- 118-

 $\mathcal{D}_{f}^{6d}(X \times X) = \mathcal{D}_{f}^{6d}(Y \times Y)$. To prove this, take a discrete collection $\{Z_{\infty} \mid \alpha \in I\}$ in $X \times X$. Let $\{Z_{\infty} \mid \alpha \in I\}$ be discrete of the order $\mathcal{X} \times \mathcal{X} \in X \times X$. The covering \mathcal{X} can be refined by a 6'-d. partition in Y. Then $\{Z_{\infty} \mid \alpha \in I\}$ is 6'-d.d. in YXY and the proof is concluded.

We finish the first paragraph with two examples.

Example 1: Let X be of a nonmeasurable cardinality and let F be a free ultrafilter on X. Then any disjoint collection in X is \mathcal{O} -d. in the space X_{p} .

Proof: Let $\{A_{\infty} \mid \alpha \in I\}$ be a disjoint collection in X. If a set A_{∞} belongs to F then it is clear. Suppose the contrary. Take a mapping f: X \longrightarrow I such that $f(A_{\infty}) = \infty$. As I is nonneasurable and f(F) is a free ultrafilter on I then there is a countable family $\{G_n \mid n \in N\}$ of sets of f(F) such that $\bigcap G_n = \emptyset$. The covering of X_F given by $f^{-1}(G_n)$ realize the 6-discreteness of $\{A_{\infty} \mid \alpha \in I\}$.

Going over all free ultrafilters we obtain a family of uniformities such that any of these induce the same (trivial) 6-d. structure but the greatest lower bound of these induce some nontrivial 6-d. structure (as the space given by the Fréchet filter).

Example 2: This example shows that there is a 6 - d. fine space which is not 6 - d.d. fine.

Put $Y = \bigvee_{n=1}^{\infty} w_n$ where $|w_n| = \omega_1$ for all $n \in N$. Endow the set Y with a uniformity \mathcal{U} such that a covering \mathcal{X} belongs to the base of it iff the trace of \mathcal{X} on at most finitely many ω_n is discrete and the trace of \mathcal{X} on the remainder is a countable partition. Then Y is not 6'-d.d. fine as Y is 6'-d.d. into itself. We shall show that Y is 6'-d. fine. Take a pseudometric φ on Y such that each σ -discrete family wrt φ is 6'-discrete wrt

 \mathcal{U} . We are to prove that \mathcal{O} belongs to \mathcal{U} . Suppose the contrary. Then for an infinite number $n \in N_0 \subset N$, there is an uncountable \in -discrete (wrt \mathcal{O}) family S_n contai- 119-

ned in w_n . Put $S_n = \{s^n \mid \alpha \in \omega_1\}$ for each $n \in N_0$. Define a transfinite sequence $\{a_i\}_{i \in \omega_1}$ by induction: $a_0 = 0$ $a_1 = \min \{\omega_1 - \{\alpha \in \omega_1 \mid \text{there is } j < \iota \text{ such that}$ $\mathcal{O}(s_{\alpha}^n, s_{a_j}^n) < \frac{\varepsilon}{3}$ for some n, $m \in N_0$ } Put $P_i = \{s_{a_i}^n \mid n \in N_0\}$ for each $\iota \in \omega_1$. The collection $\{P_i\}_{i \in \omega_1}$ is $\frac{\varepsilon}{3}$ -discrete wrt \mathcal{O} but it is not \mathcal{O} discrete wrt \mathcal{U} .

§ 2. Theorem: There is a metric fine space which is not $\mathfrak{D}^{\mathcal{G}\mathcal{A}} \wedge \cos \mathfrak{f}$ ine.

Proof: Let card $X > \omega_1$ and let X have for a base the partitions on at most ω_1 classes. It is easy to check that X is metric fine and not proximally fine. Take the "prequotient" \tilde{X} to \tilde{X} (see e.g. [P], Th.2.2). From the construction of \tilde{X} we have that \tilde{X} is metric fine too and that any mapping from \tilde{X} is \mathcal{D}^{fod} continuous (any disjoint collection in \tilde{X} is $\mathcal{O}^{-d.d.}$). So, it suffices to find a cozero continuous mapping from \tilde{X} which is not uniformly discrete. But \tilde{X} is not proximally fine (as X is not) and, being metric fine, it is not cozero fine (see [F₃]). The proof is concluded.

References

- [F₁] Z. Frolík: Basic refinements of uniform spaces, Proc. 2nd Top. Conf. in Pittsburgh, Lecture Notes in Math. 378, 140-158
- [F2] Z. Frolík: Four functors into paved spaces, SUS 1973-74 directed by Z. Frolík, Publ. Math. Inst. Prague, Prague 1975
- [F3] Z. Frolik: A note on metric fine spaces, Proc. A.M.S. 46(1974), 111-119
- [F.] Z. Frolik: Three technical tools in uniform spaces,