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SEMINAR UNIFORM SPACES 1975=T76

Some metrically determined functors of uniform spaces with
paved spaces

Zden&k Frolik

The knowledge of [F;]) md [F,) is assumed.

In this note we assume that F is a concrete covariant
functor of uniform spaces into paved spaces with the fol=-
lowing two properties:

(a) F is metrically determined, i.e. if for any X
the paved space FX is proiectively generated by all f:
¢ FX—>» FS such that £f: X—»S is uniformly continuous,
and S is metric, and that means that if Y is a stone in KX,
then Y = £71 {Z] where Z 1s a stone in a metric space S,
and £f: X—» S is uniformly continuous.

(b) For any metric space S the stones in F(Sx S) conm-
taining the diagonal form a basis for a uniformity on the
set S, denoted by mS, mS is finer than S, and

F(X=xS) = F(mSxmS).

Examples. We have Just two examples: coz and distg.
For example, Ba does not satisfy Condition (b), h coz does
not satisfy Condition {a).
Denote by F the refinement of U associated with the
functor F, i.e.
P{X,Y) = Paved (FX,FY).

Theorem 1. F_ = (FxF), = metrie~ m.

Proof. I. For each spsce X the stones in F(XxX)
which contain the diagonal form a basis for the uniform vi-
cinities of the diagonal for some uniformity aX on the set

X. Indeed, if G is such a set, then by (a) there exists a
uniformly continuous mapping f: X—» S, S metrie, and thst

@=(ex) LH]
for some stone H in F(SxS), H contains the diagonal. Hence
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H x H for some stone H™ in ¥ (s x S), and hence the
square of the preimage of H® is contained in G, (It is as-
sumed that paved spaces are multiplicative and hence we
really get a basis.)

II, If £: X—» S, S metric, is uniformly continuous,
then r~ %o ©* v — 55, On the other hand, a part of the ar-
gument in I shows that mX is projectively generated by <f£:
: oX—» mS such that £: X—» S is uniformly contimious, and
S is metric. Hence, m is metric - m. The same argument shows
that F(mX) is projectively generated by f£: F(mX)—>» F(S)
with £: X—» S uniformly continuous, and S metric.

III. F(X»%X) = PF(mX»x mX). This follows from the fact
that the relation is true for metric spaces, and from II.

IV, fxf: XxX—>»¥xYe F iff f: nX—>» n¥e U,

"Only if" follows immediately from III, and from the
definition of m, If is yet easier from III.

Ve (FxF), = m. Indeed,

U(mx,Y) = (Px F)(X,Y).

VIi. Since m preserves F (i.e. FX = F(mX), and since
m = (Fx F)p, necessarily m = F_.

* Theorem 2. If S is metrie, then F_ S = F, S, and hen-
ce(by Tashijan Lemma) the same is true for products of met-
ric spaces.
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