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SEMIBAB UNIFORM SPACES 1975-76 

Some m�tri celly det ermined tunctore ot unif'orm epacee wi th 
paved apacee 
Zdenik Frol:!lc 

The knowledge of CF1J md- [F2) is aaaumed.
In this note we assume that ·F ia a concrete coYariant 

functor of uniform spaces into ·paved space� with the tol
lowing two propertiea:. · 

Ca) F is met rically d�termined, 1.-e. if' for any X 
the paved space n is pro1ectively.generated by all t:

: n--+ .FS such thet f: . X_... S is unitormly cont inuoua, 
and S ie metrie, and thet meane that if Y 1a a atone in n,

then Y = f-l CZ'] whe re Z is a stone in a metrie apace s,

and t: r---. S is unif'ormly cont·1nuous. 
( b) For any metrie apace S the stonea in :r(s • S) con

t aining the ·diagonal torm a baais for a uniformity on tlle
set s, denoted. by mS, mS is tiner than s, and 

F ,x ,c S ) = F ( ■S ,c mS) • 

Ex•mples. We have juat tw�· examplea: coz and dieta • 
.For example, Ba doea not satiaty Condition (b), h coz doea 
not aatiafy _Condition ·-_(a).. 

Denote by F. the re:tinement ot U asaociated „n tb the 
functor J', i. e. 

F(X·, Y) = Pa,ecl trx,,t).

Tbeorea l. F.;. = (J',c._J')� = aetrie-· ••. 
Proof � I. ·ror · each space X the atonea in J'(X,c X) 

which. contain · the· dlago.nal · to�m a baai• ·tar the •torm vi• 
cinitiea � the diagonal ·for eome �itormity .r·oia the set. 

X. Indeed, if G 1s ·such·• set, ·:then by (a) tbere exiate ·•
unitormly continuous 11apping t: X__._s, S •trie, �nd th-at 

_· · ··. · . G .:s (1-f ,c Í-}-l t B l .

tor aome stone H in 1($ >c S), H containa the. diago_nal. Hence 
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�, H ,c H for some stone H in T. S � S}, and hence the 
square of the preimage of H

1

is contained in G. (It is as

SUJled that paved spaees are multiplicative and hence wa

reall.y get a basis.) 

II. It f: X__., s, S metrie, is uniformly continuous,
then ,.,.. "� �- -r-v - .�. On the other hand, a part o:f' the ar

gument i n  I shows that mX is projeetively generated by f: 

: mX__.. mS such that f: X-. S is uniformly continuous, and 

Sis metrie. Hence, m 1s metrie - .m. The same argument sho11S 

that F(mX) 1s projectively generated by f: .F(mX)--. .F(S) 
with t: X-+ S uniforml.y continuous, and S metrie. 

III. .F(X,c X) = F(JDX,c mX). This :f'ollows from the :f'act

that the reletion is true for metrie spaces, and from II. 
IV. f ,c f: X� X-+ Y ,c Y 6 F itt f: DOC--..,. mY • U.

"Only 1:f"' follows· immediately t"rom III, and from the

de:f'inition of m. If is yet easier f'rom III. 
V• ( F ,c. F)

:f' 
= m. Indeed, 

U(mX,Y) = (Fx F) CX, Y). 

VI. Since II preserves .F Ci.e. FX = F(mX)), ancl since
m. = (Fx F) f' necessarily m = F_.

• · Theorem 2. It S is · metrie, then t
-. 

S = Ff s, and hen

ce(by Taahijan Lemma) the same is true for products o:f' met
rie apaces • 

. 
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