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SEMINAR UNIFORM SPACES 1975-~76

Distinguishable sets
Z. Frolik

For each uniforx space ¥ denote by distg (X) the set ot
all subsets of X which are distinguished from the complement
by a uniformly continuous mapping “f X onto a metric space.
Denote by distg (X,X) the set of all mappings of X into Y
such that the preimages of distinguishable sets are distin-
guishable. Clearly distg is a refinement of the category of
uniform spaces, and

U eo c0z < Ba < distg.

We shall prove
distg_ = (disth)F = metric - sety = her (distg ) = sudb (distg))

distge = distg_, = Dc |

Moreover, usual results about distgf and distgc are mo-
ved» One possible aim of this investigation is to determine
the properties of the finest metrically determined coreflec-
tion (namely distg_). The results in [1] are assumed.

§ 1., Distg spaces. The refinement distg is generated
by the functor distg from uniform spaces into paved spaces.
Cleerly, this functor is metrically determined (i.e. the
value at X is projectively generated by all f: distg X «—»
e—» distg S with f: X—> S €U and S metric), and in addi-~
ticn it is the finest ftunctor with this property. Recall that
the other functors already studied were coz and Ba. The refi-
nement was introduced by the present asuthor in (2) in cor~-
nection with the study of 6 -uniformly refinable families.

Proposition 1. The distg=coarse spaces are Just the
set~coarse spacea (i.e. singletons in separated spaces). A
space X is distg-fine if and only if every completely
distg (X)=additive partition is uniform.

Pproof. Obvious.

Proposit ion 2, A paved space {X,Z > 1is a distg-
space iff it is a coz-space, and if f: { X, > —» {R,coz R?
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.3 measurable, then f£f: <X, L > —> {R,exp R ? is mea-
zarable.
Proof. Obvious.

§ 2. (distg)z-fine spaces. The main resuli:

Theorem l. For any X let mX be projectively generat-
ed by all f£: mX —> Y such that

Lx L AnX— InY
is a distg-mapping. Then:

a) The set of all distinguishable sets in Xx=<Y which
contains the diagonal is a basis for uniform vicinities of
the diggonal of MX, and mX is projectively generated by all
£f: mX — setf S such that £f: X— S is uniformly contimu-
ous, and S is metric.

b) distg (mXx mX) = distg (XxX),
particularly,

distg mX = distg X.
¢) f£: mX—>» Y is uniformly continuous iff f£x £f: X x X—>

—> ¥»xY is a distg-mapping.
d) f: mX—» Y is uniformly continuous iff fx £:
mXx aX —» Y xY is a distg-mapping.
" e) mis a coreflection on distgz-fine spaces, i.e.

m= (distgzlf.

£). If S is metric, and if £: mX—>» S is uniformly con—
tinuous, then so is f: mX—> sety S, and m is the coreflec-
tion on the spaces with this property.

Proof. Follows the lines of the proof of a similar

theorem for coz.

Corollary. 'distgz-fine spaces coincide with metric—

aetf spaces, and (distgz)f preserves distinguishable sets.

§ 3. dietgz-tine coreflection is distg_.

Theorem 2. (distg?), = aiste..
Proof. Let m be the functor in Thecorem l. By corolla-

ry to Theorea 1l
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meInv (distg)
and

m = ( di‘t{’to

These two r-!~tions imply m = diatg_ by the following sim-
pPle general result:

if & ‘s any refinement of U, and if (:R.Z)feInv (R)
‘then R_ = (R%),.

§ 4, Plus functors.
Theorem 3. distg, = distg_, = D,.

¢
Lemma 1, distg X = distg DcX.
Proof. This follows from the fact that 1f S is met-
ric then there exists a bijective uniformly continuous mapr
ping of S onto a distally coarse metric space.

Corollary: DeInv (dist )}, De Inv (distgzl.
The proof of the fact that D is the coarsest functor with
the properties in Corollary seems to be long and unintere-
sting (essential;.y set-theoretical).

§ 5. Remarks. The usual questions are:
a) Is R_+ R ?

b) When x.X=ﬂ£I?
¢) When .nfxeuc)%‘?

The answer to the first question is yes. Takz any spa-
ce X such that coz X = exp X. Then distgf X = ae?,z ¥X. On
the other hand, if X is precompact, then the uniforz parti-
tions of distg_ X are of cardinal at most exp ¥y and
hence, distg_ X#$ distgt X if the cardinal of X is greater
than exp F oo

As concerns the second questions, two propositicns
hold; the first is trivial, the second requires Tashijsn
Lemma.

Theorem 4. diste X = distg, X iff every completely
distg (X)-additive partition of X is uniformly discrste in
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distg_ X.

Theorem 5. Assume thai distg_ Xa = setf'Xé for each a.
Then
distg_ TTL X ? = distg, T X, 3 .

Proof. Ffirst observe that every distinguishable set
in the product of uniform spaces depends on a countable num-
ber of coordinates. Then apply the Tashi jan Lemma.

For the third question we have just a formal statement.

Theorem 6. distgf X is distinguishably equivalent to
X iff for any two completely distg (X)-additive partitions
{X.Z and {Y'b} the prtition {Xan ¥, 3 is.

The further questions are:
what are sub and her functors of the functors involved,

Theorem 7. sub distg_ = her distg_ = distg_
The proof follows from

Lemma 2. If distg_ Z = Z then distg_ X = X for each
subspace X of Z.

Proof. It is enough to show that if S is metric then
for any Y <> S, distg_ Y <> distg_S, and this is obvious
because distg_ S = setf S.

Theorem 8., distg_ = sub distgf. |

Proof. Apply Theorems 5 and 7 to the following situa-
tion:
Embed given X into the product TIT1S,3 of metric
spaces.

Concluding problem:
What 1is herdistgf =
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