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SEMINAR UNIFORM SPACES. 1975-76 . -� 

Distinguishable aeta 

z •  Frolík 

For each uniform space X den ote by distg (X) the set or 
all subseta of X which are diatinguished from the complement 

. by a uniformly continuous mapping of X onto a metrie space. 
Denote by distg (X,X) the set oť all mappings of X into Y 
such that the preimage·s of distinguishable sets are distin­
guishable. Clearly distg is a refinement· of the category of 
uniform spacea, and 

Uc....., coz c..+ Ba c....,. distg. 

We shall prove

disti_ = (distg2 )F = metrie - ·setf = her (distg_) = sub (distg_)
distgf: distg_+ = DC

Moreover, usual results about distgf and.distgc are iro-
\fed• One posaible aim of this investiga

.
tion is to determine 

the properties of the ťinest metrically determined coreflec-
ti on ( na mely distg_). The resul ts in [ l l are assumed. 

§ 1. Distg spaces. The refinement distg is generat�d
by the functor distg f'rom uniform spaces into paved spaces. 
Clearly, this functor is metrically determined (i.e. the 
value at X ia projectively genera_ted by all f: distg X- <...+ · 
c.-.+ distg S with f: X-+ SE.U and S metrie), and in addi-
tion 1t is the fines t ťunotor _with this property. Reca11·that 
the other functors already studied were coz and Ba._ The refi­
nement was introduced by the present aut hor in ( 2 l in con­
nection with the study of 6 -uniformly �efinable families. 

Proposition 1. The distg-coarse spaces are Just th� 
set-coarse spacee (1.e. singletona in separated spaces). A 
space r is distg-:ťine if and only it _ev.ery completely 
distg ( X)-addi ti ve part it iot_l is u��for_m •. _ • . 

, . Proo.t. Obv�ous • 
. , ... .. . ... ..

Propos:it ion 2� A paved space < X, X > ·,is a distg­
space iff it is a. coz-space, and if' f: < X, X>--,,, < R, coz R) 
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:..s meaaurable, then t: < X, X> � < R ,exp R ) is mea­
.;;,'Jrable. 

Proof. Obv ioua. 

§ 2. (d1stg) 2-tine spaces. The main result;

Theerem 1. For any X let mX be projectively generat­
ed by all t: m.X-+ Y such th�t 

. t,c t: X" x___,. YJ' Y 
is a distg-mapping. Then: 

a) The set of all distinguishable set s in X,c Y which
contains the diagonal is a basis for unitorm vicinities ot

the diagonal of MX, and mX is projectively generated by all 
f: mX-. sett S such that f': X-. S is unitormly cont inu­
oua, and S 1s metrie. 

b) distc (mX,,. mX) = distg (X,c. X) t

particularly, 
distg mX = distg X. 

c) f: mX--+ y· 1s uniformly continuous itf t"'- t: X KX-+

� Y,c. Y is a distg-mapping. 
d) f: mX� Y ia unif'ormly continuous iff f l( f:

mXx aX _. Y >< Y is a distg-mapping. 
· e) mis a coreflection on distg2-tine spaces, i.e.

m = (dist,zlt•

t) ., It S is metrie, and if t: mX--. S is unitormly con­
t inuous, then so is t: mX--+ setf s, and m is the coretlec­
tion on the spaces with this property. 

Proot. Follows the linea ot the proof ot a similar 
theorem tor coz. 

Corollary. distg2 ·-tine spaces coincide with metric-
setf spacea, and ·(distg2)f preserves distinguishable sets.

§ 3. diat«2'-i-1ne coreflection is distg_.

Theorem 2. . {d1stc2>
t 

s distg_. 
Prooi'. Let m be the tunctor in Theorem 1. By corolla­

ry to Tbeorea 1 
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· a e Inv · (di.-tg)
and 

m = (d1at.�r:.

These two r -:-.� � ,; na imply_ •··=_ diatg_ by tbe following aim-· 
ple general result: 

if 3t :·'..s !lny refinement of U, • and it ( 31,2')
-r 

a Inv . ( .ft.) 
· then :Ji,_ =· 1 Sl, 

2) f•

§ 4. Plus functors.

Theorem 3. dist&♦.· = 'distg_-+- = De•

Lemma 1. distg X= distg D
0
X. 

Proof. This tollows trom the fact that if Sis met­

rie then there exists a bijective ·-iformly continu ous mapr 
pin« of·S onto a distally coarse metrie space. 

Corollary: De. Inv (dist ) , DE: Inv (dist12 ). 
The proo� of tbe fact tbat Di the coarsest functor w1th 
the properties _in Corollary aeemá to be lon& and unint�re­
sting Cessentia l��. set-theoretiealh-

§ 5.,. Remarks.·. _The usual queetions are:
a) Is 31,� + 3t

:r 
·? •

b) When S_ X = ,i� X ?·

c) llhen :R,
t

.r e· < r >
!R,

·?

The answer to the first queation is yes� Take any spe-·
ce· X such that _coz X = exp X. Then distgf X se- .. � X. On 
the other hand, if X is precompact, then the ·unifo m parti­
tions of distg_ X are of cardinal at most exp 

0
, Dei 

hence, distg_ x+ dist� X it the cardinal of X is e •er 
than exp $ 

0
•

As coneerns the secQnd uestions,. two ·Pop i o
hold; the :tirst is tr19 ial „ the· · econd requir s T hi"an 
Lemma. 

Theorem 4. · dist� X �·diatst X 1ft every cop etely 
distg (X)-additi�e partiti-on of X- . .is unif'ormly d ete in 
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dista_ X. 

Then 
Theorem 5. Assume that disti_ X

8 
= sett·r

8 
for each a.

distc_ lT -l. r
8 

i = dist't 1T i X8 J _•

· Proof. First obser-ve th�t every distinguishable set
in the product of uniform spaces depends on a countable num­
ber of coordinates. Then ap ply the Tashijan Lemma •. 

For the third question we have just a formal �tatement. 

Theorem 6. dist8f X is djstinguishably equivalent to
X 1tt for any two completely distg {X-)-additive partitions 
� ·x.1 and .(. Yb l the prtition t X

8
n lb� is. 

The further.questions �e: 
what are sub and her functora of the functors involved. 

Theorem 7� sub distg_ = her distg_ = distg_ 

The proof follows from 

Lemma 2. If distg_ Z= Z then distg_ X� X for each 
subapace X of z. 

Proof. It 1s enough t� show that if Sis metrie then 
for any Y '-+ S t distg_ Y c.....+ dist�_s, and this is obvious 
becauee distg_ s, = setf s.

tion: 

Theorem s. dist&., = sub dist&r• . .. 
Proot. Apply Theorems 5 and 7 to the- following situa-

Embed gi.ven X into the product IT t s·
8 

3 of metrie 
spaces. 

Concludin& proble m: 

What 1s her �istg
f

? 
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