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Cla-saify'ing stationary aeta: a survey 

by 

D.J. wtzer

ln thia second lecture I will deacribe resulta obtained last 

year by Eric van Douwen and mys elf', which will appear in (vDL]. I will 

continue to use the definitions, notations and conventions of the 

f'irat lecture in which the collection cub(�) and the notion of a 

stationary set in � were introduced. Please keep in mind that ( 

alwaye denotes a regular uncountable cardinal (i. e. � = cf C K ) > �) 

and that � ia identitied with the set (o,�) of all ordinals lesa 

than k.. 

In the first lecture we saw that the class of all stationary sub

sets of regular cardinals claasities all non-paracompact generalized 

ordered spacee. Once that ia realized, it becomea a qu.estion of some 

interest whether, except for cardinality, there are really distinct 

ways in which a generalized ordered space can.be non-paracompact. Sta

ted m�re precisely, and in a special case, suppose a non-paracomp&ct 

generalized ordered space X has cardinality tú1; then we know X

must contain a stationary aubset of t./í· Muat it contain a copy of 

,r1? (The answer ia no; see [L].) Or is there a tixed bistationary

aubse·t S of "i such that either X containa a copy of "'i or 

else a copy ot S? (Again the answer is no; see Theorem K, below.) 

Finally, can two biatationary seta be topologically distinct, and if 

so, how many non-homeomorphic bistationary subsets exist in "'i?

(See Theorem M, bel9w.) 

Today's lecture will have'three parta. l ·will begin by deacri

bing how.to recognize a s�ationary subset �f L .  Tnen I will des

cribe the kind of functions suitable for the investigation of statio-



nary sets. Finally I will give a reasonably s·imple cri terion i'or 

recognizing when t-wo stationary sets are equivalen,t and that will en

able meto determine the.number of equivalence cla.sses of statio�tlry 

subaets of t:. • I begin with an elementary obs.ervation. 

A. Lemma: I:ť @ c. cub CI() and card (@) < K then ("\ © c. cub ( �)

The following well-known result, called the Diagonal Intersec

tion Lemma, will be needed at two crucial junctures in the lecture. 

B. Lemma: For each

the set 

-------------- -------···-···------· 
Cl.< K. let be a member of 

i:f' then al:ao 

belongs t.o cub ( K. ) •

Proof': It ie easily seen that D is cloaed in ". To est.ablish 

that D is cofinal in k, fix r<IC " . Since the set 

being the intersection ot fewer than K members of cub( � ), muat 

belong to cub ( I<), i t is possible to choose rl, t,he first el9-ent 

ot n { Cct I 'Á <. r J which is lar.ger than r. Ind.ucti vely choo-ae ordi 

nals r
n 

satisfying

(a) r < Ti� ... < Tn < fn+1 , 
(b) rn+l _ belongs to (){ C" \ «-, < r n} •

Let Ó = sup { rnl n�1J. Then óE D as required. 0 .

In.order to give the f'irst characterization theorem, I must 

tiret introduce ťour special notations. Let S be any cofinal subset 

of I<.. (Equivalently, let Se:� have card(S) = I< • ) Then: 

@es> = {r\Tc s}; 
cub(S) = {Te S ) card(T) = K. and T is rel ativ.ely c:lose1 

in S} ; 
@(S) = { TS S IT is stationary in k.}; 
@es) : { T� s \ either T or s - T contains a member 

of cub {S·� J .
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Obvioualy cub(S) # i while @es) may be empty. The membere ot. 

(S.) ar-e called meast.irable subsets of s. (In case S ia st tio-

nacy 1:n '1j_ • then i t is known that @(S) is precieely the col-

le-ction 0;f Bor�J. subsets of S.) The tirst characterizstion theorem 

is 

c. Theorem: Le·t · S be a cofinal &ubset of K • Then the tollo ing

are equivalent: 

(1) S is not stationary;

(2) if T is a cofinal subset of S then some relative

ly closed, discrete subset D of S is cofinal in

S and has De. T;

(3) cub(S) containa two disjoint members;

(4) @·(S) = (i)CS);

(5) there is a regres si ve function f : S-+ " such

that for e ch YE K , the set r-1ly J is non

-stationary.

Proo�: The equivalenes ot (1), (2) and (3) is straightforward, and 

(2) is easily seen to imply (4}. We sh-0w that (4) implies (1). Xo

that en,d, suppose (4) hold·s and yet S ia atationary. According to

th-e Ulam-Solovay theorem (Lectlll'e 1, Theorem C) there are disjoint

ets U , Ve S both ot which are stationary in K. -"ccording to {4), 

both U and V b�long to @(S). However, it is easily seen that 

if W is a s·tationary subset of K which belongs t @(S), then 

W cann�t be diajoint :from any member ot cub(S), o that W must 

contain a member of cub(S). Applying that observa.· to the set.s 

U and v, one obtains (3) which is impossible b� ause (3) and ,1) 

are equivalent. 

Th� proof that (1) ·mplies (5) i 

lete the .proof o.Therem C, I i l 

. "': 

slao s raightforward. To comp-

ove that S is stationary 



then the PDL �olds, as promised in the first lecture. So let S be 

stationary and suppoae t : s---. K ia „a regressiff function wi th 

non-stationary í'ibers� For each yc k let CY & cub C-11:.) be diajoint

.from :!"-1{ y J . �ccordirig to Lemma B, the s�t .D = { x • � 1 if y < x

then X E C
y 
J belongs to cub{ k). Then nns ·� I. Let xc Dns. Then 

f(x) = Y< X ao that . X& c
y

n:r--1{y} = " • o.

D. Corollary: Ir S is a co:t'inal subset of k., then @es) is a

Cf-algebra. 

�Q9,f:. tne. hard caa� oc�.urs .Jtl:um __ s. ... :.ia not stationary in k. and 

in that case @(S)= {E)(S} by Theorem c.Q. 

It is possible to give characterizations of stationary seta which 

do not depend on ordering, e.g.,

E. Theorem: Let S be a cofinal subset of K. Then S is stationa

ry in k. if' and only if whenever f : S-+ M is a conti

nuous ma-p-ping of S into a metrie ·space M, then 

card(t[S])< � • 

Proof: Suff'iciency· is obvious. To prove necesai ty, su.ppose a continu-

ous mapping t : S �li is gi ven, and yet card (f[SJ) = K. • Heplacing

• oy rts], we may assume tnat t is surjective.

Let Y• Al. If t-1{y J is stationary in K, then (f being con

tinuous i r-1{y J• cub(S). Write ll - {Y} = U{Fn ln� l} where each

Ii'n is cloaed in li. Thi!n eacb· set r-1[F n] is closed in S and is 

disjoint from the set r-l{Y}, showing that r-1[Fn] cannot be co

final in s. Because cf'{ IC) > lcló , there is some A� I( having 

U{t-1{Fn}ln�ljc[O, A)• Bu� then U{Fnln•l} has cardinality at

most car<i( )d � IC , whence card(II) < '- • Theretore no set r·1{y·}

is s tat ionary in IC. • 
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Let @ :: U{@Cn) fn� 1} be a 6"'-discrete base for M. t"or 

each ye M the set N(y") = {n•llY& U@ {n)) is non void. For each 

ng N (y), let B(n,y) be tne unique member of @ (n) containing y. 

Becauae f-1{y} = (\ {r-1[cl
14

(B(n,y))] lne N(y)} t one of the sets

f-1(cl
M

(B(n,y))] must be a bounded subset of t. Let K(y) be the 

first integer n& N(y) with that propertyo 

For each k�l, d,efine, M{k) = {Y•MIK(y) =k}. Then M = 

a: U{M(k) lk� l} so that., because cf'(�)> 1.cr
0 

, some k
0

• l has the 

property that card (M(k0)) = K • The collection © =

= { f-l (clm (B {k0 ,Y) )] ly fi 14{k0 >J is a closed, discrete collection in

the space S s,o that S0 = U(Í) is a closed subeet of So Further

more, card(S
0

) � card(M(k
0

)) = K so that S0E cub( IC). But it is an 

easy consequence oť the Pressing Down Lemma that no stationary subset 

oť k a-dmits a discrete c·overing by bounded seta, an9 this contradic

tion establishes Theorem E. O .

One immediate consequen_ce of Theerem E is the :ťact that the pro

per�y "S is a stationary subset of K• is a topologicel, as op

posed to an order theoretic, property of S. 

F. Corollary: Let S be etationary in ,c and suppose f : S--+ K

is a continuous mapping having card(f[S]) - �. Then 

f'[S] is- a ststionary -subset of tc;.. • 

Proof': If :ť[S] is not stationary in i::: , then there is a metrie: 

space M having card(M) = K �nd a continuous surjective mapping

g : f'(S]-+ 11. i:3ut then gof : S� M is also con inuous and urj'ecti

ve, which is impo&eible by Theerem E. O•

Corollary F can also be de-duced ;ťrom Theerem D and that ap-
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proach, while not aa elegant as t.he one_ I gave a ;momept a.go, sQg-

gests that continuous mappinga are no·t th-e b&a:t lcind ar l11appinge -to.. ___ _ 

use in the stuct_;r o-:f' at.ationary &et-a. For exaDJple, it woul,d o.bvioualy 

be· enough to--Jcnoir that_,given :f' : S-.. '-. ::, if D1 and n2 are dia

joint members ot cub-(t'[S]), then r•1\:.Dil Qd t-:�D2J each contain

a member of cub(S). ObserTations of that type lea-d tu the :· llowing 

detinitiona. 

Detinition: Let S be a eo:f'inal aubaet ot k. • _A f'un-c't.ion t : S-+ "

-l,�:·•�s�a-ble il_:_ -�..lfD]4i @·(Sl whene,rrer DE (i)( K) and f is

strongly measurable it t is measurable and for each YE 1ie , the

aet r-1{ y} is not stationary.

Let me pause to describe a simple eiample-showing the reason f'or con

aidering strongly measurable f'unctions instead o·f measurable f'unctionso 

Example: Given any nonvoid Te K , there is a measurable mapping f : 

K--+ � having f D.:: 1 = T. For let S be the set oť limit ordinals

in K and let t
0 

be the first point of T. Let g be any f'unction

from I( - S onto T - { t0) , and define f : K--. \C by 

f(x) = { to
g(x) 

if' XE S

if xe. k - S • 

Then f is measurable. Furthermore, note that if card(T) = K then 

the function g can be one-to-one so that r-1{t
0

} is the only ťi

ber of f having more than one point. 0 • 

The next lemma �hows that the range of ť is not important in

the definition oť a measurable function. 



G. Lemma: Suppose S and T are cofinal aubaets of K and aup-pose

f : S__,. T. Then f is measurable if and only if r-1[D]E.

e@(s) whenever De Ú1)(T). 

Furthe_rmore, measurable and continuoua functions are easily related. 

H. Lell1ID.a: Let S be a cofinal subset of K. Any continuous f:

S-+ k is mea-sur&ble and any continuous f : S__. K for 

whicb card(t(SJ) = � must be strcngly meaaurable. 

The utility of strongly measurable functions may be seen from 

the next iheorem which is valid for functions having stationary domaina. 

I. Theorem:Let S c k be stationary and let f : S__. K have the

property that the set T = ttsJ is cofinal in K • Then 

the following are equivalent: 

(1) f is strongly measurable;

(2) if Ae. S (S) then f'(AJ is stationary in �

(3) there is a set Fe cub(S) such that f(x) = x for

every xe F.

Proo:f: I will show (1)--.(2)--+())�(l). First suppose f is strong

ly measurable and let Ac S be stationary in � • I need a lemma. 

J. Lemma: Suppose S is a stationary subset of � and suppose (!)

is a disjoint collection of non-stationary subsets of � 

having S c. U(Í). Then there is a set C � cub (S) such 

that card(C(lT) �l for each •re© �

Proof': For each xes let T(x) be the unique memoer of ® con-

taining X and let C(x) be a Llember" of cub ( K) which is disjoint

from T(x). For xe I{ - s let. C (:i :) - i" • Then, according to Lemma B
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· of this lecture, the aet D = { x&.k I i:f. Y< x · then xc C(y)j

belonga to . cub( 1(). The set C = S('\D is the require<i set. O • ·

Now I return to the proof of (1)-+(2) in Theorem I. AP.PJ.ying Lemma J

to the collection © � {:r•1{?}1YET}, I obtain a •et · Ce5..cub{S)

having at most one point in commou with each set t-1{.J')· o . Th� the

. function g = tlc ia measurable and one-to-one. Furthermore the set 

A ()C is stationary in I.. ao that, by Theorem D., some 8cAn C. doea 

not belong to @<Anc). Because · B = g-1(gCB ]'], anó be·cause g is

measurable, · g(8],@'Cg[AnC]) ao that, again by Theorem D, a(AncJ

is stationary in �. Hence ao is the even larger set f[.A)o 

Next, I show that (2 )---. (3). Let S
0 

= {xe S l:r<x) < x} • Each 

tiber of the tunction �ls 
o 

is non-stationary (indeed, tor each ye T 

is non-stationary or else, by (2), some singleton 

in T would be stationary). According to the equivalence o:f (1) and 

(5) in Theorem D, the set S0 is non-stationary. Let C
0

E cub( �)

have conso =,.Let sl= {xgSlf'(x)>x} and let Tl = t[si) o De

fine g : T1 � s1 by the rule that g(y) is the first element o:f

s1nf'-1{y}. Then g is regressive and one-to-one so that T1 can

not be stationary (by Theorem D, again). According to (2), s
1 

cannot 

be stationary either. Let c
1 

e cub( k) have c,_n s
1 

= f. But then

C_0 
() c1 E cub( K) so that the set F = (C

0
() c1 )n S. belongs to cub (S),

and f(x) = x f'or each x EF. 

Finally I show that (3)--. (1). Obvioualy no :ti ber. t-1{Y} can

be stationary since any stationary subset ot S· must meet Fe cub(S}. 

Thus it remains only to show that t is meaaurable and to do that it 

will be auf'ficient to show that if Decub{T) then r-1t,n] contains 

a member of cub(S). If' De cub(T) then E = cl K (D) belongs t·o

cub( K) so that EnFE. cub(S) ... But i:f XE E(')F then x = :f(x)E. T so 
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that x e E n T = D, showing that EO F c f-1t,D) aa required. O • 

The equ_ivalence o� (l) and (3) in Theorem I allows me to prove 

the next theorem, which is the first step in count ing the number of 
..._, 

equivalen-ce classes of stationary seta, up to measurable isomorphiam 

( defined later) • 

K. Theorem: Let S and T be stationary subaeta of k. • Then the

following are equivalent: 

(l) S - T is not stationary;

(2) there is a strongly measurable mapping from S onto

T.

Proof: Suppose f: S--+T is a surjective, strongly measurable map

ping. Let Fe cub(S) have f(x) = x for each x&. F. Thep. (S - T }n 

• I so that S - T is non-stationary.

Conversely suppose S - T is non-stationary. Let C cub( IC.) 

have Cf)(S - T) = 0. Then Cf\ScCnT, and cnsecub{S). Let D be 

the set of non-isolated pointa of the space cns. Then DE cub(S) •

Let g be any one-to-one mapping of S - D onto T - D and define 

f : S-+T by 

if XGD

f(x) z:

if XE S - D • 

Then f is strongly measurable since f(x) = x for eé.ich xeLe 

c cub(S) and f maps S bijectively to T. O 

Suppose S and T are cofínal subsets of • "' 
1 e w il 1 say 

that a function f : S-> T 

bijection having the property that 

cer@(s). easurable isomorphi.s s 

the same things, aa the next examp·e ho 

i- r;., ., � :-itism if' f is a

and only if 

ensurable bijections are not 
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Example·: There are t.wo stationaey �u�:ta S· :a�>d -W . "-�: ·$ . 

Vli!�·t•,• .. __ · ··•-n� and T are not. measurábly isoinorphic . 

measurable mapping from S onto T. :!Q.r l0eit S .·-..BJJíl�•� 

subset of k (i.e., both S anó •··- S � J.fiat�· '. r,. ) . 

and let T = k • The· m.apping f : s._. T d· f'i11e1c!i „n :tb_ •JJR ... · � 

Theorem · K ia a measurable bij ection and y. - ,. l>eo · .' e T ·- S s , - S 

�-1: T-+S O.is stationary, • cannot be &urab1. 

However, there is ·an easy way to ree:opiz,,e wcen �wo •t-a-tionary 

sets are mea·surably isomo.rphic,given in the next th•:�:.m__ 

of that theorem uses the ideas in the J)Z'OO·f of Theorem. K n-d s,0 is 

omitted. 

L. Theorem: Let S and · T be stationary subsets of K. • Then thera

is a measurable isomorphism from S onto T if and only 

if' the set SAT = (S - T) U (T - S) is non-stationary. O 

or course, it now tollows from the Ulam-Solovay theorem {Theo

rem Bot the first lecture) that k contains a family @ o� sta

tionary seta such that card(@) = k and s.uch th t no two m-embers 

of@ are measurably isomorphic. ·However, by an el 

one can get a much better result, namely: 

tary triek, 

M. Theorem: There is a collectio·n @ of s'tationary ub et.a ot ll

such that: 

(1) card (@) = 2 IC. ;

(2) if' S·# T are m,emb rs of

strongly measurable map.pi.

th n tne� u no 

11!1,. � ..,

(3) if S, T belong to @ t.h'e S and T. are

measurably isomorphic;
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(4) �:r $!• T. belong to @ then S arid T are not

b am,orphic - inaee 1d there is no cont.inuous f

s·-..T -haring c.ard(f(S]) = k • 

P�: · io�11a.y (l:l an'1 (4) :f'ollow f'rom (2). Consider the di.sjoint 

=l-l·e�tion Ci) o� atati.anary subset.s of K. guarant.eed by the 

t�eor • Write @ = @ U(f) where (]) and © ara 

4ilisjoint .eoll:ectiona t each with cardinality K. Index (without re-

p.e-titiona) ·@ aa<l @ as ® = \S
Oi 
I ti.. e "} anó 

(I)• \T., 1 •·E kj - For each Ac.t<. def'ine U(A) = (U{S� f °'& A})U

U U>{ Te ·I "4 e. � - A)). Obaerve that i:f A ,;. B are subsets of 

" , t-ben IHA) - U-OU contains some member of a} so t.hat no strong

ly meaaurable mapping �rom U(A) onto any subset of U(B) exists. 

fhen let (j) = {uc_A>-IAE p ( �)} • □ .
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