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Classifying stationary sets: a survey

by
D.J. Lutzer

In this second lecture I will describe results obtained last
year by Eric van Douwen and myself, which will appear in [vDL]. I will
econtinue to use the definitions, notations and conventions of the
first lecture in which the collection cub{(k) and the notion of a

stationary set in & were introduced. Please keep in mind that K

always denotes a regular uncountable cardinal (i.e. K = ¢f(K)> uqﬂ
and that Kk is identified with the set [0,K ) of all ordinals less
than K.

In the first lecture we saw that the class of all stationary sub-
sets of regular cardinals classifies all non-paracompact generalized
ordered spaces. Once that is realized, it becomes a question of some
interest whether, except for cardinality, there are really distinct
ways in which a generalized ordered space can be non-paracompact. Sta-
ted more precisely, and in a special case, suppose a non-paracompact
generalized ordered space X has cardinality aaj then we know X
must contain a stationary subset of aq, Must it contain a copy of
W7 7 (The answer is no; see [{L].) Or is there & fixed bistationary
subset S of U‘i such that either X contains a copy of &y or
else a copy of S ? (Again the answer is no; see Theorem K, below.)
Finally, can two bistationary sets be topologically distinct, and if
s0, how many non-homeomorphic bistationary subsets exist in ari ?
(See Theorem M, below.)

Today’s lecture will have’three parts. i will begin by descri-
bing how to recognize a stationary subset of & « Then I will des-

cribe the kind of functions suvitable for the investigation of statio-
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nary sets. Finally 1 will give a reasonably simple criterion for
recognizing when two stationary sets are equivalent and that will en-
able me to determine the number of equivalence classes of stationary
subsets of K . I begin with an elementary observation.

A. Lemma: If @ccub(K) and card (©)< K then NC g cub(k)

The following well-known result, called the Diagonal Intersec-

tion Lemma, will be needed at two crucial junctures in the lecture.

B. Lemma: For each @& <K 1let C, bea member of cub( K.")M.H-Th-en
the set D={p<K | ir ¢'</6 then {Ge C“}' also
belongs to cub(K).

Proof: It is easily seen that D is closed in k . To establish

that D is cofinal in K, fix rz K .« Since the set O{C‘“‘¢<r}

being the intersection of fewer than K members of cub(K ), must
belong to cub( K), it is possible to choose rl, the first element
of ﬂ{cd_l d<r} which is larger than r. Inductively choose ordi
nals rn satiafying

(a) r< Il< eeo <7’n< ﬁ*l ’

(b) rn-ol belongs to ﬂ{C“|¢»< ]"n} .
Let O = sup { Tnlnél}. Then &e D as required.[J .

In order to give the first characterization theorem, I must
first introduce four special notations. Let S be any cofinal subset

of Kk . (Equivalently, let ScK have card(S) = K.) Then:

@) = {rlrc s} ;
cub(S) = {TcS |card(T) =K and T is relatively close
in S} ;

® )

Q@(s) = {TQS |either T or S - T contains & member

{TSSIT is stationary in K};

of cub (S-)} .
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Obviously cub(S) # @ while @(S) may be empty. The members of

@‘(S) are called measurable subsets of S.(In case S 1ia statio-

nary in &?i s then it is known that (S) is precisely the col-

lection of Borel subsets of S.) The first characterization theorem

is

C. Theorem: Let S Dbe a cofinal subset of K . Then the following

are eguivalent:

(1) S is 221 stationary;

(2) if T 1is a cofinal subset of S then some relative=-
ly closed, discrete subset D of S 1is cofinal in
S and has Dc T;

(3) cub(S) contains two disjoint members;

(4) @D(S) = @s);

(5) there is a fegressive function f : S— K such
that for each yek , the set f-l{y} is non-
-stationary.

Proof: The equivalence of (1), (2) and (3) is straightforward, and

(2) is easily seen to imply (4). We show that (4) implies (1). To
that end, suppose (4) holds and yet S 1is stationary. According to
the Ulam-Solovay theorem (Lecture 1, Theorem C) there are disjoint
sets U, V€S both of which are stationary in K . According to (4),
both U and V belong to (S). However, it is easily seen that
if W 1is a stationary subset of K which belongs to (S), then

W cannot be disjoint from any member of cub(S), 8o that W must
contain a member of cub(S). Applying that observation to the sets

U and V, one obtains (3) which is impossible because (3) and (1)
are equivalent. !

The proof that (1) implies (5) is 31so straightforward. To comp-

lete the procf of Theorem C, I will prove that if S 1is stationary



- AE ~

tnen the PDL holds, as promised in the first lecture. So let S Dbe
stationary and suppose f : S—) K 18 & regressive function with
non-stationary fibers. For each ye k let Cyc cub('wk) be disjoint
from f'l{y} . according to Lemma B, the set D = {xc& |if y<x
then xecy} belongs to cub( k). Then DNS ¥ @. Let xe€ LNS. Then
f(x) = y<x 8o that xecyﬂt'l{y} =g . U.

L. Corollary: If S 1is a cofinal subset of K , then (S) is a
G -algebra.

Proof: The hard case occuyrs when S. .is not stationary in k and

in that case @(S) = (®(S) by Theorem C.[] .

It is possible to give characterizations of stationary asets which

do not depend on ordering, e.g.,

E. Theorem: Let S be a cofinal subset of kK . Then S 1is stationa-
ry in K 1if and only if whenever f : S— M 1is a conti-
ruous mapping of S into a metric ‘space M, then
card(ffS))< K .

Proof: Sufficiency is obvious. To prove necessity, suppose a continu-

ous mapping £ : S—M is given, and yet card(f[S)) = K . Replacing
M oy f{S]), we may assume that £ is surjective.

Let yg M. If f'l{y} is stationary in k, then (f being con-
tinuous) f’l{y}g cub(S). Write M - {y} = U{Fnln) l} where each
Fo is closed in M. Then each set f"l[Fn] is closed in S and is
disjoint from the set f'l{y} » showing that f'l[Fn] cannot be co-
final in S. Because cf(k)> &y , there is some A € K having
U{f-l{f‘n}lnil}c [0, A). But then U{FnlnAI} has cardinality at
most card( A)< K , whence card(M)<« . Therefore no set f'l{y}

is stationary in K.
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Let = U{@(n)lnhl} be a 6-discrete base for M. gfor
each ye€ M the set N(y) = {n)llye U@ (n)} is non-void. For each
n€ N(y), let 3(n,y) be the unique member of (n) containing y.
Because f'l{y} g ﬂ{f-]“[clu(B(n,y))] Ine N(y)} , one of the sets
f'l[clM(B(n,y))] must be a bounded subset of Kk . Let K(y) Dbe the
first integer nN(y) with that property.

for each k21, define M(k) = {yellll((y) = k} e« Then M =
= U{M(k)h:hl} so that, because cf(K)> W, , some ko1 has the
property that card(M(ko)) = K . The collection @=

= {f’l[clm(B(ko.y))] lye H(ko)} is a closed, discrete collection in
the space S 8o that So = U@ is a closed subset of S. Further-
more, card(S_ )& card(M(k )) = K so that S & cub(K). But it is an
easy consequence of the Pressing Down Lemma that no stationary subset
of k admits a discrete covering by bounded sets, and this contracic-

tion establishes Theorem E. [J .

One immediate consequence of Theorem E is the fact that the pro-
perty "S 1is a stationary subset of K * is a topologicel, as op-

posed to an order theoretic, property of S.

F. Corollary: Let S be stationary in x and suppose £ : S— K

—————

is a continuous mapping having card(f[S]) = K . Then

f[S] is a stationary subset of K .

Proof: If f{S) is not stationary in k, then there is a metric
space M having card(M) = K 4and a continuous surjective mapping
g : f[S]— M. But then gof : S— M is also continuous and Surjecti-

ve, which is imposesible by Theorem E. D .

Corollary F can also be deduced from Theorem D and that ap-
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proach, while not as elegant as the one I gave a moment ago, sug-
gests that continuous mappings are not the best kind of mappings to _
use in the study of stationary sets. For example, it would obviously
be enough to know that,given f : S— K, if Dl and D2 are dis-
joint members of cub(f{S)), then t’ltbl) and f'l[DQJ each contain
a member of cub(S). Observations of that type lead to the : 1llowing

definitions,.

Definition: Let S be a eofinal subset of K . A function f : S— K
is messuruble if f"'ltj)]e (D (S) whenever De @( k) and f is
strongly measurable if f 1is measurable and for each ye k , the

set f'l{y} is not stationary.

Let me pause to describe a simple example showing the reason for eon-

sidering strongly measurable functions instead of measurable functions.

Example: Given any nonvoid Tcx , there is a measurable mapping £ :
K—>» X having f£[c] = T. For let S be the set of limit ordinals
in K and let t, be the first point of T. Let g be any function
from x -S onto T - {to} , and define f : K—»k by

to if xeS
£(x) =
g(x) if XekK =S o

Then f is measurable. Furthermore, note that if card(T) = K then
the funetion g can be one-to-one 30 that f'l{to} is the only fi-

ber of f having more than one point. O

The next lemma shows that the range of f 1is not important in

the definition of a measurable function.
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Ge Lemma: Suppose S and T are cofinal subsets of K and suppose
£ : S—T. Then f 1is measurable if and only if f'l[DJe
e‘(S) whenever De @(T).

Furthermore, measurable and continuous functions are easily related.

He Lemma: Let S be a cofinal subset of K « Any continuous £ :

S—+ K 1is measurable and any continuous f : S— K for

which card(f{S]) = Kk must be strcngly measurable.

The utility of strongly measurable functions may be seen from

the next theorem which is valid for functions having stationary domains

I. Theorem:Let S C K Dbe stationary and let f : S—» K have the

property that the set T = f£[S] 1is cofinal in K . Then

the following are equivalent:

(1) £ 1is strongly measurable;

(2) if Ae S (S) then f[4] is stationary in K ;

(3) there is a set Fe cub{(S) such that f(x) = x for
every xegF.

Proof: I will show (1)—»(2) —»(3) —(1l). First suppose f 1is strong-

ly measurable and let AcS be stationary in K . I need a lemma.

Je Le_mn;_a, Suppose S 1is a stationary subset of K and suppose @
is a disjoint collection of non-stationary subsets of X
having SCU@. Then there is a set Cecuk(S) such
that card(CNT) <1 for each Te@;.

Proof: For each xeS let T(x) be the unique memoer of @ con-

taining x and let C(x) be & uember of cub( k) which is disjoint

from T(x}). For xe g ~ S 1lew C{x) = K. Then, according to Lemma B
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-of this lecture, the Bet D = {xag | if y<x then xe C(y)}

belongs to cub( K). The set C = SND 1is the requirea set. |:] .

Now I return to the proof of (1)—»(2) in Theorem I. Applying Lemma J
to the collection @ = {f‘l{y}lye T} ,» 1 obtain a set Ce cub(S)

having at most one point in commou with each set f-l{y} « Then the

function g = flc is measurable and one-to-one. Furthermore the set
ANC 1is stationary in K 8o that, by Theorem D, some BcANC does
not belong to @(AGC). Because B = g']‘[gEB J], and because g 1is
measurable, g[ﬁ]#@(g[AﬂC]) so that, again by Theorem D, gfaNC]

is stationary in k. Hence 3o is the even larger set f[A]).

Next, I show that (2)— (3). Let So = {xeslf(x)<x} . Each
fiber of the function fls is non-stationary (indeed, for each yeT
the fiber f ]{y} is non-statlonary or else, by (2), some singleton
in T would be stationary). According to the equivalence of (1) and
(5) in Theorem D, the set So is non-stationary. Let Coe cub( k)
have C/NS, = B. Let S, = {xe€S|e(x)>x} and let T, = £f{S] . De-
fine g : Tl*'sl by the rule that g(y) 1is the first element of
Slﬂ f'l{y} « Then g 1is regressive and one-to-one so that Tl can-
not be stationary (by Theorem D, again). According to (2), Sl cannot
be stationary either. Let C;e cub(k) have Clﬁ S, = #. But then
Coﬂcle cub(K) so that the set F = (Coﬂ Cl)ﬂs belongs to cub(S),
and f(x) = x for each xé€F.

Finally I show that (3)— (1). Obviously no fiber f-l{y}
be stationary since any stationary subset of S’ must meet Fe& cub(S).
Thus it remains only to show that f is measurable and to do that it
will be sufficient to show that if De cub(T) then f-]'tD] contains
a member of cub(S). If Deg cub(T) then E = el (D) Dbelongs to

cub( K) so that ENFe€ cub(S)..But if xe€ENF then x = f(x)€T so
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that x€ENT = D, showing that EnFcf']'[D] as required. [J.

The equivalence of (1) and (3) in Theorem I allows me to prove
the next theorem, which is the first step in count.ving the number of
equivalence classes of stationary sets, up to measurable isomorphism

(defined later).

K. Theorem: Let S a:nd T Dbe stationary subsets of &k . Then the
following are equivalent:
(1) S - T is not stationary;
(2) there is a stirongly measurable mapping from S onto
T.
Proof: Suppose f : S—»T 1is a surjective, strongly measurable map-
ping. Let Fe cub(S) have f(x) = x for each x@F. Then (S = T)A\F ¢
= @§ so that S - T is non-stationary.

Conversely suppose S - T 1is non-stationary. lLet Ce& cub( x)
have CN(S - T) = . Then CNScCNT, and CNSecub(S). Let D be
the set of non-isolated points of the space CNS. Then Dg cub(S).
Let g be any one-to-one mapping of S - D onto T - D &and éefine
f : S—=T by

{x if x&D
f(x) =
g(x) if x€S -D.
Then f 1is strongly measurable since f(x) = x for euch x&le

Gcub(S) and f maps S bijectively to T.[].

Suppose S and T are cofinal subsets of K . ¥e will say

-

that a function f : S— T is a measurable iEC”T"":"‘u.ﬁism if f 1is a

bijection having the property that ZfLCl€ Q@ () if end only if
Ce (S). Measurable isomorphisms &nd measurable ®ijections are not

the same things, as the next example &hows.
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Example: There are two stationary subsets S and T guch that S
and T are not measurably isomorphic and yet there is a gné-to-one
measurable mapping from S onto T. Por let S be any bistationaty
subset of k (i.e., both S and K - S are stationary im & )
and let T

kK . The mapping f : S— T defined in the proof of
Theorem K is a measurable bijection and yet, becanse T - S = W= §

is stationary, f'l: T—»S cannot be measurable. D o

However, there is an easy way to recognize whem two stationary
sets are measurably isomorphie,given in the next theorem. The proof
of that theorem uses the ideas in the proof of Theorem K and so is

omitted.

Le Theorem: Let S and T be stationary subsets of K. Then there
is a measurable isomorphism from S onto T if and only

if the set SAT = (S - T)U(T - S) is non-stationary. [J

Of course, it now follows from the Ulam-Solovay theorem (Theo-
rem B of the first lecture) that K econtains a family @ of sta-

KX and such that no two members

tionary sets such that card(@)
of@ are measurably isomorphic. However, by an elementary trick,

one can get a much better result, namely:

M. Theorem: There is a collection @ of stationary subsets of «k
such thats
(1) card(@®) = 2%; ,
(2) it S #T are members of @ then there is no
strongly measurable mapping from S imte T;
(3) if S #T belong to @ them S and T are not

measurably isomorphic;
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(4) if S ¥ T belong to (E) then 5 ana T are not
homeomorphic - indeed there is no continuocus £ :
S—» T having card(f{S]) = k .
Proof: Obwiously (3) and (4) follow from (2). Consider the disjoint

ecallection @ of stationary subsets of K guaranteed by the

Ulam-Solovay theorem. Write @ = @ U@ where @ and @ are

digjoint eollections, each with cardinality K . Index (without re-

petitions) (® and (@ as @ = {s4lxe )} anc

@ = {T‘ I [ K} o« For each Ac K define U(A) = (U{Sﬁ EX AJ)U
U(U{T‘ | e x - AJ). Obgerve that if A # B are subsets of

X » then U(A) - U(B) contains some member of () so that no strong-

ly measurable mapping from U(A) onto any subset of U(B) exists.
Then let @) = {use P ()} .D0.
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