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CONTINUOUS EXTENDERS FOR PSEUDOMETRICS 

D.Jo LUTZER

This fourth lecture concerns reaulta appearing in o joint 
paper by Teodor Przymusinski and myself �. 

rtecall that a space X is collectionwise normal i:f, given any 
discrete collection :l -of closed subsets of X , there is a corres
pondin.g disjoint collection 1.r = { V(F) : FE 'J} o:f open sets in 
X having FCV(F) for each FEJ • This notion was introduced by

Bing �J in 19·51 in his study of metrizabili ty and norma li ty in 
Moore spaces, qu-estions which today are not completely settled and

which make logic feel like a branch of applied mathematics. 

But there are other uses of collectionwise normality. For a mo
ment, consider the elass of completely regular spaces. Completely re
gular spaces are: 

(1) those spaces determined by families of continuous real
-valued functions;

(2) 1 those spaces determined by families of continuous pseudo-
metrics.

lf the space X is completely regular, then so is each (closed) sub
space A and it is important to know what relationship, if any, 
exists between the continuous functions (respectively, continuous 
pseudometrics) which determine the topology of A and the continuous 
functions (respectively, continuous pseudometrics) on all of X. And 
that is where normality and collectionwise normality become important, 
�s the next two theorems show. But first I must settle on some nota
tion. i4"'or any space Y, C(Y) and P(Y) are the sets of continuous 
real-vulued :ťunctions and continuous pseudometrics defined on Y, 
Qnd the sets of bounded members of C(Y) and P(Y)· are denoted by

C*(Y) and P*(Y) respectively. I can now state the basic theorems 
about extending functions and pseudometrics as fcllows: 

sed 

of 

A. Theorem: a space
A CX , eac-h member of

C (X) • 0 

X is normal if and unly ;f for each clo
C(A) is the restri�tions of some member 

hat reaul t dat es :ťrom the 1920' s and · .... du� t.o Urysohn. Extending 
embers of P(A) to membe�s cf P(X) is more difficult: 
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B. Theorem: A space X is collectionwise normal if and only

if_ f'or each closed A CX , each member ot PC.A) is the rest.riction 
ot some member of P(X) • 0

lt is bard to aay whose result Theorem Bia. Halt •t it is uauelly
ascribed to Aréna � , but a cloaely rela,t.ed re.-Mll:t i• -.pltcit in
a simuitaneous paper by. Dowker. �� ; Lowker's i',,ea:ult -.a n oted qy
E. Michael in his review of Dowker·•s p&p:er, [�). The other lla-lt'· o;r ·
the theorem is u�utilly as.cribed to Shapiro [s] and Gan'taer· [oJ •

There is a resul t midway · betw-een e-xt.ending real-value:d · f'unctions 
and extending pseudometrics. It is due to Alo and Sennott � , but 
the proof' I'll give here is due to Pol (sei! [P, §J]) and n-eatly in-

. troduces many of the tricks of this trad-e. Also, I ne-ed it later. 

C. Theorem: A T� space X is collectionwise normal if' and
.L 

only if every continuous mapping ť : A-.B , where A is a close<l 
subset of X and B ·is any Banach space, can be extended to a con
t inuous mapping F : X -a .

Proof: Suppose X is collectionwise normal and that 
f : _A-B is given. Def'ine a pseud01netric S' on A by p (x,y) = 

= lit (x) - f (y) 11 , where 11 • l I is the norm in B • According to 
,.., 

Theorem B� there must 
extendes p. Let Iv 
C = cl�(A) .

N
Suppose

having lim j(x,a(n)) 
sequence <:rca (n)) >

be a continuous pseudometric j1 on X whicb 
be the topology induced by f .· on X , and let 
xEC-A; then there must be a sequence a(n)EA 
=O. But then, in the Banach space a, the 
is Cauchy so that lcx} = lim f'(a(n)) exists 

n 
and is independent of. the choice of the approximating sequenc-e 
<a(n) > .

De:f'ining :f'(a) = :f'(a) for each a EA, we obtain a continuous 
f'unction f' : (C·, A,C) -s . According to the pseudometric gener&li
zation of' the Dugundji Exteneion Theorem (f'or .ídanach-apaee-vali.Mt� 
f'unctions) fp� , there is a function F : (X, Iv) -a whic:h ex
tends :f'. 

Conversely, suppose each Banach-space-valued continuous f'unetion 
on a closed subspace of X can be extended continuou-s.ly over X • T� 
prove that X is collectionwiae normal, I again use Theorem B, so 
assume f ia a continuous pseudometric defined on a cl�&ed subspace 
A of X • Then, identif'ying pointa of .A at p -distance O, I ob
tain a metrie space (M, j> ) and a nat�al projection o:ť: A-M • 
Since M is metrizable, M can be isometrically amb-edde-d in a .Bana-ct 
space a so that there must b� a continuous F : x-B wbich ex-
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tends rv f • Let 11 . ff denote t�e norm of B and de:ťine f on X•X
by f (x,y) = 11 F (x) - ft'(y) j J • Then p is the required extension
of j • O 

In a earlier 1.ecture [L] you heará me talk about sharpening 

Urysohn's result (Theerem A, above) to produce a function e :  c•(.t1.) 
__.,C*(X), called an extendel', satisfying 

{l) if f EC* (A) then e (f) extenás :ť; and 
(2) e is continuous when both function spaces carry the

sup-norm topology.

The new material to be presented today concerns similar sh8rp

enings of Th.earems ti and C. I'll start with a special case of Thee
rem C, but tiret I'll introduce some notation. For any space Y and 
an:y Banach spaee B, C(Y,B) denotes the set of all continuoua 

f : Y---.B, and c•(Y,.c:s) is the set consisting of all bounded members 
of C(Y,d), i.e., i\mctions f: Y--+B such that the set f [y] has 
f.ini te dia.meter wi th res.pect to the norm 11 . 11 of B • The set
c*(Y,B} is it.self a linear space (as is the larger set C(Y,d)) anc 
b,e·co·m-es a Ban:a-ch s.pace if we define the sup-norm by 

li f 11 = sup { li f (y) 11 : y.E Y }
for each fE C*(Y,B) • (The obvious notational abuse could cause ·end
le.ss confusion later on, but to be notationally precise is often mes
l:> .. Tu,s-t to illu·strate the real price of precision, later today l'll 
_:, · .-.-/u-c-e norma lt. f li , 1Si�5, o& five dif"ferent spaces appearing
..._,, �b<:· sa.me proof.) I can now present 

D*. Theo.rem: Let a· be a closed subset of a collectionwise 
normal space X, and let B be any Banach space. Then there is a 
continuous extender e : c• (A,B)--. c* (X,,B) such that for each

f E c � (;l., a ) , 11 e ( f" ) li = li f 11 •

Proof: As in my third lecture [L] , I will use the Bartle
-Graves Theo.rem which a-sserts that if R : E --+F is a continuous li
:��:�r aurjection between Ba.nach spaces, then there is a continuous 
�: F--..E such that e-(y)ER-1{y} for each yEF��. According to
:heo.-em c, the r·estriction operator R : c•(X,B) __.,.C�(A,.d) is a sur

jection., and R • is obviously ·continuous and linear. Hence there is 
a c.ontinuous a : C .. (A,i3)---+C*(X,B) which is &.! extender. Of COU+Se, 

tbis � may fail to be norm-preserving and in -..h t case we rnoói.fy 
: by defining, for fE c*(A,B) and xEX , 

e(f)(x) = f �(f)(x) if l\�(f){x)ll�l!rll

l f1';tmxlll li tll if ll�<t)<x'il > lit li .
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ťio:� that l ! G(f) (x) i! is :.he norm o-f' an element of ci , while 11 f 
is the sup-norm of an element of c*(A,B) • O

Now Tl:eorem C C3.n be sharpeneci„ For any space Y and any bana 
s;ace d let C(Y,il) carry the topology of uniforo. convergence. 
Tr.en c• (Y, d), wi th the sup-norra topology, is a closed linear subsp 
c� oť C(Y,d) and C(Y,o) is metrizable (although C(Y,B) is usu 
ly not a topological vector space). 

D. Theerem; Let A be a closed subset of a collectionwise no
�al space X and let � be any danach space. Then there is a conti 
nuous extender ě : C(A,B)-C(X,b) • 

Proof: Let i-' C C (A, o)

{r • C ,.. (a,b) : fEF} ie exactly 
suospace c•(A,d) in the vector 
rem C, I may choose an extension 

be chosen so that �he collectiori 
the family of cosets of the linear 
space C (A,B) • According to Theo-

t'EC(X,B) for each f'EF • 
.According to Theorem t• there is a continuous extender e: C,.. (ň,B)� 
-C (X,;;,) • Now deťine e: C(d,B)-C(X,B) by the rule that, for 
gEC(.d,d) 
e{g) = f • e(g-f) where f is the unique member of F having 
gEf + C .. �A,.dJ • óecause c*(.A,B) is an open and closed subspace of 
C(a,o), th.is e is continuous. 0

New let metry to sharpen Theorem ti. First I must describe t.he 
topology on the set F*{Y). Each f EP,ot (Y) is, of course, a member 
of c•cY�Y), and we topologize P-(Y) &s a subspace of c*(Y2 ). It 
is easily seen that P�(Y) is a closed, convex subset of c•cy

2 ), 
indeed even a cone in c*cY2 ) in the sense of [iaiJ , but P�(Y) is 
not a linear subspace of C�(Y2 ). That unfortunate fact makes a 
Bartle-Graves �roof of the next theorem impossible, at least using 
known tools. 

E�. Theerem: Let a be a closed subspace of the collectionwise 
normal space X. Then there is a continuous extender E: P�(A)-
-P.(X) such that for each fEP�(A) , IIE<f) li = 11.P jj.

Proof: The proof requires a sequence of lemmas which are 
not difficul t i.f only one can keep straight which norm refers to whic' 
danach space. ro that end, norms will be subscripted, li. lli
(1 � i �5). For example, in the statement of the theorem, 11 E( f) 11 
and ! I J 11 are really norms in different spaces. 

{E 1) Lemma: There is a continuous mapping (indeea, an isomet
ry) L: p•(A)-C ,.(A,C•(A}) defined by the rule that if .f EP*(A) 
and if x,yEA then (L( y ) (x)

°

,) (y) = f (x,y) • 



- 4 � -
?roof: 3ince f is oounded anó continuous, the re�l-v�lueé 

function L(ý )(x) áefineé on the space � is continuous ánd bcuna

ec, áS is the function l.{ f) : J...- C ,. (.A). 'I'hus L
Let 11 -11

1 denote the sup-norm in C" (.t1.)
the sup-norm in c�(4,C�(A)) defined from 

and let 

I I • i 11 

is well-de:'ir.e�. 

li . j 12 dcnote
• : ' : 

I 
be the sup-norm in p•(h). To prove that L is �n isome�ric emJeác

ing, let f, á E P Ui.). Then 

11 L ( jl ) - L ( 8 ) j l 2 = sup { l ; L ( ý )( a ) - L { o ) ( s ) I I 1 : a E rt } -·

• Le" 
i I • I .}

= sup { sup { !1 ( f ) (a) t b) - L ( é' )(a) ( b) I o E A } : a E Á } =

= sup { lf<a,b) - c,(a,b) I: a,bEA} = li f „ ó !I 3 • O
Now by Theerem n•, because C,. (Á) is a danech spa.ce, tnere is

a continuous extenoer e : c*{A,C*(A))--+C 1t (X,C "" (A)). Continuing the
pe.inful noi:.ation of Lemma (E 1), we let 11 . ! ,

1 
denote the sup-nor□ 

in c"cx,c « (A)) defined by the sup-norm I!• l 1 on c*u .. ) .

(E i:) Lemma: For each fEC*(X,C '" (A)) and each x,yEX de:'i
ne S(f)(x,y) = li f(x) - f(y) 111 • Then S(f) is a bou.naed, contin
.ious pseuéometric on X and the function S : C .. (X,C 10 (A)) - P -: (X)
1s continuous. 

Proof: For a fixed f,S(f) is clearly a continuous bounc

ed oseudometric on X .  To prove that S is continuous we show thót

if -f,
i

EC it (X,C�(A)) then li S(f) - S(g)ll5�2 llf-gll
4

, where

11 G I 5 is the sup-norm on P "" (X). We have

li s c f ) - s < g ) il 5 = sup { I s < f ) c x , y ) - s < g ) c x , y ) I : , x , y ) E x2 } •

bu t I S ( f ) ( x, y ) - S ( g ) { x
i 
y ) I =

= I llrcx) - f(y) 111 - llg(x) - g(y>ll1 I�
� llt<x) - f(y) -· g{x) + g(y) 111 �

< llt<x) - g(x>il
1 

+ llt{y) - g(y>ll1 � 2 llr - gil4

where the last inequali ty follows from the de.fini tion of 11 • 11 4 ,
while the preceding two ineaualities are consequences of the triangle

inequali ty for the norm I J : 11
1 

• O 
(E 3) Lemma: Wi th L, e and S as above, the cornposi t e funct::..on

E = SoeoL P,.. (A)-P .. (X) is a continuous extender. 

Proof: Obviously E 
der. To thet end, let a,bEA 

is continuous; we sho 1: as an exter.
and let f EP.(A). Then, from c.e:':.-

nitions, and with notation as above,

EC.f ){a,b) = S(e(L(j )))(a,b) = 
= 11 e {L ( f ) (a) - e (L ( .f ) ) (b i li 1 „ :aut
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{ ť )E c" (.A.,C "' ( ·}) d e is 611 enen er so that.. e (L(j ) ) a) = 
= L{f )(LJ.j and e(L(.f ) )(b} = L(f) (b). Hence, ft m de:f:.nitions, 
E(f' a,b) = IJL(j )(a) - L(.f )(b) !J = 

=sup {J�Cj'}(a){) -L{f)(b){z)Jf: zc.d_; 
= sup {f .fCa,z) - _f(b,z) J : zEA} = f(a,b 

th, �� ► equality f'ollo ing from the triangle l for the pseu�omet
ric p pl " �l-te f'act that b E.A • O

It is not guaranteed that l,f E( f ) f I 5 = 11 f' f 1
3 

, as required 

�y the theorem, ...-here l l . r f 5 denot es the .norm of p fr ex) • How ev er
E can be modified ::,s f'ollows: for J'. EP*(A) and fo-r x,yEX, l:et 
E(.f' )(x,y) = min {ECf )(x,y), f I f 113}. Then E : r(A)-P�(X) is
a continuous extender and f lE ( ť } ff 5 = f f y f J 3 for eac:l, j' E P* (A),
as asserted by Theorem E "' • O 

Having proved Theorem E_.., I should preaent a Theorem E asserting 
that there is a continuous extender :from P(A) to p,(X) where the 
latter two seta are equipped with the topology of uniform convergen
ce inherited :ťrom C(A.2) and C(X2 ) respectively. Unfortunately I 
do not have such a theorem. A moment's renection·will convice you 
that the coset approach used to obtain Theorem D. :from_ Theerem D� has 
no hope of working. Currently I tend to favor a selection-theoretic 
approach to a possible Theorem E. For each 
ď E P{A), let E( 8) = { �EP(X) I � extends 8} .
It is easy to see that E( ó ) is a closed co-nvex subset of P(X) 
and C(X2). However there are two problems: 

(l) Most select ion theorems would require that E ( J ) be a
sucset of a -danach space, while C (X2) is not even a to·po
logical vector space (except in the unlikely event tha.t
x

2 is paeudocompact). 
(2) Most currently �xisting selection theorems treat only thos�

situations wherc: ·( he correspondence o --.E( o) is lower
semi-continuous„ l'h.is also presents diff'iculties.

Indeed, more can be said about selection-theoretic proofs, and &bout 
that second problem even if Qnly bounded pseudometrics are conside
red. For each 8 E P "" (A), de:ťine a subset F( S ) of P""(X) by 
F( ó ) = { .6 E p• (X) f � ext ends 8} . Pryzmu.sinski has disc-overeá 
a topological proof that F is lower-semi-continuous, but it is at 
least as hard as the above proof of Theorem t•. There ought to be an 
easier functional-ana-lytic proo:f for lower-semi-continuity o:f F „ 

To see the possible shape of such a proof, consider the selec�ion 
theoretic proof of the Bartle-Graves theorem: take a contim.1ous :n.�ar 
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surjection r : X---+Y where X and Y are óanoc sp c s é:.ná con 
oer the se·t-vi:ilued ťunction (=carrier )" rl given y R{y) = r-1 �- , ;
for e&ch y EY • Lower-semi-<;ontinuity of R is exéictly quiva:::.e .t 
to th� f�ct that r is an open �apping end that is exac�ly the c- �ss
ical Open M.apping Theorem. (The continuous select ion e : Y. - X for

rt 1s exactly the function required in the d rtle-Graves theorem. 
Suc.h reflections raise a natural q.1est.ion: is there an o�en mc:1p?ing 
theorem for af'fine surjections between closed cones in �·nach spac ,s•? 
The desireá apµlication, of' čourse, is to the restriction operator 
r : P f', (X)--+P "' {A): one wants to say that if U is a relčitiv ly open 
subset of P"" (X) then r [y] is a relatively open subset of r ,,, 'rt) 
and that would be enough to guarantee that the carrier F, defi�ea 
above, i.s lower-semi-contir.uous. 

Let me make two COII1Inents in closing. First, the paper � 
contains more t.echnical results than the ones mentioned today - for 
example, pseudometrics of weight 1 and Banach spaces of weight ,A 
are considered instead of' arbit.rary pseudometrics and Banach sp.:1ces. 
Seconci, let. me mention bn untouched area for fu ture rese&.rch. Nei th��r 
Przymusinaki nor I have st.udied it seriously, beyond determin:ng tna 
a lot of people who should know about any results in the area don't 
know them. · We conclude that the a·re& is a virging one. Hcre is the 
generc:11 que-stion: Fina conditions on .X so that for e&ch closed 
.AC X , there is a continuous a:ťfine extender E p• CA)---. P "' CX) i.

e., if' 8, f E P ., (Á) .and if ·s,t E [0,1] have s + t = l , then 
E(só + t_§) ) = sE( f ) + _tE( 8)) such that for each f E p•(j1.),

11 E( ) 11 = 11 f 11. A paper obtaining positive results in tha.t c:a.rea 

would be aptly titled "LugundJi Extension Theory for Pseudometrics". 
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