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Remarks on e-locally fine spaces 

Jan Pelant and Michael D. Rice 1 

A uniforrn space X is e-locally fine ([Fr]
1

) (or local1y 

sub-metric-fine ([R)1)) if each cover, whose restriction to each

member of some countable uniform cover is uniform, is itself a 

uniform cover. The e-locally fine spaces forma coreflective 

subcategory of uniťorm spaces - to each uniformity u one assigns 

the uniformity mou• u/leu, where eu is the uniformity with 

the basis of countable u-covers, � is the locally fine operator, 

and / denot�s the operation defined in [R]
1

: if u and v are

families of covers, u/v denotes the family of covers refined 

by covers of the form {V5 n U�}, where {V5 } Ev and each 

'tJ,5 
s {ut} E u. This operation is a generalization of the Ginsburg

Isbell derivative defined in [GI]. In [R]
1 

the second author

asked whether each e-locally fine space is sub-metric fine 

(i.e., a subspace of a metric-fine space - see [RJ
3

). In 

this paper we will give two methods which negatively answer this 

question, as well as noting some new properties of e-locally fine 

speces. These methods also enable us to exhibit an RE space 

which is not an inverse limit of fine spaces, thus answering a 

question raised in [CI]. We remark that the second method is 

basec on the procedure used by the first author in [P]2 to

establish that each locally fine space is súbfine. 

1 The second author is pleaseč to thank the National Acacierny of
Sciences of the United States and the Czechoslovak Academy of 
Sciences for their support during the peYiod when this paper 
was written. 



We recall the following results from [R]1 and [R]2. Each

e-locally fine space i.s an RE space and (clearly) each sub·space

of an e-locally fine space is e-locally fine. The metric-fine

spaces are precisely the e-locally fine spaces which have the inver

sion property. Each • -loca.lly fine space vi th a point-fin:i te bas i s

has a �-disjoint basis.(a result which fails for general spaces

see [P]3). Pinally, the e-locally fine operater mo and the

countable operator e commute: moeu • emou for each uniformity 

u. 

Proposition 1: X is e-locally fine if and only if each metric

valu-ed mapping that is uniformly continuous on 

each member of some countable uniform cover is 

uniformly continuous. 

Proposition 1 follows from the following result, which may be 

established by the proof technique found in [PPV]: if U E u/eu, 

there exists a countable uniform cover {�} and a metric-valued 

mapping f:X .. (M,d) such that flA„ is uniformly continuou-s,

n • 1 , 2 , • • • and f • 1 J 4 ( 1) < U.

Proposition 2: If X is e-locally fine and has a point-finite 

basis, then each uniform cover may be sub-ordinated 

by an 1
1 

- unifor_:mly continU:oua part.i tion ot un.i ty. 

If V is a point-finite uniform cover. without loss of generality 

([I] ,7.3) we may assume that there exists a uniform cover 'W" such 
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·tha"t -each W e 'a"'" inter t l f" ·t 1 V· sec s on y 1n1 e y many members from .
By ([I], IV.10) there exists an equiuniformly continuous parti

tion of unity {fy:V e 471). sub-ordinate to Y which generates the 

mapping f: X •A.
1 

(!Vf) defined by f(x) • (fy(x)). To ·show 

that f is unif- &nrly continuous, define An • {x: x belongs to

at most n members of V}, n • 1, 2, ... Then �< {An!' so

{�) is a counta�le uniform cover. Also, each flA is uniformly
. n 

continuo-us (give� E > O,· 1e,t U
n 

denote the uniform cover 
' 

. _, 
A {fy1 Sft (E/2J1): V E fl); then ft.ni A;'(.f1AJ-J..\E)). Siné:e X is

e-locally fine, it follows from Proposition 1 that f is uniformly

continuous.

A uniform space X has the module property ([Pr]2) if

U(X,B) is a. U(X) - module fo-r each normed space B · (h-ere U(X, Y)

denotes· the fami ly of uriiform mappings and U (X) • U (X, m)) • We 

can-now state the following res·ult. 

Proposition 3: Bach e-locally fine space has the module property. 

Each space with a finite dimensional basis which 

hereditarily possesses the module property is 

e-locally fine.

,, 
·$o prove the first statement (which is noted in [V], p.35), assume 

f e U(X) and g E U(X,B), where (B, 11-lf) is· a normed space. 

Then (f·&)l'\i,n
is uniformly continuous for each member of the 

countable unifornťcover {A.n,nlm,n • 1,2, ••• }, where ¾,n •

f-l s, ·I (O,n) n g·1 s11.uco,m). The second fstatement follows from

a characterization of the hereditary module p operty r cently 
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discovered by J. Viliaovsky (see [V]. Theo�e• 6.2). 

It is an unsolved problea whetber Proposition 3 is valid 

without the assuaption of a finite dillensional basis. 

We now turn our attention to the counterexaaples. 

Example I: Let X be the complete space froa [P]1 such that

eX is not complete. Then moX has no point-finite 

basis, so it is not sub-metric-fine. 

If ••X has a point-finite basis, then by [RJ2, em.x • a.ex

is complete, which implies that eX is complete. Since each 

inverse limit of fine spaces has a point-finite basis, moX is 

an RE space which cannot be represented as such a limit. This 

negatively answers the question raised in [CI]. 

Before constructing the second example, we need the following 

transfinite construction of the e-locally fine modification of a 

uniformity u. Inductively define (for a< -,
1

) v(O) = u,

v (l) = u/éÚ, vC2) • vC1)/eu,: .. ,v(a+l) • v(a)/eu, ... , with

v(�)= U v(B) for a a limit ordinal. 
8� 

Proposition 4: mou -

To prove Proposition 4, we will need the following auxilliary 

transfinite process: inductively define (for a <•
1) w (l) 

= u/eu,
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w(2) c w(l) /e(w(l)) , • •  

w(a) 
c U wCB) for a 

., w(a+l) c w (a) /e(w (a) )_, .. • with

a limit ordinal. It is easy to establish 
S<o. 

that mou � U·w (a) _ We will now establish (•): for each a <o.>
1

,
O.< "'" 

there exists .a <c..
1 

such that w (a.) c vC8.)_ To prove -C•), we

need the following lemmas. 

Lemma 1: f�r each a < w1, e{v (a.J) c (eu)(a+l), where

(eu)(a+l) • (eu)(a)/(eu)(a), (eu)(l) • eu/eu, and

(eu)(a) • U (eu)(S ) for a a limit ordinal. 

Lemma 2: 

B<o. 

For all l $ S s y -< '-'p there exists 

such that v(Y)/(eu)(B) c vC�). 

T • T(y,8) < 

Lernmas l and 2 are. proved by induction using the basic facts that 

first, the operation / is associative, and second, e(u/v) c eu/v 

for all families u and v.

We can now prove (*) by induction. For a• I, let a c 1. 

Assume that w (S) c vC8) for s <  a. If a is a limit ordinal, 

1 e t :a = sup { � : S < a.) • I f a. = S + 1 , set , a c T (§ + 1 , � + 1 ) ; t h e n

1 

w(a) = wun/e(w(S)) c vCf) /e(vC8)) and vCB)/e(v�)). c: v(§+l)/(eu) �+l)

c v Ca) using Lemmas 1 and 2, which completes the proof. 

Recall that a partially ordered set (T, <) is called a� 

if for each x E T, the set .x • {y E T: y > xJ is well-ordered 

by <. We will add the additional restrictions that a tree has a 

largest element O and each maximal chain is finite. For such a 

trce T, inductively define T(l) 
= {x E T: Chains in T 
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originating at x have unbounded length], ••• , T(a.+l) • 

(T (a.)) (l),. • , and T (a.) = íl T 03) if a. is a lind t ordinal. 
S<a 

We define the complexity of T • comp T = inf [a.: T (a.) • 0} 

Furthermore, let e(T) • (x E T :jp < x] (endpoin-ts of T) a-nd if 

p E T, define T(p) • {x é T: x < p and 'jÍy: x < y < p]. We 

say that T is an a.-tree if IT(p)I � c for each p_ E T. Now 

inductively define ...t (l) (T) • T - e(T), ... , .,t(a.+l) (T) • .,e(et)(T)

- e (1.(a.) (T)),. • • , and 1, (a.) (T) • n,i.8) (T) if et is a limit
s<c: 

ordinal. Then the length comp"lexity of T • lengthcomp T • inf 

[a : 1., (a.) (T) • 0). The following assertion illustrate·s the 

relationship between th� complexity and length complexity of a 

tree T. 

Proposition S: (i) Both le.ngthcom.p T and comp T are non-limit 
ordinals. 

(ii) lengthcomp T � comp T.

(iii) 

(iv) 

(v) 

If a. is an initial uncountable 
then lengthcomp T > a. implie·s 

_1(a.•w)(T) c rCet) for all a..

ordinal, 
comp T > a.. 

If T is an 
+a.-tree, then lengthcomp T < a. , 

We comment that for any ordinal T, there exists a tree (T, <) 

of c1r special type with comp T � T. For T • 1, let- T have the 

form pictured belÓw - then comp T • 2. 

. . . . 
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ssume that for each e < a there exists a tree T8 with 

omp r
6 

� s. If a. is a limit ordinal, construct the tree Ta 

·ndicated in the following diagram:

o 

here the largest element in each TB precedes o. Clearly

comp T
a. 

� a.. If a - e + 1, construct the tree Ta indicated in

he diagram below, where one lets each endpoint of Ta act 

as the largest element in a copy of r
6 • Then comp T

a.
� 28 � a.

( o see this, note tha.t T �e) is a copy of the tree T 8).
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We will also use the following notation for a tree (T,<) 

of our special type. Define So = {O), s1 = {x E T: x < O and 

�y : X < y < O),. . , Sn+l = {x E T : x <a.,3a E Sn and 'tr :
X < y < a} p .  . .. ' n = 1,2, .•. By assumption Definei 

a metrie uniformity on T using the family of eovers Un 
n-1

= {{x}:i 
I 

= {x E 11x E U Sk) U {(�,p] : p E Sn), n = 1,2, •.. , where (�,p] 
k=O 

X � p) • The metrie is complete since every maxima! cha.in is finit1

Whenever a tree T of our special type is cons.idered, we assurne 

that it is equipped with the complete metrie uniformity described 

above. 

Example 2: Let (T,<) -be a tree of special type with 

comp T � �- Then moT is a zero-dimensional 

e-locally fine space that is not ·sub-metric-fine,

Since the smallest sub-metric-fine uniformity containing a complet1 

metrie uniformity is fine, i t suffices to show tha t mo T does not 

contain all covers of T (for T is topologically discrete). We 

will present two different methods for showing this fact.· The 

first method is based on the following lemma. 

Lemma 3: For each a <w
1

. and for all p E T(a+l), each

'Y E v(a) contains a member V-. and x e V such 

that (i) X< P, (ii) c�,x] ev, and 1 c�,xJl � 2. 

We will prove the lemma by induction. Let a c O and p €· T (l ), 

Suppose p E Sk; if V' E v (O) = u, then wi thout los I of generali tt

we may assume that r = � for some r > k. Since p € T(lJ,



- 59

3Pz < P1 < P, Pz E Sr+l' Pi E Sr. Then V= ( .. ,p1] E 'i/ and

x = p1 satisfy conditions (i)-(iii). Assume that the assertion

is true for each e < «. If a is a limit ordinal, then the asser-

tion is easily established. If a= e + 1, choose p E T (a+l) anč

suppose p E Sk. If "JI' E v (a) , then without loss of generality we 

may assume that r= {Ann V: VE �(n))' where (An) E eu is
Cl) 

based on 'ťlr, r > k� and each �
(n) 

E v (B ) 
(that is, Sr = u s ' n=l r, n

and for each n, there exists j(n) such that Aj(n)
= U(C+-,p] : 

p E sr, nl).

r(a) n sr.

Since p E T(a+l) , there exists p1< p belonging to

Suppose 

and 

p1 E sr,n· By the induction assumption, there

VE �(j(n)) such that I (+-,x]l � 2 andexists x < p1 
(�,x] c: V. Thus ( +-,xJ c: Aj (n) n V, so the proof is complete.

To prove that 

use Proposition 4. 

,T, then U E v (a)

moT is not fine (where comp T � w1), we now

If the countable cover · 'tl"' {s
0

, s1,. . . } E

for some a <<&)1, there exists p E T (a+l) ;

then by Lemma 3 some member of U must contain a set of the form 

(�,x], with 1 (+-,x]l � 2, which is impossible. 

Our second proof of example 2 is based on the lemma given 

below, which uses the following notation. Given a tree S of 

our special type and a uniform space X, let f : S - s> (X) be a 

pping such that for each p ES - e(S), the family {í(q) 

is a uniform cover of X. Define [S,fJ • {n(f(p): 

c: S is a maximal chain). By induction define R: Ordinals 

"Ordinals by R(0) "' R(l) • O, R(2) .. 3, ... , R(a) • sup (R(S) : 
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Lemma 4: (i) For each uniform space uX� {[S,f] : S is an 

� o -tree, f as above}is a basis ťor l,eu. 

(ii) Let S and T be trees of our special type

with lengthcomp S s a and comp T � R(a). If

f : S - (J)(T) is :i mapping of the above type, then

there exists p E T (l) such that (+-,p] c U, for

some U E [ S , f] . 

The proof of part (i) is similar to the proof of an analogous 

result found in (P]2• We will prove part (ii) by induction. Th

result is clear for a• O or 1. If a• 2, then [S,f] is a un 

form cover of T. 

exists p E T(l) 

Suppose U < [S,f]. Since comp T � 3, theren 
such that (t-,p] cu, for some U E�. Now 

asswne that the assertion has been proved for each 8 < a. Given 

a mapping f : S„ éP(T) of the above form, {f(s) : s E S(0)) is 

a uniform cover of T. Since comp T � R(a), there exists q ET

(5. = sup (R(e) : s < a}) and s E S (O) such that (+-,q] c f (s), 

Now lengthcomp (+-,s] < a and comp (t-,q] � .. a, so by the induction 

assumption there exists p E T (l) such that (+-,p] c U, for some 

U E [S,f]. 

Now to prove in example 2 that moT is not fine, assume 

fl• i.S0 ,s1,.

implies that 

above form. 

) E T • • mo . Then by Lemma 4 (ii), U E emoT • l,eT

[S, f] < 'il for some t.&) o -tree S and f of the 

Then lengthcomp S• a <W1 (Proposition S (v)) and

comp T � Q,)l > R(a.), so by Lemma 4 (ii) some member of U contai

a set of the form (t-,p], p E T (l) , which is impossible. 



proposition 6: Assume that T is a tree of special type with 

comp T <C&.>
1
. Then moT is the fine uniformity 

on T.

Assume comp T • 1; then for some n, Un consists of singleton 

sets, so the metrie uniformity is fine. Now assume that the state 

ment is true for all trees with complexity < a. and assume comp T = 

a. By Proposition S(i), a.• 6 + 1, fo� some 6, so there exists

n such that the length of each chain in r C&) does not exceed n. 

Then each tree ( .. ,p], p E Sn, has complexi ty < a.. Now for each

e < a., consider the tree s
8 

constructed in the following manner: 

. ! 

here we use every predecessor set ( .. ,p] with complexity = a.

Then comp s8 = e, so the induction hypothesis implies that the

cover <P 8 of s8 consisting of singleton sets is a member of 

o(S8). Also, {P8 = U{( .. ,p] p E Sn, comp ( .. ,p] • B] : 8 < a.}

-is a countable uniform cover of U s1. , so the cover 'I/ formed 
i� 

by the restriction of (J> 8 - (08) to each P 8 cons ists of

singleton sets and is a member of mo( U Si) (for mou/eu • mou); 
i�n 

�ence o/ A�, the cover of T consisting of singleton sets, is 

• member of mo T.

d ed in. proof (24th Jan-. 1978): 
) The problem o! whether each space which hereditarily possesaee 
e module property is e-locally tine is connected with other questions: 

) Does the distal- moditication d (distal. apace • space with a tinite 



dimensional base) preserve Caucb,y tiltere in the clase of' spaces 
with a point-finite base? (It wae proved by the first author that 
the answer is negative 1f we cónaider all unif'orm spaces instead 
of those with a point-f'inite base.) 
1 ') Do d(c (w )) and c (w) have the same collection of Cauchy fil-c o 
ters? (As shown by G. Reynolds and the eecond author, this question 
1s equivalent to the question 1 provided that there 1s no measure
ble cardinal.) 
2) Is the mapping id: "d(c0(w))-,.c0(w) 11n1f'ormly continuous?
(The aftirmative anewer implies the af'f'irmative answer to 1')
31Is the mapping id: Ad(c

0
(w ))-�ptf'(c

0
(w )) uniformly continuousi

Tu� ruat author conjectures that the answers to qnestions O, 1, 1' 
and 2 are negative. 
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