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Kemarks on e-locally fine spaces

Jan Pelant and Michael D. Rice1

A uniform space X 1is e-locally fine ([Fr]l) (or locally

sub-metric-fine ([R]l)) if each cover, whose restriction to each

memb er of some countable uniform cover is uniform, is itself a
uniform cover. The e-locally fine spaces form a coreflective
subcategory of uniform spaces - to each uniformity u one assigns
the uniformity mou = u/3eu, where eu is the uniformity with

the basis of countable wu-covers, A is the locally fine operator,
and / denotes the operation defined in [R]lz if u and v are
families of covers, u/v denotes the family of covers refined

by covers of the form {VS n U:], where {Vs] € v and each

% = {Ui} € u. This operation is a generalization of the Ginsburg-
Isbell derivative defined in [GI]. 1In [R]1 the second author
asked whether each e-locally fine space is sub-metric fine

(i.e., a subspace of a metric-fine space - see [R]SJ' In

this paper we will give two methods which negatively answer this
question, as well as noting some new properties of e-locally {ine
speces. These methods also enable us to exhibit an RE space
which is not an inverse limit of fine spaces, thus answering a
question raised in [CI]. We remark that the second method is
based on the procedure used by the first author in [P]2 to

establish that each locally fine space is subfine.

1 The second author is pleased to thank the National Academy of
Sciences of the United States and the Czechoslovak Acadeny of
Sciences for their support during the period when this paper
was written.
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We recall the following results from [R]1 and [R]z. Each
e-locally fine space i8 an RE space and (clearly) each subspace
of an e-locally fine space is e-locally fine. The metric-fine
spaces are precisely the e-locally fine spaces which have the inver-
sion property. Each e-locally fine space with a point-finite basis
has a #-disjoint basis.(a result which fails for general spaces
see [P]S)' Finally, the e-locally fine operator m. and the
countable operator e commute: moeeu = emou for each uniformity

u'

Proposition 1: X 1is e-locally fine if and only if each metric-

valued mapping that is uniformly continuous on
each member of some countable uniform cover 1is

uniformly continuous.

Proposition 1 follows from the following result, which may be
established by the proof technique found in [PPV]: if U € u/eu,
there exists a countable uniform cover [An} and a metric-valued
mapping f£:X = (M,d) such that flA, is uniformly continuous,

n=1,2 ...and £l 4,0 <%

Proposition 2: If X 1is e-locally fine and has a point-finite

basis, then each uniform cover may be sub-ordinated

by an {; - uniformly continuous partition of unity.

If 9/ is a point-finite uniform cover, without loss of generality

([1],7.3) we may assume that there exists a uniform cover 9% such
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that each W € W intersects only finitely many members from ¥.
By ([I], IV.10) there exists an equiuniformly continuous parti-
tion of unity {fv:V GV] sub-ordinate to 27 which generates the
mapping f: X “ll (1vl) defined by f(x) = (fy(x)). To show
that f 1is uniformly continuous, define A, = {x: x belongs to
at most n members of V), n=1, 2, . . . Then < {An}, so
{An} is a countable uniform cover. Also, each flA is uniformly
continuous (given € > 0, let 26 denote the uniform cover
A {fvl S||(€/2n): V €9); then unlA<(ﬁA,>‘JS,€)) Since X is
e-locally fine, it follows from Proposition 1 that f is uniformly

continuous.

A uniform space X has the module property ([Fr]z) if

U(X,B) is a. U(X) - module for each normed space B (here U(X,Y)
denotes the family of uniform mappings and U(X) = U(X,R)) . We

can now state the following result.

Proposition 3: Each e-locally fine space has the module property.

Each space with a finite dimensional basis which
hereditarily possesses the module property is

e-locally fine.

i&o prove the first statement (which is noted in (V], p.35), assume
f €EUX) and g € U(X,B), where (B,l-l} is a normed space.

Then (f- g)l is uniformly continuous for each member of the
countable un1form cover {Am |lm,n = 1,2,. . .}, where Am,n =
£1 Sl,l(O,n) ng -1 S“.u(o,m). The second statement follows from

a characterization of the hereditary module p operty r cently
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v V4
discovered by J. Vilimovsky (see [V], Theorem 6.2).

It is an unsolved problem whether Proposition 3 is valid

without the assumption of a finite dimensional basis.
We now turn our attention to the counterexamples.

Example 1: Let X be the complete space from [P]1 such that
eX 1is not complete. Then moX has no point-finite

basis, so it is not sub-metric-fine.

If meX has a point-finite basis, then by [R]Z, emeX = moeX

is complete, which implies that eX is complete. Since each
inverse limit of fine spaces has a point-finite basis, moeX is
an RE space which cannot be represented as such a limit. This

negatively answers the question raised in [CI].

Before constructing the second example, we need the following

transfinite construction of the e-locally fine modification of a

uniformity u. Inductively define (for « <u1) V(O) = u,
v(1) < u/eu, v(2) « v(l)/eu,. . .,v(a+l) « v(®/eu,. . ., with
v® - v vB) for o a limit ordinal.
B<a
Proposition 4: mou = U v(a).
a<ui

To prove Proposition 4, we will need the following auxilliary

transfinite process: inductively define (for «a <:u1) w(l) = u/eu,
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w® = UwB) for o a limit ordinal. It is easy to establish
B<a

that mou = U ‘\;(Q). We will now establish (a): for each a <
&< W4

there exists .2 <:¢ﬁ such that w(a) c VC&). To prove (&), we

li

need the following lemmas.

10 e(v(a)) c (eu)(a’l), where

(eu)(a+1) = (eu)(a)/(eu)(a), (eu)(l) = eu/eu, and

Lemma 1l: For each a < @
(eu)(u) = Y (eu)(B) for a a limit ordinal.
B<a

Lemma 2: For all 1 <8 sy <201, there exists ¢ = v(y,B) < 1

such that V(Y)/(eu)(e) c v(?).

Lemmas 1 and 2 are proved by induction using the basic facts that
first, the operation / is associative, and second, e(u/v) € eu/v

for all families u and v.

We can now prove (*) by induction. For a =1, let & = 1,
Assume that w(a) c v(a) for 8 <a. If a is a limit ordinal,
let & = sup{B : g <a}. If a=8+1, set & = v(8+1,8+1); then
w(®) = w(B)/e(w(B)) = v(e)/e(v(g)) and v(ﬁ)/e(v(a))-C v(§+1)/(eu)(@+1)

< v(&) using Lemmas 1 and 2, which completes the proof.

Recall that a partially ordered set (T,<) is called a tree
if for each x € T, the set & = {y € T : y > x} is well-ordered
by <. We will add the additional restrictions that a tree has a
largest element 0 and each maximal chain is finite. For such a

tree T, inductively define T(l) = {x € T : Chaing in T



originating at x have unbounded length},. . ., r(e+1) |

(T(a))(l),. ., and (%) = n T(B) if a is a limit ordinal.
g8<a

We define the complexity of T = comp T = inf {a : T(a) = ¢}

Furthermore, let e(T) = {x € T :j{p < x} (endpoints of T) and if
p €T, define T(p) = {x €T : x<p andAE(y : x <y <pl}. We
say that T is an a-tree if |T(p)| = ¢ for each p € T. Now
inductively define LAY (T) =T - e(T),. . ., L(®* V(1) = p(¥)y
e myy,. . ., anda L@y - nfB)(T) if a is a limit
ordinal. Then the length complexity o%<¥ = lengthcomp T = inf

{a :,L(a)(T) = @}. The following assertion illustrates the
relationship between the complexity and length complexity of a

tree T.

Proposition 5: (i) Both lengthcomp T and comp T are non-limit
ordinals.

(ii) lengthcomp T = comp T.

(iii) If a 1is an initial uncountable ordinal,
then lengthcomp T > a implies comp T > a.

av) 2" c1(® for a11 a.

v) If T is an a-tree, then lengthcomp T < at

We comment that for any ordinal T, there exists a tree (T,<)
of cir special type with comp T 2 . For T =1, let T have the

form pictured below - then comp T = 2.
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ssume that for each B < a there exists a tree TB with
omp Tg 2 B. If a is a limit ordinal, construct the tree T,

‘ndicated in the following diagram:

here the largest element in each TB precedes 0. Clearly

comp Ta 2a, If a=pg + 1, construct the tree Ty indicated in

he diagram below, where one lets each endpoint of 'Tb act

as the largest element in a copy of TB Then comp T, 6 2 28 2 ¢

( 0o see this, note that TéB) is a copy of the tree T,).
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We will also use the fcllowing notation for a tree (T,<)
of our special type. Define So = {0}, S; = {x € T : x <0 and

j{& :x <y <0},. s Spe1 = IX €T x <a,Ja € S, afnd i(y :

x <y <a},. . .,n=1,2,. . . By assumption T = nQOSn. Defin

a metric uniformity on T wusing the family of covers an = {{x]):
n-1

x € Us)u {(*,p] : p €S}, n=1,2,. . ., where (+,p] = {x €
k=0 n

x S p}. The metric is complete since every maximal chain is finiy
Whenever a tree T of our special type is cons.idered, we assume
that it is equipped with the complete metric uniformity described

above.

Example 2: Let (T,<) be a tree of special type with
comp T 2 @, . Then moT 1is a zero-dimensional

e-locally fine space that is not sub-metric-fine

Since the smallest sub-metric-fine uniformity containing a complet
metric uniformity is fine, it suffices to show that meT does no
contain all covers of T (for T is topologically discrete). ¥
will present two different methods for showing this fact. The
first method is based on the following lemma.

Lemma 3: For each a < and for all p € T(a+1), each

1
Ye v(u) contains a member V and x € V such

that (i) x <p, (ii) (+,x] €V, and | (~,x]] = 2.

We will prove the lemma by induction. Let a =0 and p € T(l).
Suppose p € Sy if ¥ ¢ V(O) = u, then without loss of generalit

we may assume that 9 = ﬁg_ for some T > k. Since p € T(l),
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:apz <p; <P, Py € Sre1? Py € S,- Then V = (0-,p1] € 2 and
x = Pp satisfy conditions (i)-(iii). Assume that the assertion
js true for each B < a«. If a 1is a limit ordinal, then the asser-

(a+1) anc

tion is easily established. If o =8 + 1, choose p €T
suppose p € Sk' If Y ¢ v(a), then without loss of generality we

pay assume that %= {An nNv :V € Wk(n)]’ where {An} € eu is

' based on ﬂr, r > k, and each Wk(n) € v(s) (that is, Sr = nglsr’"’
and for each n, there exists j(n) such that As(n) ™ U{(+,p]

p ¢ Sr n])' Since p € T(aﬂ), there exists Pi<P belonging to
T(a) n Sr‘ Suppose P; € Sr n By the induction assumption, there
exists x <p, and V € %(j ) such that | (~,x]| 2 2 and

(v,x] €V. Thus ( +,x) CA:j (n) NV, so the proof is complete.

To prove that moeT 1is not fine (where comp T 2 wl)’ we now
I}use Proposition 4. If the countable cover % = {so,sl,. . .} €
B.T, then U € v(a) for some «a <w, there exists p € T(a*l);
|then by Lemma 3 some member of Z{ must contain a set of the form

(~,x], with | (+,x]] 2 2, which is impossible.

Our second proof of example 2 is based on the lemma given
below, which uses the following notation. Given a tree S of
our special type and a uniform space X, let f : S =P (X) be a
Bapping such that for each p € S - e(S), the family {f(q) :
9 € S(p)} is a uniform cover of X. Define [S,f] = {n{f(p):
PE€C)}: CcS is a maximal chain)}. By induction define R: Ordinals
® Ordinals by R(0) = R(1) = 0, R(2) =3, . . ., R(a) = sup {R(B)
’li< a) # 25 .
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Lemra 4: (i) For each uniform space uX, {[S,f] : S is a
@W,-tree, £ as above}is a basis for 1Aeu.
(ii) Let S and T be trees of our special type
with lengthcomp S €< a and comp T 2 R{(a). If
f : S$~@(T) is 2 mapping of the above type, then
there exists p € T(I) such that (+,p] € U, for
some U € [S,f].

The proof of part (i) is similar to the proof of an analogous

result found in [P]Z. We will prove part (ii) by induction. Th
result is clear for a = 0 or 1. If a = 2, then [S,f] is a w
form cover of T. Suppose i(,n < [S,f]. Since comp T = 3, there
exists p € Tcl) such that («,p] €U, for some U Gﬂﬁ. Now

assume that the assertion has been proved for each B < a. Give
a mapping f : S = ®(T) of the above form, {f(s) : s € S(0)} is
a uniform cover of T. Since comp T 2 R(a), there exists q €
(& = sup {(R(B) : B <a}) and s € S(0) such that (+,q] € £f(s)
Now lengthcomp (+,s] < a and comp (+,q] 2.%, so by the inductiam
assumption there exists p € T(l) such that (+,p] €U, for som

U € [s,f].

Now to prove in example 2 that moT 1is not fine, assume
U= 15),S;,. . .} € moT. Then by Lemma 4 (ii), % € emoT = AeT
implies that ([S,f] < 9 for some w.-tree S and f of the
above form. Then lengthcomp S = a <w1 (Proposition S(v)) and
comp T 2w, > R(a), so by Lemma 4 (ii) some member of U contai

a set of the form (*,p], p € TY), which is impossible.
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‘yroposition 6: Assume that T is a tree of special type with

comp T <f01. Then moT 1is the fine uniformity

on T.

Assume comp T = 1; then for some n, U consists of singleton

n
sets, so the metric uniformity is fine. Now assume that the state

ment is true for all trees with complexity < a and assume comp T =
a. By Proposition 5(i), a =8 + 1, for some &, so there exists

n such that the length of each chain in T“) does not exceed n.

Then each tree (+,p], p € Sn’ has complexity < a. Now for each

p < a, consider the tree SB constructed in the following manner:

Op

| g4 i

¥here we use every predecessor set (+,p] with complexity = B.

'Then comp SB = g, so the induction hypothesis implies that the
icover G>B of SB consisting of singleton sets is a member of
B (Sg). Also, ({Py = U{(~,p] : p €S, comp (+,p] =B8]} : 8 <a]

‘15 a countable uniform cover of U S;, so the cover Y formed
i2n

")’ the restriction of 0 - (0 ) to each P consists cof

Singleton sets and is a member of mo( U S; i) (for mou/eu = mou);
i2n
lhence Y A’Mn, the cover of T consisting of singleton sets, is

'a member of moT.

led in proof (24th Jan. 1978):
)The problem of whether each space which hereditarily possesses

module property is e-locally fine is connected with other guestions:
Does the distal modification d (distal space = space with a finite
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dimensional base) preserve Cauchy filters in the class of spaces
with a point-finite base? (It was proved by the first author that
the answer is negative if we consider all uniform spaces instead
of those with a point-finite base.)

17) Do d(c(w)) and c_(w) have the same collection of Cauchy fil.
ters? (As shown by G. Reynolds and the second author, this questin
is equivalent to the guestion 1 provided that there is no measure-
ble cardinal.)

2) Is the mapping id: Ad(c (w)) —> ¢ (v ) uniformly continuous?
(The affirmative answer implies the affirmative answer to 1)
311Is the mapping id: 3d(e (w))—ptelec (w)) uniformly continuoug’
The first author conjectures that the answers to questions O, 1, 1
and 2 are negative.
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