Jan Reiterman; Vojtěch Rödl
A non-zero dimensional atom

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces. , 1978. pp. 65-74.

Persistent URL: http://dml.cz/dmlcz/703167

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

J. Reiterman, V. Rõdl

It is shown that, under the CH , there exists a non-zero dimensional uniformity which is an atom in the lattice of uniformities on a countable set.

1. Introduction

All uniformities on a given set form a complete lattice with respect to the order " $\alpha<v$ iff u is finer than $v "$. The zero of the lattice is the uniformly discrete uniformity and a uniformity U is an atom in this lattice iff there is no V with $0<v \leqslant Q_{6}$ Papers $[3],[4]$ present various constructions of atoms leaving open the problem of the existence of an atom which is not zero dimensional, i.e. which has no basis consisting of partitions. In the current paper, assuming the CH , we present a construction of a uniformity on a countable set such that each atom refining it is non-zero dimensional. The following three results show that a non-zero dimensional atom must be very complicated.
1.1. Proposition. a/ Each proximally non-discrete atom is zero dirensional.
b/ For each proximally discrete atom there is an ultrafilter \boldsymbol{F} such that the atom refines the uniformity a_{F} where \mathbb{K}_{6} consists of all covers C with CnF $\neq \varnothing$.
.2. Proposition. Each non-zerodimensional atom on a countable set ednits a uniform cover which is a partition into finite sets.
A.? Proposition. A non-zerodimensional atom is non-distal; in parThular, it is infinite dimensional / a uniformity is distal if it as a basis consisting of covers of finite order/.

For 1.1. see[3], 1.2. is due to Pelant [4] and 1.3. can be proed easily by using 1.1.

66 －
2．embeddings of cubes
The construction of the non－zerodimensional atom is based on cubes and their embeddings．By a cube we shall mean a set of the
 Elements of 笈 will be identified with functions from 会 to 合． Zach cube will be regarded as a metric space with the metric defined by

$$
\rho(f, g)=\sum_{x=1} d(f(x), g(x))
$$

where d is the $0-1$ metric on \hat{D} ．In other words，$\rho(f, g)=$ $\mid\{\dot{x} e$ 侖；$f(x) \neq g(x)\} \mid$ ．

Let $n \in N$ and $k \leqslant K$ ．Then we say that a mapping $\psi: \hat{n}^{k} \rightarrow \mathbb{N}$ is an embedding if there are $a_{1}, \ldots, a_{\mathrm{K}}$ with $\hat{\mathbb{R}}=\left\{a_{1}, \ldots, a_{\mathrm{K}}\right\}$ such that $\psi(f)\left(a_{x}\right)=\psi(g)\left(a_{x}\right)$ if either $x>k$ or $x \leqslant k$ and $f(x)=g(x)$ for every $f, g \in \hat{r}^{k}$ ．It is clear that an embedding of cubes is always an isometry．

The following is an easy consequence of Theorem 12，2［2］．
2．1．Lemma．Let m, j be positive integers．Then there exists a positive integer $x=x_{j}(m)$ such that for every subset $F \subset \widehat{\alpha}^{j}$ with $\mid F i \geqslant \mathcal{X}^{j} / 2$ there exists an embedding
$\psi: \hat{\mathrm{m}}^{\mathrm{j}} \rightarrow \hat{2}^{j}$ whose image is contained in F ．
Further，we shall need three lemmas on matrices．
2．2．Lemma．Let p be a positive integer and let $A=\left\{a_{i j}\right\}$ be a $k \times \ell$ matrix where $\ell \geqslant(p-1)^{k^{k}}+1$ ．Then there exist $j_{1}, j_{2}, \ldots, j_{p} \leqslant \ell$ such that for every $i \leqslant k$ ，either
（i）$a_{i j_{1}}=a_{i j_{2}}=\ldots=a_{i j_{p}}$ or
（2）$a_{i j_{x}} \neq a_{i j_{y}}$ for $x \neq y, x, y \leqslant p$ ．

Proof. For $k=1$, the proof is trivial. Let us suppose that Lemma, is proved for $k-1$. Let $A=\left\{a_{i j}\right\}$ be a $\mathbf{k x}_{x} \mathcal{e}$ matrix. According to the induction assumption (applied to $p^{0}=(p-1)^{2}+1$ and $A^{0}=\left\{a_{i j}\right\}$ where $\left.i \leqslant k-1, j \leqslant \ell\right)$ there exist $\bar{j}_{1}, \bar{j}_{2}, \ldots, \bar{j}_{p} \leqslant$ $\leqslant \ell$ such that, for every $i \leqslant k-1$, either

$$
\begin{aligned}
& a_{i}{\overline{j_{1}}}=a_{i j_{2}}=\ldots=a_{i}{\overline{j_{p}}}, \text { or } \\
& a_{i}{\overline{j_{x}}}^{f} a_{i, \bar{j}_{y}} \text { for } x \neq y, x, y \leqslant p^{\prime} .
\end{aligned}
$$

on the other hand, there exists $\left\{j_{1}, j_{2}, \ldots, j_{p}\right\} \subset\left\{\hat{j}_{1}, \bar{j}_{2}, \ldots, \bar{j}_{p}\right\}$ such that either

$$
\begin{aligned}
& a_{k j_{1}}=a_{k j_{2}}=\ldots=a_{k j_{p}} \text {, or } \\
& a_{k j_{z}} \neq a_{k j_{y}} \text { for } x \neq y, x, y \leqslant p .
\end{aligned}
$$

The proof is finished.
2.3. Lemma. Let $A=\left\{a_{i j}\right\}$ be a $k x p$ matrix with the following properties:
(i) $p \geqslant((s-1) s+1) m$ where $s=\left[\frac{k+1}{2}\right]$,
(ii) $a_{i j} \neq a_{i}{ }_{j}$ iff $i \neq i^{\prime}$ for every $j \leqslant p$,
(iii) for every $i \leqslant k$, either

$$
\begin{aligned}
& a_{i 1}=a_{i 2}=\ldots=a_{i p}, \text { or } \\
& a_{i x} \neq a_{i y} \text { for } x \neq y, x, y \leqslant p .
\end{aligned}
$$

?hen there exist $j_{1}, j_{2}, \ldots, j_{m}, i_{1}, i_{2}, \ldots, i_{s}$ such that either

$$
\begin{equation*}
\Rightarrow a_{i_{x} j_{1}}=a_{i_{x} j_{2}}=\ldots=a_{i_{x} j_{I}} \text { for every } x \leqslant s \text {, or } \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a_{i_{x} j_{u}} \neq a_{i_{y} j_{v}} \text { iff }\langle x, u\rangle \neq\langle\dot{j}, \nabla\rangle . \tag{4}
\end{equation*}
$$

Proof. Obviously, there exist i_{q}, \ldots, i_{s} such that either

$$
\begin{equation*}
a_{i_{x^{1}}}=a_{i_{x^{2}}}=\ldots=a_{i_{x} p} \text { for every } x \leqslant s \text {, or } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
a_{i_{x} j} \not \neq a_{i_{x}} j^{\prime} \text { iff } j \neq j^{\prime}, \quad \text {, } j^{\prime} \leqslant p \text { for every } x \leqslant s \tag{6}
\end{equation*}
$$

If (5) is true then the proof is finished. Let us suppose that (6) holds. Let $B=\left\{a_{i j}\right\}$ where $i \quad\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ and $j \leqslant p$. Let C be a graph the vertices of which are columns of B and and two columns J and j° are joined by an edge if the sets $\left\{a_{i_{1} j}, \ldots, a_{i_{s}}\right\}$ and $\left\{a_{i_{1}} j^{\square}, \ldots a_{i_{g}} j\right\}$ have nonempty intersection, It is not difficult to see from (6) that the degree of every vertus of this graph is at most $s(s-1)$. As the number of vertices is at least $(s(s-1)+1)$ m, there is an independent set in this graph /no two vertices are joined by an edge/ of size $\frac{p}{s(s-1)+1}=m$, see [1], p. 284. In other words, there are j_{1}, \ldots, j_{m} such that (4) is true.
2.4. Lemma. Let $A=\left\{a_{i j}\right\}$ be a $k \times l$ matrix with the following properties:
(i) $\quad l \geqslant((s(s-1)+1) m-1)^{2^{k}}+1$, where $s=\left[\begin{array}{c}k+1 \\ \frac{1}{2}\end{array}\right]$,
(ii) $a_{i j} \neq a_{i} \prime_{j}$ ff $i \neq i^{\prime}$ for every $i \leqslant k$.

Then there exist $j_{1}, \ldots, j_{\mathbb{I}}$ and i_{1}, \ldots, i_{s} such that (3) or (4) holds.

Proof. See 2.2. and 2.3.
The following theorem and its corollary provide main results of this section.
2.5. Theorem. Let n, m be positive integers. Then there exists a positive integer $N=N^{n}(m)$ such that for every mapping $\varphi: \hat{N}^{n} \longrightarrow R /$ where R is an infinite set/ there is a partiti $\hat{\mathrm{I}}=\mathrm{A} \cup \mathrm{B}$ and an embedding $\psi: \hat{N}^{n} \rightarrow \hat{N}^{n}$ such that

$$
\varphi \psi(f)=\varphi \psi(B) \quad \text { iff } f / A=E / A .
$$

Froof.Ne shall prove the theorem by induction on n. It is easy to see that $N^{1}(m)=(m-1)^{2}+1$. For $n>1$, denote

$$
\begin{aligned}
x & =\max \left(x_{1}(m), x_{2}(m), \ldots, x_{n-1}(m)\right) / \text { see } 2.1 \cdot l \\
l & =\left(\left(\left[\frac{x^{n}}{2} \sqrt{2} \sqrt[{\left.\left.\left.\left[\frac{n-1}{2}\right]-1\right)+1\right) m-1\right)^{x^{n-1}}+} 1]{r}=2^{n-1} l\right.\right.\right.
\end{aligned}
$$

and define $N_{0}, N_{1}, \ldots, N_{r}$ by

$$
N_{r}=x, N_{q-1}=r^{n-1}\left(N_{q}\right), q=1,2, \ldots, r
$$

Finally, put $N^{n}(\mathbb{m})=N_{0}$.
Let us consider a mapping $\varphi: \hat{N}^{n} \longrightarrow$ R. Identifying the set $F_{1}=\left\{\rho \in \hat{N}^{n} ; f(n)=1\right\}$ with \hat{N}^{n-1} and using the induction assumption we get and a corresponding partition an embedding $\psi_{1}: \hat{N}_{1}{ }^{n-1} F_{1}$ $f \in \psi_{1}\left(\hat{N}_{1}{ }^{n-1}\right)$ by $f(n)=2$ /instead of $f(n)=1 /$ to obtain a set F_{2} which can be identified with ${\widehat{N_{1}}}^{n-1}$. Let us repeat the procedure to obtain an embedding $\psi_{2}: \hat{N}_{2}{ }^{n-1} \xrightarrow{\longrightarrow} F_{2}$ and a corresponding partition $A_{2} \cup B_{2}$. After refold repeating we get an embedding $\psi_{r}: \hat{N}_{r} \xrightarrow{n-1} F_{r}$. and a partition $A_{r} \cup B_{r}$.

Consider the embeddings $\Psi_{I}, \ldots, \psi_{r}$ restricted to the set \hat{N}_{r}^{n-1}. Then for every $i \leqslant r$ and for every $f, g \in \Psi_{i}\left(\hat{N}_{r}^{n-1}\right)$,

$$
\varphi \psi_{i}(f)=\varphi \psi_{i}(g) \quad \text { eff } f / A_{i}=\varepsilon / A_{i}
$$

As $r=2^{n-1} \ell$, there exc st numbers $\alpha_{1}, \ldots, \alpha_{\ell}$ and a partition $\widehat{A}=A \cup B$ such that $A_{\alpha_{i}}=A$ and $B_{\alpha_{i}}=B$ for $i \leqslant l$. Let us consider the equivalence \sim on the set $\hat{N}_{r}^{1} \hat{N}^{n-1}$ defined by

$$
f \sim g \text { iff } f / A=g / A \text {. }
$$

Let us denote the equivalence classes of \sim by C_{1}, \ldots, C_{k}, where $=N_{r}|A|$. Tine for every $j \leqslant \ell$,
(8) $\quad \varphi \psi_{\alpha_{j}}(f)=\varphi \psi_{\alpha_{j}}(g)$ iff $f, g \in C_{i}$ for some $i \leqslant k$. Let us consider a $k \times \ell$ matrix $A=\left\{a_{i j}\right\}$ where $a_{i j}=\varphi \psi_{\alpha_{j}}$ for $\rho \in C_{i}, i \leqslant k, j \leqslant \ell$. By (8), the matrix satisfies the condition (ii) of 2.4. Thus, it follows from the definition of l that there exist $j_{1}, \ldots, j_{\text {II }}$ and i_{1}, \ldots, i_{s} where $s=\left[\frac{\chi^{A N}}{2}+1\right]$ such that (3) or (4) is true. From 2.1. applied to the set $F=\bigcup_{x} C_{i_{x}}$ we obtain an embedding $\psi: \hat{\mathbb{N}}^{n} \rightarrow \hat{\mathbb{N}}^{n}$ with required properties. The proof is finished.
2.6. If $P=\left\{P_{i}\right\}$ is a partition of a set X and $\mathbb{A C X}$, then d is said to be 0 -selective (P-fine) if $\left|A \cap P_{i}\right| \leqslant 1$ for every (if $A \subset P_{i}$ for some i, respectively).

Theorem 2.5. has the following
Corollary. Let n be a positive integer. Then there exists a positive integer N such that for each partition ρ of $\widehat{\mathbf{N}}^{\mathbf{N}}$ there is an embedding $\psi: \hat{\mathrm{n}}^{\mathrm{n}} \rightarrow \widehat{\mathbb{N}}^{N}$ whose image is either \mathcal{P}-selective or \mathbb{P}-fine.

Proof. Put $N=\hat{N}^{2 n-1}(n)$, see the preceding theorem. If Q is a partition of $\hat{\mathbb{N}}^{2 \mathrm{n}-1}$, define a mapping $\varphi: \hat{\mathbb{N}}^{2 \mathrm{n}-1} \longrightarrow \mathrm{R}$ such that $\mathcal{P}=\left\{\varphi^{-1} r ; r \in R\right\}$ and apply the preceding theorem; we obtain an embedding $\psi: \widehat{n}^{2 n-1} \widehat{\mathbb{R}}^{2 n-1}$ and a partition $\widehat{2 n-1}=A U B$. Choose an arbitrary embedding $\psi^{\prime}: \hat{\mathrm{r}}^{\mathrm{n}} \rightarrow \hat{\mathrm{n}}^{2 \mathrm{n}-1}$ such that the elements s_{1}, \ldots, a_{n} from the definition of an embedding are in A or in B according as $|A| \geqslant n$ or $|B| \geqslant n$. In the former case, the emoed.ing $\psi \psi^{\prime}: \hat{r}^{n} \rightarrow \hat{\mathrm{~N}}^{2 \mathrm{n}-1}$ is P-selective and it is P-fine in the latter one. as $\hat{\mathbb{N}}^{2 \mathrm{n}-1}$ can be embedded into $\hat{\mathbb{N}}^{\mathrm{N}}$, the corolla ry follows.
3.1. Denote Y the disjoint union $\bigcup_{n=1} \hat{n}^{n}$. Let us extend the metric on cubes by putting $\rho(f, g)=\infty$ if f, g belongs to distinct cubes (for the sake of convenience, we admit the value ∞ in the (definition of a metric). This makes Y a metric space.
3.2. Convention. Writing Y^{*}, Y_{n} or any other symbol containine the capital Y we shall always mean a subset of Y which (equipped with the induced metric) is an isometric copy of Y.
3.3. A partition $0=\left\{P_{i}\right\}$ of a metric space is said to be bounded if there is K such that diam $P_{i}<K$ for every i.
3.4. Lemma. Let P be a partition of Y which is bounded (finite). Then there is $Y^{\circ} \subset Y$ which is P-selective (P-fine, respectively).

Proof. Let $O=\left\{P_{i}\right\}$ be a bounded partition of Y, let diam $P_{i}<K$ for every i. Let $n>K$. Let $N=N(n)$ be from 2.6. consider the trace of O on \hat{N}^{N}. As diam $\hat{\mathrm{N}}^{n}=n>K$, no member of ρ can contain a copy of $\hat{\mathrm{a}}^{\mathrm{n}}$. Thus, 2.6. gives an embedding $\psi_{n}: \hat{n}^{n} \rightarrow \mathbb{N}^{N}$ such that $\psi_{n}\left(\hat{n}^{n}\right)$ is P-selective. We may assume that $N(n) \neq N(m)$ for $n \neq m$. Then $A=\bigcup_{n>K} \Psi_{n}\left(\widehat{n}^{n}\right)$ is P-selective. the latter space is an isometric copy of $\bigcup_{n>K} \hat{n}^{n}$ and Y can isometrically embedded into $\bigcup_{n>K} \widehat{n}^{n}$, there is $r^{\circ} C A$ which is P-selective isometric copy of Y.
If \mathcal{O} is a finite partition of Y, we proceed wite analogously: define only K to be the cardinality of P to obtain that the mages of the above embeddings ψ_{n} are P-fine.
5. Lemma. Let $Y=Y_{1} \supset Y_{2} \supset Y_{3} \supset \ldots$ Then there exists $Y_{\infty} C Y$ bach that for each $Y^{\circ} \subset Y_{\infty}$ there are $Y_{1}^{\prime}, Y_{2}^{\prime}, Y_{3}^{\prime}, \ldots$ such that
$=Y_{i}^{\prime} \supset Y_{2}^{\prime} \supset Y_{3}^{\prime} \supset \ldots$ and $Y_{i}^{\prime} \subset Y_{i}$ for every i.

Proof. Choose an isometric copy K_{n} of \hat{r}^{n} in each Y_{n} such that the $K_{n}{ }^{\prime} \varepsilon$ are pairwise disjoint. Put $Y_{\infty}=\bigcup_{n=1} K_{n}$. Now, if $Y^{\prime} \subset Y_{\infty}$ and $Y^{\prime}=\bigcup_{n=1} K_{D}^{\circ}$, each K_{D}^{\prime} being an isometric copy of \hat{N}^{n}, then for each n there exists n° with $K_{n}^{\prime} \subset K_{n}{ }^{\prime}$ 。 Then $\bigcup_{i \geqslant n} K_{i}^{\prime} \subset \bigcup_{i \leqslant n} K_{i} \subset Y_{n}$. Put $Y_{i}^{\prime}=Y^{\circ}$. Let Y_{n}^{\prime} be defined such that $Y_{n}^{\prime} \subset Y_{n} \cap \bigcup_{i \geqslant n} K_{i}^{\prime}$. Then choose $Y_{n+1}^{\prime} \subset$ $Y_{n}^{\prime} \cap \bigcup_{i \geqslant n+1} K_{i}^{\prime}$. It follows that $Y^{i}=Y_{1}^{\prime} \supset Y_{2}^{\prime} \supset Y_{3}^{\prime} \supset \ldots$ and that $Y_{n}^{\prime} \subset \bigcup_{i \geqslant n}^{i \geqslant n+1} X_{i}^{\prime} \subset Y_{n}$.
2.6. Lemma. Let $\left\{P_{\alpha} ; \alpha<\omega_{1}\right\}$ be a collection of partitions of Y, each \mathbb{O}_{α} being either bounded or finite. Then there exists a family $\left\{Y_{\mathbb{Z}}\right\}$ where K runs over all finite subsets of ω_{1} such that
(i) $L \subset K \Rightarrow Y_{L} \supset Y_{K}$,
(ii) For every $\alpha \quad Y_{\{\alpha\}}$ is $\hat{O}_{\alpha}^{\prime}$-selective if Q_{α} is bounded and \mathbb{Q}_{α}-fine if \mathbb{O}_{α} is finite.

Proof. "ie shall proceed by induction on max K. If $\max K=0$ then $K=\{0\}$ and we choose Y_{X} to be \mathbb{C}_{0}-selective or \mathbb{C}_{0}-fine, see 3 . 4 .

Let the ${ }_{Y}{ }_{K}$'s be defined for max $K<\alpha$. First, we shall defi $Y_{\{\alpha\}}$. Let $\left\{n_{i}\right\}_{i=1}^{\infty}$ be a sequence such that $\left\{n_{i} ; i<\omega_{0}\right\}$ is the set of all ordinals $<\alpha$. Put $K_{i}=\left\{n_{1}, \ldots, n_{i}\right\}$ and $Y_{i}=Y_{K_{i}}$. By (i) we have $Y_{1} \supset Y_{2} \supset Y_{2} \supset \ldots$ and we can apply 3.5. to obtain Y_{∞}. Put $Y_{\{\alpha\}}=Y^{*}$ where Y is from 3.4. applied to the trace of O_{α} on Y_{∞}. $3 y 3.5$., we have also obtained a sequence $Y^{\prime}=Y_{i}^{\prime} \supset Y_{2}^{0} \supset Y_{i}^{0} \supset \ldots$ such that $Y_{i}^{\prime} \subset Y_{i}$ for every Finally, if $K \subset \omega_{4}$ is a finite set with $\max K=\alpha, K \neq\{\alpha\}$ consider the sinailest i with $K-\{\alpha\} \subset K_{i}$ and put $Y_{K}=Y_{i}^{\prime}$ Then (i) and (ii) nolde for max K, max $L \leqslant \alpha$, too.
7. Let z be a disjoint union $\underset{n=1}{\infty} z_{n}$ where $z_{n}=Y$ for aery n. Define a metric σ on z by

$$
\begin{aligned}
& \sigma(x, y)=\frac{R\left(x_{2} y\right)}{n} \text { if } x, y \in z_{n} \text { for some } n, \\
& \sigma(x, y)=\infty \text { otherwise. }
\end{aligned}
$$

18. Assume the CH . Then we can assume that the collection 3.6. contains all bounded partitions and all finite partitions Y. Then the family $\left\{Y_{K}\right\}$ is a basis an ultrafilter on Y which will be denoted by \mathcal{F}. Further, affine a filter \mathcal{G} on z by $G \in \mathscr{G} \Leftrightarrow \quad G \cap z_{n} \in \mathcal{F}$ for every n. inally, let \mathcal{X} be an arbitrary ultrafilter on the set of positive ptegers; put $y=2 \mathscr{F}$, ie. y is an ultrafilter on Z a basis which consists of sets of the form $\bigcup_{n \in H} C_{n}$ where. $H \in \mathscr{X}$ $G_{n} \in \boldsymbol{F}^{\boldsymbol{T}}$ for every $n \in H$.
In contrary to Y, the metric space Z is not uniformly disate. Observe also that a partition of 2 is bounded iff its ice on Z_{n} is bounded for every n. Thus, by 3.6. we have the lowing

Proposition. (CH) (i) The uniformity of Z is not uniformly secrete.
(ii) The filter \mathcal{G} on 2 posses a basis consisting of isometric lies of 2 .
(iii) The ultrafilter y on z posses a basis consisting of firmly homeomorpaic copies of z.
(iv) The filter \mathcal{G} is selective with respect: to bounded partions of Z, i.e. for every bounded partition \cap of z there is which is \mathcal{P}-selective. Analogously for y.

Theorem. (CH) There is an atom in the lattice of uniformities countable set which is non-zerodimensional. In fact, all ins refining $a_{2} \wedge a_{C}$ (where q_{2} is the metric uniformity of z) non-zerodimensional; analogously for $u_{z} \wedge a_{y}$.

Proof. Recall that a_{G} is the uniformity consisting of ail covers C with $C_{n} \notin \varnothing$. Further observe that $L_{Z} \wedge Q_{G}$ is generated by the family $\left\{\sigma_{G} ; G \in Q\right\}$ where

$$
\begin{aligned}
& \sigma_{G}(x, y)=\sigma(x, y) \text { if } x, y \in G \\
& \sigma_{G}(x, y)=\infty \text { for } x \neq y \text { otherwise. }
\end{aligned}
$$

by 3.8. (i), (ii) , no $G \in C$ is a_{2}-uniformly discrete and so $v=a_{Z} \wedge d_{g}$ is not uniformly discrete as well. Let a be an aton refining v (recall from[3]that each uniformly non-discrete uniform ty can be refined by an atom). Then the cover P consisting of b with $r=1$ with respect to σ belongs to \boldsymbol{a}. However, any parts. sion O refining C is bounded and so $0 \notin Q$ according to 3.8. (iv). Thus, $a_{i s}$ ron-zerodimensional. The proof for Q_{y} is quite anglo

References

[I] C. Berge: Graphs and hypergraphs, North Holland 1976
[2] P. Eniös, J. Spencer: Probabilistic methods in combinatorics, Akaderiai Kiado Budapest 1974.
[3] J. Pelant and J. Reiterman, Atoms in uniformities, Seminar Uniform Spaces 1973-74, 迎 ČSAV Prague 1975, p.73-81.
[4] F. Simon: Uniform atoms on ω, Seminar Uniform Spaces 1975-1 Mú ČSíV Prague 1976, p. 7-35.

