Vojtěch Rödl Canonical partition relations and point character of ℓ_1 -spaces

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1978. pp. 79-81.

Persistent URL: http://dml.cz/dmlcz/703169

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

CANONICAL PARTITION BELATIONS AND POINT CHARACTER OF \mathcal{L}_1 - SPACES

V. Rödl

troduction and basic notions : The govering \mathcal{U} of a metric space (X, ρ) is called uniform if there exists $\mathcal{E} > \mathcal{O}$ such that for every $x \in X$ there is $\bigcup \in \mathcal{U}$ so that the \mathcal{E} -ball $B_{\epsilon}(x) = \{\gamma; \rho(x, \gamma) < \epsilon \}$ is contained in U. We say that the covering U is C-bounded if dism U < C for every $U \in \mathcal{U}$. We say that the covering is bounded if it is c-bounded for some c > o . We say that the point character of a metric space (X, φ) is bigger than \measuredangle $(pc(X, \varphi) > \measuredangle)$ if there exists C>O such that for every C -bounded uniform covering \mathcal{U} of X there exists a point $x \in X$ which i contained at least in \checkmark members of $\mathcal U$. The question of the existence of spaces with arbitrary large point character was answered affirmatively in [P] and $[S_1]$, where point character lm- spaces was investigated. Here we prove an analogous of result for l_4 -spaces. We use combinatorial lemma proved in [8],

ts :

Def : The mapping $f: [\cup]^m \longrightarrow V$ $(|\cup| \le |V|)$ is salled canonical if there exists $l \in \{0, 4, 2, ..., m\}$ and $1 \le j_1 \le j_2 \le ... \le j_n \le m$ such that for every $A = \{a_1, a_2, ..., a_m\}$, $B = \{b_1, b_2, ..., b_m\}$ $(a_1 < ... < a_m, b_1 < b_2 ... < b_m)$ $A_1 B \in [\cup]^m$ $f(A) \Rightarrow f(B) \iff \langle a_{j_1} ... a_{j_n} \rangle \neq \langle b_{j_1} ... b_{j_n} \rangle$ From results proved in [B] it follows the consequent Lemma : For every cardinal number \ll and a positive integer m

there exists a cardinal number β_m such that the following holds : for every mapping $f: [\beta_m]^m \longrightarrow \beta_m$ there exists $X \subset \beta_m$ $|X| = \alpha^{\dagger}$ such that the mapping $f_{[X]}^m$ is canonical. (*)

- Theorem : For every cardibal number \checkmark there exists cardinal number β such that $\Pr \ell_{A}(\beta) > \checkmark$. (We make no attempt here to find a smallest β with above mentioned property.) <u>Proof</u>: Put $\beta = \sup \beta_{m}$ (β_{m} satisfy (*)) and denote by T
- the following subset of $l_A(\beta)$, $T = \{\frac{A}{1\kappa_1} X_{\kappa_2}, \kappa \in [\beta]^{<\omega}\}$ (where X_{κ} denotes the characteristic function of a set κ) As $l_A(\beta)$ is a linear space it suffices to prove that for every Λ -bounded uniform cover \mathcal{U} of $l_A(\beta)$ there exists

 $\psi_{\bullet} \in \ell_{\bullet}(G)$ so that Ψ_{\bullet} is contained at least in \checkmark sets of \mathcal{U} . As \mathcal{U} is uniform, there exists $\mathcal{E} > O$ such that for every $x \in \ell_{\bullet}(G)$ there is $\mathcal{U} \in \mathcal{U}$ so that $B_{\mathcal{E}}(x) \subset \mathcal{U}$. Let us take now \mathcal{M} so large that $\frac{1}{\mathcal{M}} < \frac{c}{2}$ and put $T_{\mathsf{M}} = \left\{ \frac{1}{\mathcal{M}} \mathcal{X}_{\mathsf{M}} ; \; \mathsf{K} \in [G]^{\mathsf{M}} \right\} \subset \mathsf{T}$

Choose $f: T_m \longrightarrow \mathcal{U}$ so that for every $x \in T_m$, $B_{\varepsilon}(x) \subset f(x)$ Now identify the elements of T_m and *m*-element subsets of \mathcal{S} and apply the Lemma to the mapping f. We get the existenxe of a set $X \subset \mathcal{B}_m$ so that the mapping f restricted to the set $[X]^m$ is canonical. The corresponding number ℓ must be positive as from $\ell = 0$ it follows $[X]^m \subset \mathcal{U}$ for some $\mathcal{U} \in \mathcal{U}$ and it is a contradiction as duam $[X]^m = 2$ while duam $\mathcal{U} \subset 1$ Put $\mathcal{Y} = \{\{z_1, z_2, \dots, z_{d_1}, z_{d_1}, \mathcal{X}, \mathcal{D}_{d_1}, \dots, \mathcal{X}, \mathcal{X} \subset \mathcal{U}\}$ where

 $2 < 2_{1} < 2_{1} < 2_{1} + d < 2_{1} + d < 2_{1} + d < 2_{n}$ Such an Y exists because $|X| = d^{+} > d$ So we have $Y < [X]^{m} = T_{m} < T < \ell_{1}$ Moreover for $\psi_{1}\psi \in Y$, $\psi \neq \psi$ we have $f(\psi) \neq f(\psi)$ and $\rho(\psi, \psi) = \frac{2}{m} < \epsilon$. Let us fix a $\varphi_{\epsilon} \forall$; we have $\varphi_{\epsilon} \in f(\psi)$ for every $\forall \in \forall$ As $|\forall| = a^{\dagger}$ the theorem is proved.

Many thanks to J. Pelant, who turned my attention to the problem, for valuable discussion.

References :

[B] J.E. Baumgartner - Canonical partition relations : J. Symbolic Logic 40 1975 ; no 4 , 541 - 545 [P] J. Pelant Cardinal reflection and point character of uniformities. Seminar uniform spaces 1973 - 74 Directed by Z. Frolík, 149 - 158 [S1] E. V. Schepin On a problem of Isbell, Dokl. Akad. Nauk SSSR, 222 1975 541 - 543

[S2] A.H. Stone & Universal spaces for some metrizable uniformities, Quart. J. Math., 11 1960