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CANONICAL PARTITION BRELATIONS AND POINT CHARACTER
OF .- SPACES

Ve ROd41

troduction and basic notions_.3 The 8overing L of a metric

space (X\p) is called uniform if there exists € >0 such
that for every xe€X there is U€W 50 that the £ -ball
Bt = {'3', P« <€ § 1s contained in ) . We say that
the covering/\l is C -bounded if o<omU < for every
JeWU. We say that the covering is bounded if it is

¢ -bounded for some C >O o, We say that the point character
of a metric space (X,¢) is bigger than « ( pc (X‘?)>°‘\

if there exists ¢> O such that for every C -bounded uniform
covering A of X there exists a point x€X which i comn-
tained at least in « members of A . The question of the
existence of spaces with arbitrary large point character was
answered affirmatively in EP] and ES‘], where point character
of loo - spaces was investigated. Here we prove an analogous

result for 24 -spaces. We use combinatorial lemma proved in fBJ,

ts ¢

Def : The mapping F: (U™ —V (lUI1<£1VI) is galled canoz-

ical if there exists L€ {042,.- m} and 1< guezns .- € gesm

such that for every A={oy, ... any , B = (oo by L)y

(0. c@n, Buckr <Ba) AR €TUIT JA#{(B) > Coje ajd> # b, 6

From results proved in C B1 it fellows the consequent

Lemma : For every cardinal number « and a positive integer m
there exists a cardinal number A. such that the following

holds : for every mapping C:LBJ’“—%B,N there exists X</

IX\ = «* such that the mapping e/D(J"‘ is canonical. }(ﬂ



£0

Theorem : For every cardibal number « there exists cardinal

number B such that pc 4(B) >ec. (Ve make no attempt here
to find a smallest B with above mentioned property.)

Proof 3 Put A= sup Bm ( Am satisfy (*)) and denote by T
the following subset of L(B)  T= { L% ke [67£w}
(where Xy denotes the characteristic function of a set ¥ )
As L(8) is a linear space it suffices to prove that for
every A -bounded uniform cover U of L.(B) there exists
Yo € £(8) so that Y. is contained at least in « sets of ‘U.
As W is uniform, there exists £ >0 such that for every
xe £:(0H) there is V€U so that Bg(x) cU . Let us take

now m so large thet & < £  and put

Te= 4% e B8y T

Choose f @ Tm— U so that for every x€ Tm , Be(x) < o)
Now idertify the elements of Tm and m-element subsets of A
and apply the Lemma to the mapping f . We get the exist-
enxe of a set XCB, so that the mapping f restricted to
the set [X]” is canonical. The corresponding number £ must
ve positive as from £=0O it follows (XY cU for some U€W
and 1t is a contradiction as dwa= [X17=2 gnile cuamUc4
Put Y= Wiz, Zen 24T LRI N I T where

2 <2< .- << 2.3-,‘*-& < i&u .. &3,
Such an Y exists because X\ =o't >«
So we have Y<c Ix1"=T. < Tc¢ 24

Horeover for ¢ yeY ¢*yY we have f(y)# fuy)

and QW'H =5 cF .
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Let us fix a eY ; we have , € fuy) for every ve Y
As |Y) =« the theorem is proved.

Many tharks to J. Pelant,who turned my attention

to the problem, for valuable discussienm.
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